670 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			670 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								"""Tests for polynomial module.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								"""
							 | 
						||
| 
								 | 
							
								import pickle
							 | 
						||
| 
								 | 
							
								from copy import deepcopy
							 | 
						||
| 
								 | 
							
								from fractions import Fraction
							 | 
						||
| 
								 | 
							
								from functools import reduce
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import numpy as np
							 | 
						||
| 
								 | 
							
								import numpy.polynomial.polynomial as poly
							 | 
						||
| 
								 | 
							
								import numpy.polynomial.polyutils as pu
							 | 
						||
| 
								 | 
							
								from numpy.testing import (
							 | 
						||
| 
								 | 
							
								    assert_,
							 | 
						||
| 
								 | 
							
								    assert_almost_equal,
							 | 
						||
| 
								 | 
							
								    assert_array_equal,
							 | 
						||
| 
								 | 
							
								    assert_equal,
							 | 
						||
| 
								 | 
							
								    assert_raises,
							 | 
						||
| 
								 | 
							
								    assert_raises_regex,
							 | 
						||
| 
								 | 
							
								    assert_warns,
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def trim(x):
							 | 
						||
| 
								 | 
							
								    return poly.polytrim(x, tol=1e-6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								T0 = [1]
							 | 
						||
| 
								 | 
							
								T1 = [0, 1]
							 | 
						||
| 
								 | 
							
								T2 = [-1, 0, 2]
							 | 
						||
| 
								 | 
							
								T3 = [0, -3, 0, 4]
							 | 
						||
| 
								 | 
							
								T4 = [1, 0, -8, 0, 8]
							 | 
						||
| 
								 | 
							
								T5 = [0, 5, 0, -20, 0, 16]
							 | 
						||
| 
								 | 
							
								T6 = [-1, 0, 18, 0, -48, 0, 32]
							 | 
						||
| 
								 | 
							
								T7 = [0, -7, 0, 56, 0, -112, 0, 64]
							 | 
						||
| 
								 | 
							
								T8 = [1, 0, -32, 0, 160, 0, -256, 0, 128]
							 | 
						||
| 
								 | 
							
								T9 = [0, 9, 0, -120, 0, 432, 0, -576, 0, 256]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Tlist = [T0, T1, T2, T3, T4, T5, T6, T7, T8, T9]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestConstants:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polydomain(self):
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polydomain, [-1, 1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyzero(self):
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polyzero, [0])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyone(self):
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polyone, [1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyx(self):
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polyx, [0, 1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_copy(self):
							 | 
						||
| 
								 | 
							
								        x = poly.Polynomial([1, 2, 3])
							 | 
						||
| 
								 | 
							
								        y = deepcopy(x)
							 | 
						||
| 
								 | 
							
								        assert_equal(x, y)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_pickle(self):
							 | 
						||
| 
								 | 
							
								        x = poly.Polynomial([1, 2, 3])
							 | 
						||
| 
								 | 
							
								        y = pickle.loads(pickle.dumps(x))
							 | 
						||
| 
								 | 
							
								        assert_equal(x, y)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestArithmetic:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyadd(self):
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            for j in range(5):
							 | 
						||
| 
								 | 
							
								                msg = f"At i={i}, j={j}"
							 | 
						||
| 
								 | 
							
								                tgt = np.zeros(max(i, j) + 1)
							 | 
						||
| 
								 | 
							
								                tgt[i] += 1
							 | 
						||
| 
								 | 
							
								                tgt[j] += 1
							 | 
						||
| 
								 | 
							
								                res = poly.polyadd([0] * i + [1], [0] * j + [1])
							 | 
						||
| 
								 | 
							
								                assert_equal(trim(res), trim(tgt), err_msg=msg)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polysub(self):
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            for j in range(5):
							 | 
						||
| 
								 | 
							
								                msg = f"At i={i}, j={j}"
							 | 
						||
| 
								 | 
							
								                tgt = np.zeros(max(i, j) + 1)
							 | 
						||
| 
								 | 
							
								                tgt[i] += 1
							 | 
						||
| 
								 | 
							
								                tgt[j] -= 1
							 | 
						||
| 
								 | 
							
								                res = poly.polysub([0] * i + [1], [0] * j + [1])
							 | 
						||
| 
								 | 
							
