143 lines
3.7 KiB
Python
143 lines
3.7 KiB
Python
from collections.abc import (
|
|
Hashable,
|
|
Iterator,
|
|
)
|
|
from typing import (
|
|
Any,
|
|
Generic,
|
|
Literal,
|
|
final,
|
|
overload,
|
|
)
|
|
|
|
import numpy as np
|
|
from pandas import (
|
|
Index,
|
|
Series,
|
|
)
|
|
from pandas.core.arraylike import OpsMixin
|
|
from pandas.core.arrays import ExtensionArray
|
|
from pandas.core.arrays.categorical import Categorical
|
|
from typing_extensions import Self
|
|
|
|
from pandas._typing import (
|
|
S1,
|
|
AxisIndex,
|
|
DropKeep,
|
|
DTypeLike,
|
|
GenericT,
|
|
GenericT_co,
|
|
NDFrameT,
|
|
Scalar,
|
|
SupportsDType,
|
|
np_1darray,
|
|
)
|
|
from pandas.util._decorators import cache_readonly
|
|
|
|
class NoNewAttributesMixin:
|
|
def __setattr__(self, key: str, value: Any) -> None: ...
|
|
|
|
class SelectionMixin(Generic[NDFrameT]):
|
|
obj: NDFrameT
|
|
exclusions: frozenset[Hashable]
|
|
@final
|
|
@cache_readonly
|
|
def ndim(self) -> int: ...
|
|
def __getitem__(self, key): ...
|
|
def aggregate(self, func, *args, **kwargs): ...
|
|
|
|
class IndexOpsMixin(OpsMixin, Generic[S1, GenericT_co]):
|
|
__array_priority__: int = ...
|
|
@property
|
|
def T(self) -> Self: ...
|
|
@property
|
|
def shape(self) -> tuple: ...
|
|
@property
|
|
def ndim(self) -> int: ...
|
|
def item(self) -> S1: ...
|
|
@property
|
|
def nbytes(self) -> int: ...
|
|
@property
|
|
def size(self) -> int: ...
|
|
@property
|
|
def array(self) -> ExtensionArray: ...
|
|
@overload
|
|
def to_numpy(
|
|
self,
|
|
dtype: None = None,
|
|
copy: bool = False,
|
|
na_value: Scalar = ...,
|
|
**kwargs,
|
|
) -> np_1darray[GenericT_co]: ...
|
|
@overload
|
|
def to_numpy(
|
|
self,
|
|
dtype: np.dtype[GenericT] | SupportsDType[GenericT] | type[GenericT],
|
|
copy: bool = False,
|
|
na_value: Scalar = ...,
|
|
**kwargs,
|
|
) -> np_1darray[GenericT]: ...
|
|
@overload
|
|
def to_numpy(
|
|
self,
|
|
dtype: DTypeLike,
|
|
copy: bool = False,
|
|
na_value: Scalar = ...,
|
|
**kwargs,
|
|
) -> np_1darray: ...
|
|
@property
|
|
def empty(self) -> bool: ...
|
|
def max(self, axis=..., skipna: bool = ..., **kwargs): ...
|
|
def min(self, axis=..., skipna: bool = ..., **kwargs): ...
|
|
def argmax(
|
|
self,
|
|
axis: AxisIndex | None = ...,
|
|
skipna: bool = True,
|
|
*args,
|
|
**kwargs,
|
|
) -> np.int64: ...
|
|
def argmin(
|
|
self,
|
|
axis: AxisIndex | None = ...,
|
|
skipna: bool = True,
|
|
*args,
|
|
**kwargs,
|
|
) -> np.int64: ...
|
|
def tolist(self) -> list[S1]: ...
|
|
def to_list(self) -> list[S1]: ...
|
|
def __iter__(self) -> Iterator[S1]: ...
|
|
@property
|
|
def hasnans(self) -> bool: ...
|
|
@overload
|
|
def value_counts(
|
|
self,
|
|
normalize: Literal[False] = ...,
|
|
sort: bool = ...,
|
|
ascending: bool = ...,
|
|
bins=...,
|
|
dropna: bool = ...,
|
|
) -> Series[int]: ...
|
|
@overload
|
|
def value_counts(
|
|
self,
|
|
normalize: Literal[True],
|
|
sort: bool = ...,
|
|
ascending: bool = ...,
|
|
bins=...,
|
|
dropna: bool = ...,
|
|
) -> Series[float]: ...
|
|
def nunique(self, dropna: bool = True) -> int: ...
|
|
@property
|
|
def is_unique(self) -> bool: ...
|
|
@property
|
|
def is_monotonic_decreasing(self) -> bool: ...
|
|
@property
|
|
def is_monotonic_increasing(self) -> bool: ...
|
|
def factorize(
|
|
self, sort: bool = False, use_na_sentinel: bool = True
|
|
) -> tuple[np_1darray, np_1darray | Index | Categorical]: ...
|
|
def searchsorted(
|
|
self, value, side: Literal["left", "right"] = ..., sorter=...
|
|
) -> int | list[int]: ...
|
|
def drop_duplicates(self, *, keep: DropKeep = ...) -> Self: ...
|