mirror of
https://github.com/lleene/hugo-site.git
synced 2025-01-22 19:42:21 +01:00
drafting post on workout and nutrition WIP
This commit is contained in:
parent
c6391ab734
commit
3ee0d4f499
2
.gitattributes
vendored
2
.gitattributes
vendored
@ -3,3 +3,5 @@
|
||||
*.jpg binary
|
||||
*.gif binary
|
||||
*.toml filter=hostmgmt
|
||||
*.xls binary
|
||||
*.xlsx binary
|
||||
|
BIN
content/posts/2024/source/DRVs_Adults.xlsx
Normal file
BIN
content/posts/2024/source/DRVs_Adults.xlsx
Normal file
Binary file not shown.
150
content/posts/2024/source/analysis.ipynb
Normal file
150
content/posts/2024/source/analysis.ipynb
Normal file
@ -0,0 +1,150 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import csv\n",
|
||||
"import re\n",
|
||||
"import numpy as np\n",
|
||||
"from cds2py import plot_svg\n",
|
||||
"from datetime import datetime, date\n",
|
||||
"from collections import namedtuple\n",
|
||||
"from slugify import slugify\n",
|
||||
"from quantiphy import Quantity\n",
|
||||
"from tabulate import tabulate"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open('diet.csv') as csvfile:\n",
|
||||
" data = list(csv.reader(csvfile, delimiter=','))\n",
|
||||
"\n",
|
||||
"DietEntry = namedtuple(\"DietEntry\", [slugify(elem).replace(\"-\",\"_\") for elem in data[0]])\n",
|
||||
"\n",
|
||||
"def quantify_elem(elem:str, field:str):\n",
|
||||
" if field == \"date\":\n",
|
||||
" return datetime.strptime(elem,\"%Y-%m-%d\")\n",
|
||||
" elif field == \"completed\":\n",
|
||||
" return elem == \"true\"\n",
|
||||
" elif field.split(\"_\")[-1] == \"mg\":\n",
|
||||
" return Quantity(float(elem)*1e-3, units=\"g\")\n",
|
||||
" elif field.split(\"_\")[-1] == \"ug\":\n",
|
||||
" return Quantity(float(elem)*1e-6, units=\"g\")\n",
|
||||
" elif field.split(\"_\")[-1] == \"iu\":\n",
|
||||
" return Quantity(float(elem)*1e-6/40, units=\"g\")\n",
|
||||
" elif field.split(\"_\")[-1] == \"kcal\":\n",
|
||||
" return Quantity(float(elem)*1e3, units=\"cal\")\n",
|
||||
" else:\n",
|
||||
" return Quantity(elem, units=field.split(\"_\")[-1])\n",
|
||||
"\n",
|
||||
"quantities = [\n",
|
||||
" DietEntry(\n",
|
||||
" *[\n",
|
||||
" quantify_elem(value, DietEntry._fields[index])\n",
|
||||
" for index,value in enumerate(elem)\n",
|
||||
" ]\n",
|
||||
" ) for elem in data[1:]\n",
|
||||
"]\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"darray = np.array(quantities)[:,1:-1].astype(float)\n",
|
||||
"Names = [re.sub(\" [kmiu]\",\" \", elem.replace(\"_\",\" \")).replace(\" u\",\" g\") for elem in DietEntry._fields[1:-1]]\n",
|
||||
"metric_table = np.vstack(\n",
|
||||
" ( Names, [ Quantity(elem).render(prec=2) for elem in darray.mean(axis=0) ], [ Quantity(elem).render(prec=2) for elem in darray.std(axis=0) ] )\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"with open(\"diet.table\",\"w\") as mdfile:\n",
|
||||
" mdfile.write(\n",
|
||||
" tabulate( metric_table.T, headers=[\"Metric\", \"Average\", \"Deviation\"],)\n",
|
||||
" )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import importlib.resources as rsc\n",
|
||||
"import json\n",
|
||||
"import re\n",
|
||||
"import nutrimetrics.resources.dri\n",
|
||||
"\n",
|
||||
"src_txt = rsc.read_text(nutrimetrics.resources.dri,\"ear-male.json\")\n",
|
||||
"average_requirement = json.loads(re.sub(\"//.*\",\"\",src_txt))[\"dietary_reference_intakes\"]\n",
|
||||
"src_txt = rsc.read_text(nutrimetrics.resources.dri,\"rda-male.json\")\n",