								                assert_equal(trim(res), trim(tgt), err_msg=msg)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polymulx(self):
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polymulx([0]), [0])
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polymulx([1]), [0, 1])
							 | 
						||
| 
								 | 
							
								        for i in range(1, 5):
							 | 
						||
| 
								 | 
							
								            ser = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								            tgt = [0] * (i + 1) + [1]
							 | 
						||
| 
								 | 
							
								            assert_equal(poly.polymulx(ser), tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polymul(self):
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            for j in range(5):
							 | 
						||
| 
								 | 
							
								                msg = f"At i={i}, j={j}"
							 | 
						||
| 
								 | 
							
								                tgt = np.zeros(i + j + 1)
							 | 
						||
| 
								 | 
							
								                tgt[i + j] += 1
							 | 
						||
| 
								 | 
							
								                res = poly.polymul([0] * i + [1], [0] * j + [1])
							 | 
						||
| 
								 | 
							
								                assert_equal(trim(res), trim(tgt), err_msg=msg)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polydiv(self):
							 | 
						||
| 
								 | 
							
								        # check zero division
							 | 
						||
| 
								 | 
							
								        assert_raises(ZeroDivisionError, poly.polydiv, [1], [0])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check scalar division
							 | 
						||
| 
								 | 
							
								        quo, rem = poly.polydiv([2], [2])
							 | 
						||
| 
								 | 
							
								        assert_equal((quo, rem), (1, 0))
							 | 
						||
| 
								 | 
							
								        quo, rem = poly.polydiv([2, 2], [2])
							 | 
						||
| 
								 | 
							
								        assert_equal((quo, rem), ((1, 1), 0))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check rest.
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            for j in range(5):
							 | 
						||
| 
								 | 
							
								                msg = f"At i={i}, j={j}"
							 | 
						||
| 
								 | 
							
								                ci = [0] * i + [1, 2]
							 | 
						||
| 
								 | 
							
								                cj = [0] * j + [1, 2]
							 | 
						||
| 
								 | 
							
								                tgt = poly.polyadd(ci, cj)
							 | 
						||
| 
								 | 
							
								                quo, rem = poly.polydiv(tgt, ci)
							 | 
						||
| 
								 | 
							
								                res = poly.polyadd(poly.polymul(quo, ci), rem)
							 | 
						||
| 
								 | 
							
								                assert_equal(res, tgt, err_msg=msg)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polypow(self):
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            for j in range(5):
							 | 
						||
| 
								 | 
							
								                msg = f"At i={i}, j={j}"
							 | 
						||
| 
								 | 
							
								                c = np.arange(i + 1)
							 | 
						||
| 
								 | 
							
								                tgt = reduce(poly.polymul, [c] * j, np.array([1]))
							 | 
						||
| 
								 | 
							
								                res = poly.polypow(c, j)
							 | 
						||
| 
								 | 
							
								                assert_equal(trim(res), trim(tgt), err_msg=msg)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestFraction:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_Fraction(self):
							 | 
						||
| 
								 | 
							
								        # assert we can use Polynomials with coefficients of object dtype
							 | 
						||
| 
								 | 
							
								        f = Fraction(2, 3)
							 | 
						||
| 
								 | 
							
								        one = Fraction(1, 1)
							 | 
						||
| 
								 | 
							
								        zero = Fraction(0, 1)
							 | 
						||
| 
								 | 
							
								        p = poly.Polynomial([f, f], domain=[zero, one], window=[zero, one])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        x = 2 * p + p ** 2
							 | 
						||
| 
								 | 
							
								        assert_equal(x.coef, np.array([Fraction(16, 9), Fraction(20, 9),
							 | 
						||
| 
								 | 
							
