670 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			670 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""Tests for polynomial module.
 | 
						|
 | 
						|
"""
 | 
						|
import pickle
 | 
						|
from copy import deepcopy
 | 
						|
from fractions import Fraction
 | 
						|
from functools import reduce
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import numpy.polynomial.polynomial as poly
 | 
						|
import numpy.polynomial.polyutils as pu
 | 
						|
from numpy.testing import (
 | 
						|
    assert_,
 | 
						|
    assert_almost_equal,
 | 
						|
    assert_array_equal,
 | 
						|
    assert_equal,
 | 
						|
    assert_raises,
 | 
						|
    assert_raises_regex,
 | 
						|
    assert_warns,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
def trim(x):
 | 
						|
    return poly.polytrim(x, tol=1e-6)
 | 
						|
 | 
						|
 | 
						|
T0 = [1]
 | 
						|
T1 = [0, 1]
 | 
						|
T2 = [-1, 0, 2]
 | 
						|
T3 = [0, -3, 0, 4]
 | 
						|
T4 = [1, 0, -8, 0, 8]
 | 
						|
T5 = [0, 5, 0, -20, 0, 16]
 | 
						|
T6 = [-1, 0, 18, 0, -48, 0, 32]
 | 
						|
T7 = [0, -7, 0, 56, 0, -112, 0, 64]
 | 
						|
T8 = [1, 0, -32, 0, 160, 0, -256, 0, 128]
 | 
						|
T9 = [0, 9, 0, -120, 0, 432, 0, -576, 0, 256]
 | 
						|
 | 
						|
Tlist = [T0, T1, T2, T3, T4, T5, T6, T7, T8, T9]
 | 
						|
 | 
						|
 | 
						|
class TestConstants:
 | 
						|
 | 
						|
    def test_polydomain(self):
 | 
						|
        assert_equal(poly.polydomain, [-1, 1])
 | 
						|
 | 
						|
    def test_polyzero(self):
 | 
						|
        assert_equal(poly.polyzero, [0])
 | 
						|
 | 
						|
    def test_polyone(self):
 | 
						|
        assert_equal(poly.polyone, [1])
 | 
						|
 | 
						|
    def test_polyx(self):
 | 
						|
        assert_equal(poly.polyx, [0, 1])
 | 
						|
 | 
						|
    def test_copy(self):
 | 
						|
        x = poly.Polynomial([1, 2, 3])
 | 
						|
        y = deepcopy(x)
 | 
						|
        assert_equal(x, y)
 | 
						|
 | 
						|
    def test_pickle(self):
 | 
						|
        x = poly.Polynomial([1, 2, 3])
 | 
						|
        y = pickle.loads(pickle.dumps(x))
 | 
						|
        assert_equal(x, y)
 | 
						|
 | 
						|
class TestArithmetic:
 | 
						|
 | 
						|
    def test_polyadd(self):
 | 
						|
        for i in range(5):
 | 
						|
            for j in range(5):
 | 
						|
                msg = f"At i={i}, j={j}"
 | 
						|
                tgt = np.zeros(max(i, j) + 1)
 | 
						|
                tgt[i] += 1
 | 
						|
                tgt[j] += 1
 | 
						|
                res = poly.polyadd([0] * i + [1], [0] * j + [1])
 | 
						|
                assert_equal(trim(res), trim(tgt), err_msg=msg)
 | 
						|
 | 
						|
    def test_polysub(self):
 | 
						|
        for i in range(5):
 | 
						|
            for j in range(5):
 | 
						|
                msg = f"At i={i}, j={j}"
 | 
						|
                tgt = np.zeros(max(i, j) + 1)
 | 
						|
                tgt[i] += 1
 | 
						|
                tgt[j] -= 1
 | 
						|
                res = poly.polysub([0] * i + [1], [0] * j + [1])
 | 
						|
                assert_equal(trim(res), trim(tgt), err_msg=msg)
 | 
						|
 | 
						|
    def test_polymulx(self):
 | 
						|
        assert_equal(poly.polymulx([0]), [0])
 | 
						|
        assert_equal(poly.polymulx([1]), [0, 1])
 | 
						|
        for i in range(1, 5):
 | 
						|
            ser = [0] * i + [1]
 | 
						|
            tgt = [0] * (i + 1) + [1]
 | 
						|
            assert_equal(poly.polymulx(ser), tgt)
 | 
						|
 | 
						|
    def test_polymul(self):
 | 
						|
        for i in range(5):
 | 
						|
            for j in range(5):
 | 
						|
                msg = f"At i={i}, j={j}"
 | 
						|
                tgt = np.zeros(i + j + 1)
 | 
						|
                tgt[i + j] += 1
 | 
						|
                res = poly.polymul([0] * i + [1], [0] * j + [1])
 | 
						|
                assert_equal(trim(res), trim(tgt), err_msg=msg)
 | 
						|
 | 
						|
    def test_polydiv(self):
 | 
						|
        # check zero division
 | 
						|
        assert_raises(ZeroDivisionError, poly.polydiv, [1], [0])
 | 
						|
 | 
						|
        # check scalar division
 | 
						|
        quo, rem = poly.polydiv([2], [2])
 | 
						|
        assert_equal((quo, rem), (1, 0))
 | 
						|
        quo, rem = poly.polydiv([2, 2], [2])
 | 
						|
        assert_equal((quo, rem), ((1, 1), 0))