|
||||
"average_allowance = json.loads(re.sub(\"//.*\",\"\",src_txt))[\"dietary_reference_intakes\"]\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"folate\n",
|
||||
"vitamin-a\n",
|
||||
"vitamin-c\n",
|
||||
"vitamin-d\n",
|
||||
"vitamin-e\n",
|
||||
"calcium\n",
|
||||
"copper\n",
|
||||
"iron\n",
|
||||
"magnesium\n",
|
||||
"manganese\n",
|
||||
"phosphorus\n",
|
||||
"potassium\n",
|
||||
"selenium\n",
|
||||
"sodium\n",
|
||||
"zinc\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"\n",
|
||||
"for name, average, _ in metric_table.T:\n",
|
||||
" nutrient = name.replace(\" \",\"-\").replace(\"-g\",\"\")\n",
|
||||
" if nutrient in average_requirement:\n",
|
||||
" print(nutrient)\n",
|
||||
" # print(Quantity(average_requirement[nutrient],units=\"g\")/Quantity(average, units=\"g\"))"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "git",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.12"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
9
content/posts/2024/source/diet.csv
Normal file
9
content/posts/2024/source/diet.csv
Normal file
@ -0,0 +1,9 @@
|
||||
Date,Energy (kcal),Alcohol (g),Caffeine (mg),Water (g),B1 (Thiamine) (mg),B2 (Riboflavin) (mg),B3 (Niacin) (mg),B5 (Pantothenic Acid) (mg),B6 (Pyridoxine) (mg),B12 (Cobalamin) (µg),Folate (µg),Vitamin A (µg),Vitamin C (mg),Vitamin D (IU),Vitamin E (mg),Vitamin K (µg),Calcium (mg),Copper (mg),Iron (mg),Magnesium (mg),Manganese (mg),Phosphorus (mg),Potassium (mg),Selenium (µg),Sodium (mg),Zinc (mg),Carbs (g),Fiber (g),Starch (g),Sugars (g),Added Sugars (g),Net Carbs (g),Fat (g),Cholesterol (mg),Monounsaturated (g),Polyunsaturated (g),Saturated (g),Trans-Fats (g),Omega-3 (g),Omega-6 (g),Cystine (g),Histidine (g),Isoleucine (g),Leucine (g),Lysine (g),Methionine (g),Phenylalanine (g),Protein (g),Threonine (g),Tryptophan (g),Tyrosine (g),Valine (g),Completed
|
||||
2023-10-22,3341.92,0.00,360.00,3577.87,2.03,2.95,26.26,7.00,3.25,3.73,650.34,1779.26,272.83,97.52,12.88,437.59,1328.30,1.12,13.18,354.19,3.33,1547.99,3981.15,112.48,1951.10,10.24,333.74,54.80,81.47,131.57,7.59,275.91,151.60,280.56,35.38,18.22,66.52,1.68,9.65,3.83,0.99,2.93,3.87,7.21,6.43,2.00,4.08,191.90,3.34,1.08,3.66,4.72,true
|
||||
2023-10-23,3817.20,0.00,541.50,3892.14,3.29,4.75,39.01,12.77,5.82,12.98,697.25,1336.87,101.43,985.22,12.31,278.45,1963.19,1.52,13.84,454.15,2.85,2273.92,5367.52,190.74,5560.49,15.68,459.56,53.53,134.03,173.22,39.23,403.31,140.28,836.63,36.16,32.36,48.08,1.39,3.49,28.03,1.70,4.02,5.94,10.71,9.29,3.15,6.02,203.28,5.33,1.55,5.00,7.12,true
|
||||
2023-10-24,3942.98,0.00,360.00,2802.70,1.98,3.88,29.46,9.57,3.54,7.18,414.31,698.38,120.55,553.01,8.39,114.14,1777.33,0.97,10.63,363.60,3.51,1920.01,4103.29,154.97,6837.22,12.67,496.21,58.27,53.50,201.50,50.30,436.51,133.70,899.51,39.04,13.23,45.47,1.33,1.21,11.45,1.42,3.39,4.92,8.82,8.03,2.63,4.83,217.38,4.45,1.40,3.96,5.62,true
|
||||
2023-10-25,3849.45,0.00,160.00,2298.22,1.77,2.50,28.42,8.56,4.10,9.48,320.80,397.76,71.48,217.68,6.37,74.27,1508.71,1.49,11.62,391.41,2.23,1781.18,4817.48,95.89,3501.27,19.28,484.89,59.49,103.91,130.89,4.05,422.90,126.58,273.77,21.00,5.81,36.90,1.75,0.83,4.31,0.98,2.72,3.92,7.34,6.52,2.10,3.97,219.75,3.41,0.75,3.23,4.92,true
|
||||
2023-10-26,4911.16,0.00,0.00,1231.38,1.97,2.61,14.51,5.13,2.12,4.26,709.20,1011.82,69.12,334.28,6.25,108.26,1382.69,1.13,19.17,321.46,2.74,1404.52,3421.28,194.88,5789.38,9.52,678.35,75.15,132.10,199.21,70.33,601.30,142.47,493.38,18.81,6.00,56.83,1.70,0.49,4.87,1.07,2.32,3.58,6.84,4.49,1.63,3.98,251.07,3.12,1.01,2.91,4.33,true