								                                       Fraction(4, 9)], dtype=object))
							 | 
						||
| 
								 | 
							
								        assert_equal(p.domain, [zero, one])
							 | 
						||
| 
								 | 
							
								        assert_equal(p.coef.dtype, np.dtypes.ObjectDType())
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(p(f), Fraction))
							 | 
						||
| 
								 | 
							
								        assert_equal(p(f), Fraction(10, 9))
							 | 
						||
| 
								 | 
							
								        p_deriv = poly.Polynomial([Fraction(2, 3)], domain=[zero, one],
							 | 
						||
| 
								 | 
							
								                                  window=[zero, one])
							 | 
						||
| 
								 | 
							
								        assert_equal(p.deriv(), p_deriv)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestEvaluation:
							 | 
						||
| 
								 | 
							
								    # coefficients of 1 + 2*x + 3*x**2
							 | 
						||
| 
								 | 
							
								    c1d = np.array([1., 2., 3.])
							 | 
						||
| 
								 | 
							
								    c2d = np.einsum('i,j->ij', c1d, c1d)
							 | 
						||
| 
								 | 
							
								    c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # some random values in [-1, 1)
							 | 
						||
| 
								 | 
							
								    x = np.random.random((3, 5)) * 2 - 1
							 | 
						||
| 
								 | 
							
								    y = poly.polyval(x, [1., 2., 3.])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyval(self):
							 | 
						||
| 
								 | 
							
								        # check empty input
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polyval([], [1]).size, 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check normal input)
							 | 
						||
| 
								 | 
							
								        x = np.linspace(-1, 1)
							 | 
						||
| 
								 | 
							
								        y = [x**i for i in range(5)]
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            tgt = y[i]
							 | 
						||
| 
								 | 
							
								            res = poly.polyval(x, [0] * i + [1])
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								        tgt = x * (x**2 - 1)
							 | 
						||
| 
								 | 
							
								        res = poly.polyval(x, [0, -1, 0, 1])
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check that shape is preserved
							 | 
						||
| 
								 | 
							
								        for i in range(3):
							 | 
						||
| 
								 | 
							
								            dims = [2] * i
							 | 
						||
| 
								 | 
							
								            x = np.zeros(dims)
							 | 
						||
| 
								 | 
							
								            assert_equal(poly.polyval(x, [1]).shape, dims)
							 | 
						||
| 
								 | 
							
								            assert_equal(poly.polyval(x, [1, 0]).shape, dims)
							 | 
						||
| 
								 | 
							
								            assert_equal(poly.polyval(x, [1, 0, 0]).shape, dims)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check masked arrays are processed correctly
							 | 
						||
| 
								 | 
							
								        mask = [False, True, False]
							 | 
						||
| 
								 | 
							
								        mx = np.ma.array([1, 2, 3], mask=mask)
							 | 
						||
| 
								 | 
							
								        res = np.polyval([7, 5, 3], mx)
							 | 
						||
| 
								 | 
							
								        assert_array_equal(res.mask, mask)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check subtypes of ndarray are preserved
							 | 
						||
| 
								 | 
							
								        class C(np.ndarray):
							 | 
						||
| 
								 | 
							
								            pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        cx = np.array([1, 2, 3]).view(C)
							 | 
						||
| 
								 | 
							
								        assert_equal(type(np.polyval([2, 3, 4], cx)), C)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyvalfromroots(self):
							 | 
						||
| 
								 | 
							
								        # check exception for broadcasting x values over root array with
							 | 
						||
| 
								 | 
							
								        # too few dimensions
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, poly.polyvalfromroots,
							 | 
						||
| 
								 | 
							
								                      [1], [1], tensor=False)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check empty input
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polyvalfromroots([], [1]).size, 0)
							 | 
						||
| 
								 | 
							
								        assert_(poly.polyvalfromroots([], [1]).shape == (0,))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check empty input + multidimensional roots
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polyvalfromroots([], [[1] * 5]).size, 0)
							 | 
						||
| 
								 | 
							
								        assert_(poly.polyvalfromroots([], [[1] * 5]).shape == (5, 0))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check scalar input
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polyvalfromroots(1, 1), 0)
							 | 
						||
| 
								 | 
							
								        assert_(poly.polyvalfromroots(1, np.ones((3, 3))).shape == (3,))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check normal input)
							 | 
						||
| 
								 | 
							