 | 
						|
 | 
						|
        # check rest.
 | 
						|
        for i in range(5):
 | 
						|
            for j in range(5):
 | 
						|
                msg = f"At i={i}, j={j}"
 | 
						|
                ci = [0] * i + [1, 2]
 | 
						|
                cj = [0] * j + [1, 2]
 | 
						|
                tgt = poly.polyadd(ci, cj)
 | 
						|
                quo, rem = poly.polydiv(tgt, ci)
 | 
						|
                res = poly.polyadd(poly.polymul(quo, ci), rem)
 | 
						|
                assert_equal(res, tgt, err_msg=msg)
 | 
						|
 | 
						|
    def test_polypow(self):
 | 
						|
        for i in range(5):
 | 
						|
            for j in range(5):
 | 
						|
                msg = f"At i={i}, j={j}"
 | 
						|
                c = np.arange(i + 1)
 | 
						|
                tgt = reduce(poly.polymul, [c] * j, np.array([1]))
 | 
						|
                res = poly.polypow(c, j)
 | 
						|
                assert_equal(trim(res), trim(tgt), err_msg=msg)
 | 
						|
 | 
						|
class TestFraction:
 | 
						|
 | 
						|
    def test_Fraction(self):
 | 
						|
        # assert we can use Polynomials with coefficients of object dtype
 | 
						|
        f = Fraction(2, 3)
 | 
						|
        one = Fraction(1, 1)
 | 
						|
        zero = Fraction(0, 1)
 | 
						|
        p = poly.Polynomial([f, f], domain=[zero, one], window=[zero, one])
 | 
						|
 | 
						|
        x = 2 * p + p ** 2
 | 
						|
        assert_equal(x.coef, np.array([Fraction(16, 9), Fraction(20, 9),
 | 
						|
                                       Fraction(4, 9)], dtype=object))
 | 
						|
        assert_equal(p.domain, [zero, one])
 | 
						|
        assert_equal(p.coef.dtype, np.dtypes.ObjectDType())
 | 
						|
        assert_(isinstance(p(f), Fraction))
 | 
						|
        assert_equal(p(f), Fraction(10, 9))
 | 
						|
        p_deriv = poly.Polynomial([Fraction(2, 3)], domain=[zero, one],
 | 
						|
                                  window=[zero, one])
 | 
						|
        assert_equal(p.deriv(), p_deriv)
 | 
						|
 | 
						|
class TestEvaluation:
 | 
						|
    # coefficients of 1 + 2*x + 3*x**2
 | 
						|
    c1d = np.array([1., 2., 3.])
 | 
						|
    c2d = np.einsum('i,j->ij', c1d, c1d)
 | 
						|
    c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
 | 
						|
 | 
						|
    # some random values in [-1, 1)
 | 
						|
    x = np.random.random((3, 5)) * 2 - 1
 | 
						|
    y = poly.polyval(x, [1., 2., 3.])
