Files
dash-api/lib/python3.11/site-packages/pandas-stubs/core/base.pyi

143 lines
3.7 KiB
Python
Raw Normal View History

2025-09-07 22:09:54 +02:00
from collections.abc import (
Hashable,
Iterator,
)
from typing import (
Any,
Generic,
Literal,
final,
overload,
)
import numpy as np
from pandas import (
Index,
Series,
)
from pandas.core.arraylike import OpsMixin
from pandas.core.arrays import ExtensionArray
from pandas.core.arrays.categorical import Categorical
from typing_extensions import Self
from pandas._typing import (
S1,
AxisIndex,
DropKeep,
DTypeLike,
GenericT,
GenericT_co,
NDFrameT,
Scalar,
SupportsDType,
np_1darray,
)
from pandas.util._decorators import cache_readonly
class NoNewAttributesMixin:
def __setattr__(self, key: str, value: Any) -> None: ...
class SelectionMixin(Generic[NDFrameT]):
obj: NDFrameT
exclusions: frozenset[Hashable]
@final
@cache_readonly
def ndim(self) -> int: ...
def __getitem__(self, key): ...
def aggregate(self, func, *args, **kwargs): ...
class IndexOpsMixin(OpsMixin, Generic[S1, GenericT_co]):
__array_priority__: int = ...
@property
def T(self) -> Self: ...
@property
def shape(self) -> tuple: ...
@property
def ndim(self) -> int: ...
def item(self) -> S1: ...
@property
def nbytes(self) -> int: ...
@property
def size(self) -> int: ...
@property
def array(self) -> ExtensionArray: ...
@overload
def to_numpy(
self,
dtype: None = None,
copy: bool = False,
na_value: Scalar = ...,
**kwargs,
) -> np_1darray[GenericT_co]: ...
@overload
def to_numpy(
self,
dtype: np.dtype[GenericT] | SupportsDType[GenericT] | type[GenericT],
copy: bool = False,
na_value: Scalar = ...,
**kwargs,
) -> np_1darray[GenericT]: ...
@overload
def to_numpy(
self,
dtype: DTypeLike,
copy: bool = False,
na_value: Scalar = ...,
**kwargs,
) -> np_1darray: ...
@property
def empty(self) -> bool: ...
def max(self, axis=..., skipna: bool = ..., **kwargs): ...
def min(self, axis=..., skipna: bool = ..., **kwargs): ...
def argmax(
self,
axis: AxisIndex | None = ...,
skipna: bool = True,
*args,
**kwargs,
) -> np.int64: ...
def argmin(
self,
axis: AxisIndex | None = ...,
skipna: bool = True,
*args,
**kwargs,
) -> np.int64: ...
def tolist(self) -> list[S1]: ...
def to_list(self) -> list[S1]: ...
def __iter__(self) -> Iterator[S1]: ...
@property
def hasnans(self) -> bool: ...
@overload
def value_counts(
self,
normalize: Literal[False] = ...,
sort: bool = ...,
ascending: bool = ...,
bins=...,
dropna: bool = ...,
) -> Series[int]: ...
@overload
def value_counts(
self,
normalize: Literal[True],
sort: bool = ...,
ascending: bool = ...,
bins=...,
dropna: bool = ...,
) -> Series[float]: ...
def nunique(self, dropna: bool = True) -> int: ...
@property
def is_unique(self) -> bool: ...
@property
def is_monotonic_decreasing(self) -> bool: ...
@property
def is_monotonic_increasing(self) -> bool: ...
def factorize(
self, sort: bool = False, use_na_sentinel: bool = True
) -> tuple[np_1darray, np_1darray | Index | Categorical]: ...
def searchsorted(
self, value, side: Literal["left", "right"] = ..., sorter=...
) -> int | list[int]: ...
def drop_duplicates(self, *, keep: DropKeep = ...) -> Self: ...