								        x = np.linspace(-1, 1)
							 | 
						||
| 
								 | 
							
								        y = [x**i for i in range(5)]
							 | 
						||
| 
								 | 
							
								        for i in range(1, 5):
							 | 
						||
| 
								 | 
							
								            tgt = y[i]
							 | 
						||
| 
								 | 
							
								            res = poly.polyvalfromroots(x, [0] * i)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								        tgt = x * (x - 1) * (x + 1)
							 | 
						||
| 
								 | 
							
								        res = poly.polyvalfromroots(x, [-1, 0, 1])
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check that shape is preserved
							 | 
						||
| 
								 | 
							
								        for i in range(3):
							 | 
						||
| 
								 | 
							
								            dims = [2] * i
							 | 
						||
| 
								 | 
							
								            x = np.zeros(dims)
							 | 
						||
| 
								 | 
							
								            assert_equal(poly.polyvalfromroots(x, [1]).shape, dims)
							 | 
						||
| 
								 | 
							
								            assert_equal(poly.polyvalfromroots(x, [1, 0]).shape, dims)
							 | 
						||
| 
								 | 
							
								            assert_equal(poly.polyvalfromroots(x, [1, 0, 0]).shape, dims)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check compatibility with factorization
							 | 
						||
| 
								 | 
							
								        ptest = [15, 2, -16, -2, 1]
							 | 
						||
| 
								 | 
							
								        r = poly.polyroots(ptest)
							 | 
						||
| 
								 | 
							
								        x = np.linspace(-1, 1)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(poly.polyval(x, ptest),
							 | 
						||
| 
								 | 
							
								                            poly.polyvalfromroots(x, r))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check multidimensional arrays of roots and values
							 | 
						||
| 
								 | 
							
								        # check tensor=False
							 | 
						||
| 
								 | 
							
								        rshape = (3, 5)
							 | 
						||
| 
								 | 
							
								        x = np.arange(-3, 2)
							 | 
						||
| 
								 | 
							
								        r = np.random.randint(-5, 5, size=rshape)
							 | 
						||
| 
								 | 
							
								        res = poly.polyvalfromroots(x, r, tensor=False)
							 | 
						||
| 
								 | 
							
								        tgt = np.empty(r.shape[1:])
							 | 
						||
| 
								 | 
							
								        for ii in range(tgt.size):
							 | 
						||
| 
								 | 
							
								            tgt[ii] = poly.polyvalfromroots(x[ii], r[:, ii])
							 | 
						||
| 
								 | 
							
								        assert_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check tensor=True
							 | 
						||
| 
								 | 
							
								        x = np.vstack([x, 2 * x])
							 | 
						||
| 
								 | 
							
								        res = poly.polyvalfromroots(x, r, tensor=True)
							 | 
						||
| 
								 | 
							
								        tgt = np.empty(r.shape[1:] + x.shape)
							 | 
						||
| 
								 | 
							
								        for ii in range(r.shape[1]):
							 | 
						||
| 
								 | 
							
								            for jj in range(x.shape[0]):
							 | 
						||
| 
								 | 
							
								                tgt[ii, jj, :] = poly.polyvalfromroots(x[jj], r[:, ii])
							 | 
						||
| 
								 | 
							
								        assert_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyval2d(self):
							 | 
						||
| 
								 | 
							
								        x1, x2, x3 = self.x
							 | 
						||
| 
								 | 
							
								        y1, y2, y3 = self.y
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # test exceptions
							 | 
						||
| 
								 | 
							
								        assert_raises_regex(ValueError, 'incompatible',
							 | 
						||
| 
								 | 
							
								                            poly.polyval2d, x1, x2[:2], self.c2d)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # test values
							 | 
						||
| 
								 | 
							
								        tgt = y1 * y2
							 | 
						||
| 
								 | 
							
								        res = poly.polyval2d(x1, x2, self.c2d)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # test shape
							 | 
						||
| 
								 | 
							
								        z = np.ones((2, 3))
							 | 
						||
| 
								 | 
							
								        res = poly.polyval2d(z, z, self.c2d)
							 | 
						||
| 
								 | 
							
								        assert_(res.shape == (2, 3))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyval3d(self):
							 | 
						||
| 
								 | 
							
								        x1, x2, x3 = self.x
							 | 
						||
| 
								 | 
							
								        y1, y2, y3 = self.y
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # test exceptions
							 | 
						||
| 
								 | 
							
								        assert_raises_regex(ValueError, 'incompatible',
							 | 
						||
| 
								 | 
							