 | 
						|
 | 
						|
    def test_polyval(self):
 | 
						|
        # check empty input
 | 
						|
        assert_equal(poly.polyval([], [1]).size, 0)
 | 
						|
 | 
						|
        # check normal input)
 | 
						|
        x = np.linspace(-1, 1)
 | 
						|
        y = [x**i for i in range(5)]
 | 
						|
        for i in range(5):
 | 
						|
            tgt = y[i]
 | 
						|
            res = poly.polyval(x, [0] * i + [1])
 | 
						|
            assert_almost_equal(res, tgt)
 | 
						|
        tgt = x * (x**2 - 1)
 | 
						|
        res = poly.polyval(x, [0, -1, 0, 1])
 | 
						|
        assert_almost_equal(res, tgt)
 | 
						|
 | 
						|
        # check that shape is preserved
 | 
						|
        for i in range(3):
 | 
						|
            dims = [2] * i
 | 
						|
            x = np.zeros(dims)
 | 
						|
            assert_equal(poly.polyval(x, [1]).shape, dims)
 | 
						|
            assert_equal(poly.polyval(x, [1, 0]).shape, dims)
 | 
						|
            assert_equal(poly.polyval(x, [1, 0, 0]).shape, dims)
 | 
						|
 | 
						|
        # check masked arrays are processed correctly
 | 
						|
        mask = [False, True, False]
 | 
						|
        mx = np.ma.array([1, 2, 3], mask=mask)
 | 
						|
        res = np.polyval([7, 5, 3], mx)
 | 
						|
        assert_array_equal(res.mask, mask)
 | 
						|
 | 
						|
        # check subtypes of ndarray are preserved
 | 
						|
        class C(np.ndarray):
 | 
						|
            pass
 | 
						|
 | 
						|
        cx = np.array([1, 2, 3]).view(C)
 | 
						|
        assert_equal(type(np.polyval([2, 3, 4], cx)), C)
 | 
						|
 | 
						|
    def test_polyvalfromroots(self):
 | 
						|
        # check exception for broadcasting x values over root array with
 | 
						|
        # too few dimensions
 | 
						|
        assert_raises(ValueError, poly.polyvalfromroots,
 | 
						|
                      [1], [1], tensor=False)
 | 
						|
 | 
						|
        # check empty input
 | 
						|
        assert_equal(poly.polyvalfromroots([], [1]).size, 0)
 | 
						|
        assert_(poly.polyvalfromroots([], [1]).shape == (0,))
 | 
						|
 | 
						|
        # check empty input + multidimensional roots
 | 
						|
        assert_equal(poly.polyvalfromroots([], [[1] * 5]).size, 0)
 | 
						|
        assert_(poly.polyvalfromroots([], [[1] * 5]).shape == (5, 0))
 | 
						|
 | 
						|
        # check scalar input
 | 
						|
        assert_equal(poly.polyvalfromroots(1, 1), 0)
 | 
						|
        assert_(poly.polyvalfromroots(1, np.ones((3, 3))).shape == (3,))
 | 
						|
 | 
						|
        # check normal input)
 | 
						|
        x = np.linspace(-1, 1)
 | 
						|
        y = [x**i for i in range(5)]
 | 
						|
        for i in range(1, 5):
 | 
						|
            tgt = y[i]
 | 
						|
            res = poly.polyvalfromroots(x, [0] * i)
 | 
						|
            assert_almost_equal(res, tgt)
 | 
						|
        tgt = x * (x - 1) * (x + 1)
 | 
						|
        res = poly.polyvalfromroots(x, [-1, 0, 1])
 | 
						|
        assert_almost_equal(res, tgt)
 | 
						|
 | 
						|
        # check that shape is preserved
 | 
						|
        for i in range(3):
 | 
						|
            dims = [2] * i
 | 
						|
            x = np.zeros(dims)
 | 
						|
            assert_equal(poly.polyvalfromroots(x, [1]).shape, dims)
 | 
						|
            assert_equal(poly.polyvalfromroots(x, [1, 0]).shape, dims)
 | 
						|
            assert_equal(poly.polyvalfromroots(x, [1, 0, 0]).shape, dims)
 | 
						|
 | 
						|
        # check compatibility with factorization
 | 
						|
        ptest = [15, 2, -16, -2, 1]
 | 
						|
        r = poly.polyroots(ptest)
 | 
						|
        x = np.linspace(-1, 1)
 | 
						|
        assert_almost_equal(poly.polyval(x, ptest),
 | 
						|
                            poly.polyvalfromroots(x, r))
 | 
						|
 | 
						|
        # check multidimensional arrays of roots and values
 | 
						|
        # check tensor=False
 | 
						|
        rshape = (3, 5)
 | 
						|