|
||||
2023-10-27,4084.73,0.00,265.60,3111.11,2.35,3.43,24.44,10.03,5.35,9.87,617.74,1485.26,184.53,284.14,13.10,438.47,2760.81,1.67,16.80,550.89,3.87,2773.57,7452.27,136.46,4984.42,17.69,479.51,59.27,128.92,172.13,11.18,418.69,165.84,243.25,30.66,48.25,58.56,1.29,5.95,40.93,1.17,3.39,5.05,9.64,8.64,2.69,5.50,199.97,4.40,1.20,4.78,6.75,true
|
||||
2023-10-28,3548.53,0.00,341.50,2350.51,1.14,1.29,23.56,3.35,2.91,4.30,504.67,543.18,88.02,239.17,4.33,41.20,1250.61,0.73,6.28,175.10,1.95,643.95,2556.57,37.76,2894.01,2.40,489.54,47.60,77.35,117.87,7.00,439.47,130.43,158.69,33.91,6.78,69.53,1.60,0.29,1.27,0.32,0.59,0.69,1.30,0.79,0.31,0.92,130.61,0.62,0.21,0.53,0.85,true
|
||||
2023-10-29,3987.24,0.00,162.80,3746.95,1.63,3.17,14.74,8.15,2.36,5.86,568.39,785.39,228.91,339.37,13.14,469.88,1498.41,1.10,12.47,308.84,2.51,1774.37,3089.60,140.99,3116.55,8.86,501.96,61.93,49.27,217.84,92.23,436.86,137.36,912.53,38.16,25.47,43.07,0.68,10.25,11.13,1.24,2.31,3.83,6.53,5.44,1.96,3.77,215.77,3.38,0.95,3.04,4.45,true
|
|
54
content/posts/2024/source/diet.table
Normal file
54
content/posts/2024/source/diet.table
Normal file
@ -0,0 +1,54 @@
|
||||
Metric Average Deviation
|
||||
--------------------- --------- -----------
|
||||
energy cal 3.94M 433k
|
||||
alcohol g 0 0
|
||||
caffeine g 274m 155m
|
||||
water g 2.88k 841
|
||||
b1 thiamine g 2.02m 583u
|
||||
b2 riboflavin g 3.07m 958u
|
||||
b3 niacin g 25.1m 7.48m
|
||||
b5 pantothenic acid g 8.07m 2.75m
|
||||
b6 pyridoxine g 3.68m 1.25m
|
||||
b12 cobalamin g 7.21u 3.09u
|
||||
folate g 560u 130u
|
||||
vitamin a g 1m 456u
|
||||
vitamin c g 142m 72.3m
|
||||
vitamin d g 9.53u 6.47u
|
||||
vitamin e g 9.6m 3.42m
|
||||
vitamin g 245u 171u
|
||||
calcium g 1.68 463m
|
||||
copper g 1.22m 296u
|
||||
iron g 13m 3.64m
|
||||
magnesium g 365m 103m
|
||||
manganese g 2.87m 615u
|
||||
phosphorus g 1.76 585m
|
||||
potassium g 4.35 1.45
|
||||
selenium g 133u 48.2u
|
||||
sodium g 4.33 1.59
|
||||
zinc g 12m 5.13m
|
||||
carbs g 490 87.4
|
||||
fiber g 58.8 7.48
|
||||
starch g 95.1 32.5
|
||||
sugars g 168 35.1
|
||||
added sugars g 35.2 31.3
|
||||
net carbs g 429 82.3
|
||||
fat g 141 11.8
|
||||
cholesterol g 512m 301m
|
||||
monounsaturated g 31.6 7.21
|
||||
polyunsaturated g 19.5 14.1
|
||||
saturated g 53.1 10.8
|
||||
trans fats g 1.43 328m
|
||||
omega 3 g 4.02 3.86
|
||||
omega 6 g 13.2 13.1
|
||||
cystine g 1.11 374m
|
||||
histidine g 2.71 968m
|
||||
isoleucine g 3.97 1.45
|
||||
leucine g 7.3 2.65
|
||||
lysine g 6.2 2.54
|
||||
methionine g 2.06 804m
|
||||
phenylalanine g 4.13 1.43
|
||||
protein g 204 32.3
|
||||
threonine g 3.51 1.3
|
||||
tryptophan g 1.02 387m
|
||||
tyrosine g 3.39 1.3
|
||||
valine g 4.85 1.8
|
2637
content/posts/2024/source/workouts.csv
Normal file
2637
content/posts/2024/source/workouts.csv
Normal file
File diff suppressed because it is too large
Load Diff
15
content/posts/2024/workout-routine.md
Normal file
15
content/posts/2024/workout-routine.md
Normal file
@ -0,0 +1,15 @@
|
||||
---
|
||||
title: "Sampling Fitness and In"
|
||||
date: 2024-11-12T16:10:10+02:00
|
||||
draft: true
|
||||
toc: false
|
||||
images:
|
||||
tags:
|
||||
- health
|
||||
- python
|
||||
- workout
|
||||
- fitness
|
||||
---
|
||||
|
||||
Test
|
||||
|
Loading…
x
Reference in New Issue
Block a user