								                      poly.polyval3d, x1, x2, x3[:2], self.c3d)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # test values
							 | 
						||
| 
								 | 
							
								        tgt = y1 * y2 * y3
							 | 
						||
| 
								 | 
							
								        res = poly.polyval3d(x1, x2, x3, self.c3d)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # test shape
							 | 
						||
| 
								 | 
							
								        z = np.ones((2, 3))
							 | 
						||
| 
								 | 
							
								        res = poly.polyval3d(z, z, z, self.c3d)
							 | 
						||
| 
								 | 
							
								        assert_(res.shape == (2, 3))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polygrid2d(self):
							 | 
						||
| 
								 | 
							
								        x1, x2, x3 = self.x
							 | 
						||
| 
								 | 
							
								        y1, y2, y3 = self.y
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # test values
							 | 
						||
| 
								 | 
							
								        tgt = np.einsum('i,j->ij', y1, y2)
							 | 
						||
| 
								 | 
							
								        res = poly.polygrid2d(x1, x2, self.c2d)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # test shape
							 | 
						||
| 
								 | 
							
								        z = np.ones((2, 3))
							 | 
						||
| 
								 | 
							
								        res = poly.polygrid2d(z, z, self.c2d)
							 | 
						||
| 
								 | 
							
								        assert_(res.shape == (2, 3) * 2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polygrid3d(self):
							 | 
						||
| 
								 | 
							
								        x1, x2, x3 = self.x
							 | 
						||
| 
								 | 
							
								        y1, y2, y3 = self.y
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # test values
							 | 
						||
| 
								 | 
							
								        tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
							 | 
						||
| 
								 | 
							
								        res = poly.polygrid3d(x1, x2, x3, self.c3d)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # test shape
							 | 
						||
| 
								 | 
							
								        z = np.ones((2, 3))
							 | 
						||
| 
								 | 
							
								        res = poly.polygrid3d(z, z, z, self.c3d)
							 | 
						||
| 
								 | 
							
								        assert_(res.shape == (2, 3) * 3)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestIntegral:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyint(self):
							 | 
						||
| 
								 | 
							
								        # check exceptions
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, poly.polyint, [0], .5)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, poly.polyint, [0], -1)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, poly.polyint, [0], 1, [0, 0])
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, poly.polyint, [0], lbnd=[0])
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, poly.polyint, [0], scl=[0])
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, poly.polyint, [0], axis=.5)
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, poly.polyint, [1, 1], 1.)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # test integration of zero polynomial
							 | 
						||
| 
								 | 
							
								        for i in range(2, 5):
							 | 
						||
| 
								 | 
							
								            k = [0] * (i - 2) + [1]
							 | 
						||
| 
								 | 
							
								            res = poly.polyint([0], m=i, k=k)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(res, [0, 1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check single integration with integration constant
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            scl = i + 1
							 | 
						||
| 
								 | 
							
								            pol = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								            tgt = [i] + [0] * i + [1 / scl]
							 | 
						||
| 
								 | 
							
								            res = poly.polyint(pol, m=1, k=[i])
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(trim(res), trim(tgt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check single integration with integration constant and lbnd
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            scl = i + 1
							 | 
						||
| 
								 | 
							
								            pol = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								            res = poly.polyint(pol, m=1, k=[i], lbnd=-1)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(poly.polyval(-1, res), i)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check single integration with integration constant and scaling
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            scl = i + 1
							 | 
						||
| 
								 | 
							
								            pol = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								            tgt = [i] + [0] * i + [2 / scl]
							 | 
						||
| 
								 | 
							
								            res = poly.polyint(pol, m=1, k=[i], scl=2)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(trim(res), trim(tgt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check multiple integrations with default k
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            for j in range(2, 5):
							 | 
						||
| 
								 | 
							