        x = np.arange(-3, 2)
 | 
						|
        r = np.random.randint(-5, 5, size=rshape)
 | 
						|
        res = poly.polyvalfromroots(x, r, tensor=False)
 | 
						|
        tgt = np.empty(r.shape[1:])
 | 
						|
        for ii in range(tgt.size):
 | 
						|
            tgt[ii] = poly.polyvalfromroots(x[ii], r[:, ii])
 | 
						|
        assert_equal(res, tgt)
 | 
						|
 | 
						|
        # check tensor=True
 | 
						|
        x = np.vstack([x, 2 * x])
 | 
						|
        res = poly.polyvalfromroots(x, r, tensor=True)
 | 
						|
        tgt = np.empty(r.shape[1:] + x.shape)
 | 
						|
        for ii in range(r.shape[1]):
 | 
						|
            for jj in range(x.shape[0]):
 | 
						|
                tgt[ii, jj, :] = poly.polyvalfromroots(x[jj], r[:, ii])
 | 
						|
        assert_equal(res, tgt)
 | 
						|
 | 
						|
    def test_polyval2d(self):
 | 
						|
        x1, x2, x3 = self.x
 | 
						|
        y1, y2, y3 = self.y
 | 
						|
 | 
						|
        # test exceptions
 | 
						|
        assert_raises_regex(ValueError, 'incompatible',
 | 
						|
                            poly.polyval2d, x1, x2[:2], self.c2d)
 | 
						|
 | 
						|
        # test values
 | 
						|
        tgt = y1 * y2
 | 
						|
        res = poly.polyval2d(x1, x2, self.c2d)
 | 
						|
        assert_almost_equal(res, tgt)
 | 
						|
 | 
						|
        # test shape
 | 
						|
        z = np.ones((2, 3))
 | 
						|
        res = poly.polyval2d(z, z, self.c2d)
 | 
						|
        assert_(res.shape == (2, 3))
 | 
						|
 | 
						|
    def test_polyval3d(self):
 | 
						|
        x1, x2, x3 = self.x
 | 
						|
        y1, y2, y3 = self.y
 | 
						|
 | 
						|
        # test exceptions
 | 
						|
        assert_raises_regex(ValueError, 'incompatible',
 | 
						|
                      poly.polyval3d, x1, x2, x3[:2], self.c3d)
 | 
						|
 | 
						|
        # test values
 | 
						|
        tgt = y1 * y2 * y3
 | 
						|
        res = poly.polyval3d(x1, x2, x3, self.c3d)
 | 
						|
        assert_almost_equal(res, tgt)
 | 
						|
 | 
						|
        # test shape
 | 
						|
        z = np.ones((2, 3))
 | 
						|
        res = poly.polyval3d(z, z, z, self.c3d)
 | 
						|
        assert_(res.shape == (2, 3))
 | 
						|
 | 
						|
    def test_polygrid2d(self):
 | 
						|
        x1, x2, x3 = self.x
 | 
						|
        y1, y2, y3 = self.y
 | 
						|
 | 
						|
        # test values
 | 
						|
        tgt = np.einsum('i,j->ij', y1, y2)
 | 
						|
        res = poly.polygrid2d(x1, x2, self.c2d)
 | 
						|
        assert_almost_equal(res, tgt)
 | 
						|
 | 
						|
        # test shape
 | 
						|
        z = np.ones((2, 3))
 | 
						|
        res = poly.polygrid2d(z, z, self.c2d)
 | 
						|
        assert_(res.shape == (2, 3) * 2)
 | 
						|
 | 
						|
    def test_polygrid3d(self):
 | 
						|
        x1, x2, x3 = self.x
 | 
						|
        y1, y2, y3 = self.y
 | 
						|
 | 
						|
        # test values
 | 
						|
        tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
 | 
						|
        res = poly.polygrid3d(x1, x2, x3, self.c3d)
 | 
						|
        assert_almost_equal(res, tgt)
 | 
						|
 | 
						|
        # test shape
 | 
						|
        z = np.ones((2, 3))
 | 
						|
        res = poly.polygrid3d(z, z, z, self.c3d)
 | 
						|
        assert_(res.shape == (2, 3) * 3)
 | 
						|
 | 
						|
 | 
						|
class TestIntegral:
 | 
						|
 | 
						|
    def test_polyint(self):
 | 
						|
        # check exceptions
 | 
						|
        assert_raises(TypeError, poly.polyint, [0], .5)
 | 
						|
        assert_raises(ValueError, poly.polyint, [0], -1)
 | 
						|
        assert_raises(ValueError, poly.polyint, [0], 1, [0, 0])
 | 
						|
        assert_raises(ValueError, poly.polyint, [0], lbnd=[0])
 | 
						|
        assert_raises(ValueError, poly.polyint, [0], scl=[0])
 | 
						|
        assert_raises(TypeError, poly.polyint, [0], axis=.5)
 | 
						|
        assert_raises(TypeError, poly.polyint, [1, 1], 1.)