								                pol = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								                tgt = pol[:]
							 | 
						||
| 
								 | 
							
								                for k in range(j):
							 | 
						||
| 
								 | 
							
								                    tgt = poly.polyint(tgt, m=1)
							 | 
						||
| 
								 | 
							
								                res = poly.polyint(pol, m=j)
							 | 
						||
| 
								 | 
							
								                assert_almost_equal(trim(res), trim(tgt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check multiple integrations with defined k
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            for j in range(2, 5):
							 | 
						||
| 
								 | 
							
								                pol = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								                tgt = pol[:]
							 | 
						||
| 
								 | 
							
								                for k in range(j):
							 | 
						||
| 
								 | 
							
								                    tgt = poly.polyint(tgt, m=1, k=[k])
							 | 
						||
| 
								 | 
							
								                res = poly.polyint(pol, m=j, k=list(range(j)))
							 | 
						||
| 
								 | 
							
								                assert_almost_equal(trim(res), trim(tgt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check multiple integrations with lbnd
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            for j in range(2, 5):
							 | 
						||
| 
								 | 
							
								                pol = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								                tgt = pol[:]
							 | 
						||
| 
								 | 
							
								                for k in range(j):
							 | 
						||
| 
								 | 
							
								                    tgt = poly.polyint(tgt, m=1, k=[k], lbnd=-1)
							 | 
						||
| 
								 | 
							
								                res = poly.polyint(pol, m=j, k=list(range(j)), lbnd=-1)
							 | 
						||
| 
								 | 
							
								                assert_almost_equal(trim(res), trim(tgt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check multiple integrations with scaling
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            for j in range(2, 5):
							 | 
						||
| 
								 | 
							
								                pol = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								                tgt = pol[:]
							 | 
						||
| 
								 | 
							
								                for k in range(j):
							 | 
						||
| 
								 | 
							
								                    tgt = poly.polyint(tgt, m=1, k=[k], scl=2)
							 | 
						||
| 
								 | 
							
								                res = poly.polyint(pol, m=j, k=list(range(j)), scl=2)
							 | 
						||
| 
								 | 
							
								                assert_almost_equal(trim(res), trim(tgt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyint_axis(self):
							 | 
						||
| 
								 | 
							
								        # check that axis keyword works
							 | 
						||
| 
								 | 
							
								        c2d = np.random.random((3, 4))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        tgt = np.vstack([poly.polyint(c) for c in c2d.T]).T
							 | 
						||
| 
								 | 
							
								        res = poly.polyint(c2d, axis=0)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        tgt = np.vstack([poly.polyint(c) for c in c2d])
							 | 
						||
| 
								 | 
							
								        res = poly.polyint(c2d, axis=1)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        tgt = np.vstack([poly.polyint(c, k=3) for c in c2d])
							 | 
						||
| 
								 | 
							
								        res = poly.polyint(c2d, k=3, axis=1)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestDerivative:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyder(self):
							 | 
						||
| 
								 | 
							
								        # check exceptions
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, poly.polyder, [0], .5)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, poly.polyder, [0], -1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check that zeroth derivative does nothing
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            tgt = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								            res = poly.polyder(tgt, m=0)
							 | 
						||
| 
								 | 
							
								            assert_equal(trim(res), trim(tgt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check that derivation is the inverse of integration
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            for j in range(2, 5):
							 | 
						||
| 
								 | 
							
								                tgt = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								                res = poly.polyder(poly.polyint(tgt, m=j), m=j)
							 | 
						||
| 
								 | 
							
								                assert_almost_equal(trim(res), trim(tgt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check derivation with scaling
							 | 
						||
| 
								 | 
							
								        for i in range(5):
							 | 
						||
| 
								 | 
							
								            for j in range(2, 5):
							 | 
						||
| 
								 | 
							
								                tgt = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								                res = poly.polyder(poly.polyint(tgt, m=j, scl=2), m=j, scl=.5)
							 | 
						||
| 
								 | 
							
								                assert_almost_equal(trim(res), trim(tgt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyder_axis(self):
							 | 
						||
| 
								 | 
							
								        # check that axis keyword works
							 | 
						||
| 
								 | 
							
								        c2d = np.random.random((3, 4))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        tgt = np.vstack([poly.polyder(c) for c in c2d.T]).T
							 | 
						||
| 
								 | 
							
								        res = poly.polyder(c2d, axis=0)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        tgt = np.vstack([poly.polyder(c) for c in c2d])
							 | 
						||
| 
								 | 
							
								        res = poly.polyder(c2d, axis=1)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestVander:
							 | 
						||
| 
								 | 
							
								    # some random values in [-1, 1)
							 | 
						||
| 
								 | 
							
								    x = np.random.random((3, 5)) * 2 - 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyvander(self):
							 | 
						||
| 
								 | 
							
								        # check for 1d x
							 | 
						||
| 
								 | 
							
								        x = np.arange(3)
							 | 
						||
| 
								 | 
							
								        v = poly.polyvander(x, 3)
							 | 
						||
| 
								 | 
							
								        assert_(v.shape == (3, 4))
							 | 
						||
| 
								 | 
							
								        for i in range(4):
							 | 
						||
| 
								 | 
							
								            coef = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(v[..., i], poly.polyval(x, coef))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check for 2d x
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 2], [3, 4], [5, 6]])
							 | 
						||
| 
								 | 
							
								        v = poly.polyvander(x, 3)
							 | 
						||
| 
								 | 
							
								        assert_(v.shape == (3, 2, 4))
							 | 
						||
| 
								 | 
							
								        for i in range(4):
							 | 
						||
| 
								 | 
							
								            coef = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(v[..., i], poly.polyval(x, coef))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyvander2d(self):
							 | 
						||
| 
								 | 
							
								        # also tests polyval2d for non-square coefficient array
							 | 
						||
| 
								 | 
							
								        x1, x2, x3 = self.x
							 | 
						||
| 
								 | 
							
								        c = np.random.random((2, 3))
							 | 
						||
| 
								 | 
							
								        van = poly.polyvander2d(x1, x2, [1, 2])
							 | 
						||
| 
								 | 
							
								        tgt = poly.polyval2d(x1, x2, c)
							 | 
						||
| 
								 | 
							
								        res = np.dot(van, c.flat)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check shape
							 | 
						||
| 
								 | 
							
								        van = poly.polyvander2d([x1], [x2], [1, 2])
							 | 
						||
| 
								 | 
							
								        assert_(van.shape == (1, 5, 6))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyvander3d(self):
							 | 
						||
| 
								 | 
							
								        # also tests polyval3d for non-square coefficient array
							 | 
						||
| 
								 | 
							
								        x1, x2, x3 = self.x
							 | 
						||
| 
								 | 
							
								        c = np.random.random((2, 3, 4))
							 | 
						||
| 
								 | 
							
								        van = poly.polyvander3d(x1, x2, x3, [1, 2, 3])
							 | 
						||
| 
								 | 
							
								        tgt = poly.polyval3d(x1, x2, x3, c)
							 | 
						||
| 
								 | 
							
								        res = np.dot(van, c.flat)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(res, tgt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check shape
							 | 
						||
| 
								 | 
							
								        van = poly.polyvander3d([x1], [x2], [x3], [1, 2, 3])
							 | 
						||
| 
								 | 
							
								        assert_(van.shape == (1, 5, 24))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyvandernegdeg(self):
							 | 
						||
| 
								 | 
							
								        x = np.arange(3)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, poly.polyvander, x, -1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestCompanion:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_raises(self):
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, poly.polycompanion, [])
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, poly.polycompanion, [1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_dimensions(self):
							 | 
						||
| 
								 | 
							
								        for i in range(1, 5):
							 | 
						||
| 
								 | 
							
								            coef = [0] * i + [1]
							 | 
						||
| 
								 | 
							
								            assert_(poly.polycompanion(coef).shape == (i, i))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_linear_root(self):
							 | 
						||
| 
								 | 
							