 | 
						|
 | 
						|
        # test integration of zero polynomial
 | 
						|
        for i in range(2, 5):
 | 
						|
            k = [0] * (i - 2) + [1]
 | 
						|
            res = poly.polyint([0], m=i, k=k)
 | 
						|
            assert_almost_equal(res, [0, 1])
 | 
						|
 | 
						|
        # check single integration with integration constant
 | 
						|
        for i in range(5):
 | 
						|
            scl = i + 1
 | 
						|
            pol = [0] * i + [1]
 | 
						|
            tgt = [i] + [0] * i + [1 / scl]
 | 
						|
            res = poly.polyint(pol, m=1, k=[i])
 | 
						|
            assert_almost_equal(trim(res), trim(tgt))
 | 
						|
 | 
						|
        # check single integration with integration constant and lbnd
 | 
						|
        for i in range(5):
 | 
						|
            scl = i + 1
 | 
						|
            pol = [0] * i + [1]
 | 
						|
            res = poly.polyint(pol, m=1, k=[i], lbnd=-1)
 | 
						|
            assert_almost_equal(poly.polyval(-1, res), i)
 | 
						|
 | 
						|
        # check single integration with integration constant and scaling
 | 
						|
        for i in range(5):
 | 
						|
            scl = i + 1
 | 
						|
            pol = [0] * i + [1]
 | 
						|
            tgt = [i] + [0] * i + [2 / scl]
 | 
						|
            res = poly.polyint(pol, m=1, k=[i], scl=2)
 | 
						|
            assert_almost_equal(trim(res), trim(tgt))
 | 
						|
 | 
						|
        # check multiple integrations with default k
 | 
						|
        for i in range(5):
 | 
						|
            for j in range(2, 5):
 | 
						|
                pol = [0] * i + [1]
 | 
						|
                tgt = pol[:]
 | 
						|
                for k in range(j):
 | 
						|
                    tgt = poly.polyint(tgt, m=1)
 | 
						|
                res = poly.polyint(pol, m=j)
 | 
						|
                assert_almost_equal(trim(res), trim(tgt))
 | 
						|
 | 
						|
        # check multiple integrations with defined k
 | 
						|
        for i in range(5):
 | 
						|
            for j in range(2, 5):
 | 
						|
                pol = [0] * i + [1]
 | 
						|
                tgt = pol[:]
 | 
						|
                for k in range(j):
 | 
						|
                    tgt = poly.polyint(tgt, m=1, k=[k])
 | 
						|
                res = poly.polyint(pol, m=j, k=list(range(j)))
 | 
						|
                assert_almost_equal(trim(res), trim(tgt))
 | 
						|
 | 
						|
        # check multiple integrations with lbnd
 | 
						|
        for i in range(5):
 | 
						|
            for j in range(2, 5):
 | 
						|
                pol = [0] * i + [1]
 | 
						|
                tgt = pol[:]
 | 
						|
                for k in range(j):
 | 
						|
                    tgt = poly.polyint(tgt, m=1, k=[k], lbnd=-1)
 | 
						|
                res = poly.polyint(pol, m=j, k=list(range(j)), lbnd=-1)
 | 
						|
                assert_almost_equal(trim(res), trim(tgt))
 | 
						|
 | 
						|
        # check multiple integrations with scaling
 | 
						|
        for i in range(5):
 | 
						|
            for j in range(2, 5):
 | 
						|
                pol = [0] * i + [1]
 | 
						|
                tgt = pol[:]
 | 
						|
                for k in range(j):
 | 
						|
                    tgt = poly.polyint(tgt, m=1, k=[k], scl=2)
 | 
						|
                res = poly.polyint(pol, m=j, k=list(range(j)), scl=2)
 | 
						|
                assert_almost_equal(trim(res), trim(tgt))
 | 
						|
 | 
						|
    def test_polyint_axis(self):
 | 
						|
        # check that axis keyword works
 | 
						|
        c2d = np.random.random((3, 4))
 | 
						|
 | 
						|
        tgt = np.vstack([poly.polyint(c) for c in c2d.T]).T
 | 
						|
        res = poly.polyint(c2d, axis=0)
 | 
						|
        assert_almost_equal(res, tgt)
 | 
						|
 | 
						|
        tgt = np.vstack([poly.polyint(c) for c in c2d])
 | 
						|
        res = poly.polyint(c2d, axis=1)
 | 
						|
        assert_almost_equal(res, tgt)
 | 
						|
 | 
						|
        tgt = np.vstack([poly.polyint(c, k=3) for c in c2d])
 | 
						|
        res = poly.polyint(c2d, k=3, axis=1)
 | 
						|
        assert_almost_equal(res, tgt)
 | 
						|
 | 
						|
 | 
						|
class TestDerivative:
 | 
						|
 | 
						|
    def test_polyder(self):
 | 
						|
        # check exceptions
 | 
						|
        assert_raises(TypeError, poly.polyder, [0], .5)
 | 
						|
        assert_raises(ValueError, poly.polyder, [0], -1)
 | 
						|
 | 
						|
        # check that zeroth derivative does nothing
 | 
						|
        for i in range(5):
 | 
						|
            tgt = [0] * i + [1]
 | 
						|
            res = poly.polyder(tgt, m=0)
 | 
						|
            assert_equal(trim(res), trim(tgt))
 | 
						|
 | 
						|
        # check that derivation is the inverse of integration
 | 
						|
        for i in range(5):
 | 
						|
            for j in range(2, 5):
 | 
						|
                tgt = [0] * i + [1]
 | 
						|
                res = poly.polyder(poly.polyint(tgt, m=j), m=j)
 | 
						|
                assert_almost_equal(trim(res), trim(tgt))
 | 
						|
 | 
						|
        # check derivation with scaling
 | 
						|
        for i in range(5):
 | 
						|
            for j in range(2, 5):
 | 
						|
                tgt = [0] * i + [1]
 | 
						|
                res = poly.polyder(poly.polyint(tgt, m=j, scl=2), m=j, scl=.5)
 | 
						|
                assert_almost_equal(trim(res), trim(tgt))
 | 
						|
 | 
						|
    def test_polyder_axis(self):
 | 
						|
        # check that axis keyword works
 | 
						|
        c2d = np.random.random((3, 4))
 | 
						|
 | 
						|
        tgt = np.vstack([poly.polyder(c) for c in c2d.T]).T
 | 
						|
        res = poly.polyder(c2d, axis=0)
 | 
						|
        assert_almost_equal(res, tgt)
 | 
						|
 | 
						|
        tgt = np.vstack([poly.polyder(c) for c in c2d])
 | 
						|
        res = poly.polyder(c2d, axis=1)
 | 
						|
        assert_almost_equal(res, tgt)
 | 
						|
 | 
						|
 | 
						|
class TestVander:
 | 
						|
    # some random values in [-1, 1)
 | 
						|
    x = np.random.random((3, 5)) * 2 - 1
 | 
						|
 | 
						|
    def test_polyvander(self):
 | 
						|
        # check for 1d x
 | 
						|
        x = np.arange(3)
 | 
						|
        v = poly.polyvander(x, 3)
 | 
						|
        assert_(v.shape == (3, 4))
 | 
						|
        for i in range(4):
 | 
						|
            coef = [0] * i + [1]
 | 
						|
            assert_almost_equal(v[..., i], poly.polyval(x, coef))
 | 
						|
 | 
						|
        # check for 2d x
 | 
						|
        x = np.array([[1, 2], [3, 4], [5, 6]])
 | 
						|
        v = poly.polyvander(x, 3)
 | 
						|
        assert_(v.shape == (3, 2, 4))
 | 
						|
        for i in range(4):
 | 
						|
            coef = [0] * i + [1]
 | 
						|
            assert_almost_equal(v[..., i], poly.polyval(x, coef))
 | 
						|
 | 
						|
    def test_polyvander2d(self):
 | 
						|
        # also tests polyval2d for non-square coefficient array
 | 
						|
        x1, x2, x3 = self.x
 | 
						|
        c = np.random.random((2, 3))
 | 
						|
        van = poly.polyvander2d(x1, x2, [1, 2])
 | 
						|
        tgt = poly.polyval2d(x1, x2, c)
 | 
						|
        res = np.dot(van, c.flat)
 | 
						|
        assert_almost_equal(res, tgt)
 | 
						|
 | 
						|
        # check shape
 | 
						|
        van = poly.polyvander2d([x1], [x2], [1, 2])
 | 
						|
        assert_(van.shape == (1, 5, 6))
 | 
						|
 | 
						|
    def test_polyvander3d(self):
 | 
						|
        # also tests polyval3d for non-square coefficient array
 | 
						|
        x1, x2, x3 = self.x
 | 
						|
        c = np.random.random((2, 3, 4))
 | 
						|
        van = poly.polyvander3d(x1, x2, x3, [1, 2, 3])
 | 
						|
        tgt = poly.polyval3d(x1, x2, x3, c)
 | 
						|
        res = np.dot(van, c.flat)
 | 
						|
        assert_almost_equal(res, tgt)
 | 
						|
 | 
						|
        # check shape
 | 
						|
        van = poly.polyvander3d([x1], [x2], [x3], [1, 2, 3])
 | 
						|
        assert_(van.shape == (1, 5, 24))
 | 
						|
 | 
						|
    def test_polyvandernegdeg(self):
 | 
						|
        x = np.arange(3)
 | 
						|
        assert_raises(ValueError, poly.polyvander, x, -1)
 | 
						|
 | 
						|
 | 
						|
class TestCompanion:
 | 
						|
 | 
						|
    def test_raises(self):
 | 
						|
        assert_raises(ValueError, poly.polycompanion, [])
 | 
						|
        assert_raises(ValueError, poly.polycompanion, [1])
 | 
						|
 | 
						|
    def test_dimensions(self):
 | 
						|
        for i in range(1, 5):
 | 
						|
            coef = [0] * i + [1]
 | 
						|
            assert_(poly.polycompanion(coef).shape == (i, i))
 | 
						|
 | 
						|
    def test_linear_root(self):
 | 
						|
        assert_(poly.polycompanion([1, 2])[0, 0] == -.5)
 | 
						|
 | 
						|
 | 
						|
class TestMisc:
 | 
						|
 | 
						|
    def test_polyfromroots(self):
 | 
						|
        res = poly.polyfromroots([])
 | 
						|
        assert_almost_equal(trim(res), [1])
 | 
						|
        for i in range(1, 5):
 | 
						|
            roots = np.cos(np.linspace(-np.pi, 0, 2 * i + 1)[1::2])
 | 
						|
            tgt = Tlist[i]
 | 
						|
            res = poly.polyfromroots(roots) * 2**(i - 1)
 | 
						|
            assert_almost_equal(trim(res), trim(tgt))
 | 
						|
 | 
						|
    def test_polyroots(self):
 | 
						|
        assert_almost_equal(poly.polyroots([1]), [])
 | 
						|
        assert_almost_equal(poly.polyroots([1, 2]), [-.5])
 | 
						|
        for i in range(2, 5):
 | 
						|
            tgt = np.linspace(-1, 1, i)
 | 
						|
            res = poly.polyroots(poly.polyfromroots(tgt))
 | 
						|
            assert_almost_equal(trim(res), trim(tgt))
 | 
						|
 | 
						|
        # Testing for larger root values
 | 
						|
        for i in np.logspace(10, 25, num=1000, base=10):
 | 
						|
            tgt = np.array([-1, 1, i])
 | 
						|
            res = poly.polyroots(poly.polyfromroots(tgt))
 | 
						|
            # Adapting the expected precision according to the root value,
 | 
						|
            # to take into account numerical calculation error.
 | 
						|
            assert_almost_equal(res, tgt, 15 - int(np.log10(i)))
 | 
						|
        for i in np.logspace(10, 25, num=1000, base=10):
 | 
						|
            tgt = np.array([-1, 1.01, i])
 | 
						|
            res = poly.polyroots(poly.polyfromroots(tgt))
 | 
						|
            # Adapting the expected precision according to the root value,
 | 
						|
            # to take into account numerical calculation error.
 | 
						|
            assert_almost_equal(res, tgt, 14 - int(np.log10(i)))
 | 
						|
 | 
						|
    def test_polyfit(self):
 | 
						|
        def f(x):
 | 
						|
            return x * (x - 1) * (x - 2)
 | 
						|
 | 
						|
        def f2(x):
 | 
						|
            return x**4 + x**2 + 1
 | 
						|
 | 
						|
        # Test exceptions
 | 
						|
        assert_raises(ValueError, poly.polyfit, [1], [1], -1)
 | 
						|
        assert_raises(TypeError, poly.polyfit, [[1]], [1], 0)
 | 
						|
        assert_raises(TypeError, poly.polyfit, [], [1], 0)
 | 
						|
        assert_raises(TypeError, poly.polyfit, [1], [[[1]]], 0)
 | 
						|
        assert_raises(TypeError, poly.polyfit, [1, 2], [1], 0)
 | 
						|
        assert_raises(TypeError, poly.polyfit, [1], [1, 2], 0)
 | 
						|
        assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[[1]])
 | 
						|
        assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[1, 1])
 | 
						|
        assert_raises(ValueError, poly.polyfit, [1], [1], [-1,])
 | 
						|
        assert_raises(ValueError, poly.polyfit, [1], [1], [2, -1, 6])
 | 
						|
        assert_raises(TypeError, poly.polyfit, [1], [1], [])
 | 
						|
 | 
						|
        # Test fit
 | 
						|
        x = np.linspace(0, 2)
 | 
						|
        y = f(x)
 | 
						|
        #
 | 
						|
        coef3 = poly.polyfit(x, y, 3)
 | 
						|
        assert_equal(len(coef3), 4)
 | 
						|
        assert_almost_equal(poly.polyval(x, coef3), y)
 | 
						|
        coef3 = poly.polyfit(x, y, [0, 1, 2, 3])
 | 
						|
        assert_equal(len(coef3), 4)
 | 
						|
        assert_almost_equal(poly.polyval(x, coef3), y)
 | 
						|
        #
 | 
						|
        coef4 = poly.polyfit(x, y, 4)
 | 
						|
        assert_equal(len(coef4), 5)
 | 
						|
        assert_almost_equal(poly.polyval(x, coef4), y)
 | 
						|
        coef4 = poly.polyfit(x, y, [0, 1, 2, 3, 4])
 | 
						|
        assert_equal(len(coef4), 5)
 | 
						|
        assert_almost_equal(poly.polyval(x, coef4), y)
 | 
						|
        #
 | 
						|
        coef2d = poly.polyfit(x, np.array([y, y]).T, 3)
 | 
						|
        assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
 | 
						|
        coef2d = poly.polyfit(x, np.array([y, y]).T, [0, 1, 2, 3])
 | 
						|
        assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
 | 
						|
        # test weighting
 | 
						|
        w = np.zeros_like(x)
 | 
						|
        yw = y.copy()
 | 
						|
        w[1::2] = 1
 | 
						|
        yw[0::2] = 0
 | 
						|
        wcoef3 = poly.polyfit(x, yw, 3, w=w)
 | 
						|
        assert_almost_equal(wcoef3, coef3)
 | 
						|
        wcoef3 = poly.polyfit(x, yw, [0, 1, 2, 3], w=w)
 | 
						|
        assert_almost_equal(wcoef3, coef3)
 | 
						|
        #
 | 
						|
        wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, 3, w=w)
 | 
						|
        assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
 | 
						|
        wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
 | 
						|
        assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
 | 
						|
        # test scaling with complex values x points whose square
 | 
						|
        # is zero when summed.
 | 
						|
        x = [1, 1j, -1, -1j]
 | 
						|
        assert_almost_equal(poly.polyfit(x, x, 1), [0, 1])
 | 
						|
        assert_almost_equal(poly.polyfit(x, x, [0, 1]), [0, 1])
 | 
						|
        # test fitting only even Polyendre polynomials
 | 
						|
        x = np.linspace(-1, 1)
 | 
						|
        y = f2(x)
 | 
						|
        coef1 = poly.polyfit(x, y, 4)
 | 
						|
        assert_almost_equal(poly.polyval(x, coef1), y)
 | 
						|
        coef2 = poly.polyfit(x, y, [0, 2, 4])
 | 
						|
        assert_almost_equal(poly.polyval(x, coef2), y)
 | 
						|
        assert_almost_equal(coef1, coef2)
 | 
						|
 | 
						|
    def test_polytrim(self):
 | 
						|
        coef = [2, -1, 1, 0]
 | 
						|
 | 
						|
        # Test exceptions
 | 
						|
        assert_raises(ValueError, poly.polytrim, coef, -1)
 | 
						|
 | 
						|
        # Test results
 | 
						|
        assert_equal(poly.polytrim(coef), coef[:-1])
 | 
						|
        assert_equal(poly.polytrim(coef, 1), coef[:-3])
 | 
						|
        assert_equal(poly.polytrim(coef, 2), [0])
 | 
						|
 | 
						|
    def test_polyline(self):
 | 
						|
        assert_equal(poly.polyline(3, 4), [3, 4])
 | 
						|
 | 
						|
    def test_polyline_zero(self):
 | 
						|
        assert_equal(poly.polyline(3, 0), [3])
 | 
						|
 | 
						|
    def test_fit_degenerate_domain(self):
 | 
						|
        p = poly.Polynomial.fit([1], [2], deg=0)
 | 
						|
        assert_equal(p.coef, [2.])
 | 
						|
        p = poly.Polynomial.fit([1, 1], [2, 2.1], deg=0)
 | 
						|
        assert_almost_equal(p.coef, [2.05])
 | 
						|
        with assert_warns(pu.RankWarning):
 | 
						|
            p = poly.Polynomial.fit([1, 1], [2, 2.1], deg=1)
 | 
						|
 | 
						|
    def test_result_type(self):
 | 
						|
        w = np.array([-1, 1], dtype=np.float32)
 | 
						|
        p = np.polynomial.Polynomial(w, domain=w, window=w)
 | 
						|
        v = p(2)
 | 
						|
        assert_equal(v.dtype, np.float32)
 | 
						|
 | 
						|
        arr = np.polydiv(1, np.float32(1))
 | 
						|
        assert_equal(arr[0].dtype, np.float64)
 |