								        assert_(poly.polycompanion([1, 2])[0, 0] == -.5)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestMisc:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyfromroots(self):
							 | 
						||
| 
								 | 
							
								        res = poly.polyfromroots([])
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(trim(res), [1])
							 | 
						||
| 
								 | 
							
								        for i in range(1, 5):
							 | 
						||
| 
								 | 
							
								            roots = np.cos(np.linspace(-np.pi, 0, 2 * i + 1)[1::2])
							 | 
						||
| 
								 | 
							
								            tgt = Tlist[i]
							 | 
						||
| 
								 | 
							
								            res = poly.polyfromroots(roots) * 2**(i - 1)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(trim(res), trim(tgt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyroots(self):
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(poly.polyroots([1]), [])
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(poly.polyroots([1, 2]), [-.5])
							 | 
						||
| 
								 | 
							
								        for i in range(2, 5):
							 | 
						||
| 
								 | 
							
								            tgt = np.linspace(-1, 1, i)
							 | 
						||
| 
								 | 
							
								            res = poly.polyroots(poly.polyfromroots(tgt))
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(trim(res), trim(tgt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Testing for larger root values
							 | 
						||
| 
								 | 
							
								        for i in np.logspace(10, 25, num=1000, base=10):
							 | 
						||
| 
								 | 
							
								            tgt = np.array([-1, 1, i])
							 | 
						||
| 
								 | 
							
								            res = poly.polyroots(poly.polyfromroots(tgt))
							 | 
						||
| 
								 | 
							
								            # Adapting the expected precision according to the root value,
							 | 
						||
| 
								 | 
							
								            # to take into account numerical calculation error.
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(res, tgt, 15 - int(np.log10(i)))
							 | 
						||
| 
								 | 
							
								        for i in np.logspace(10, 25, num=1000, base=10):
							 | 
						||
| 
								 | 
							
								            tgt = np.array([-1, 1.01, i])
							 | 
						||
| 
								 | 
							
								            res = poly.polyroots(poly.polyfromroots(tgt))
							 | 
						||
| 
								 | 
							
								            # Adapting the expected precision according to the root value,
							 | 
						||
| 
								 | 
							
								            # to take into account numerical calculation error.
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(res, tgt, 14 - int(np.log10(i)))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyfit(self):
							 | 
						||
| 
								 | 
							
								        def f(x):
							 | 
						||
| 
								 | 
							
								            return x * (x - 1) * (x - 2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        def f2(x):
							 | 
						||
| 
								 | 
							
								            return x**4 + x**2 + 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Test exceptions
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, poly.polyfit, [1], [1], -1)
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, poly.polyfit, [[1]], [1], 0)
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, poly.polyfit, [], [1], 0)
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, poly.polyfit, [1], [[[1]]], 0)
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, poly.polyfit, [1, 2], [1], 0)
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, poly.polyfit, [1], [1, 2], 0)
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[[1]])
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[1, 1])
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, poly.polyfit, [1], [1], [-1,])
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, poly.polyfit, [1], [1], [2, -1, 6])
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, poly.polyfit, [1], [1], [])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Test fit
							 | 
						||
| 
								 | 
							
								        x = np.linspace(0, 2)
							 | 
						||
| 
								 | 
							
								        y = f(x)
							 | 
						||
| 
								 | 
							
								        #
							 | 
						||
| 
								 | 
							
								        coef3 = poly.polyfit(x, y, 3)
							 | 
						||
| 
								 | 
							
								        assert_equal(len(coef3), 4)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(poly.polyval(x, coef3), y)
							 | 
						||
| 
								 | 
							
								        coef3 = poly.polyfit(x, y, [0, 1, 2, 3])
							 | 
						||
| 
								 | 
							
								        assert_equal(len(coef3), 4)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(poly.polyval(x, coef3), y)
							 | 
						||
| 
								 | 
							
								        #
							 | 
						||
| 
								 | 
							
								        coef4 = poly.polyfit(x, y, 4)
							 | 
						||
| 
								 | 
							
								        assert_equal(len(coef4), 5)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(poly.polyval(x, coef4), y)
							 | 
						||
| 
								 | 
							
								        coef4 = poly.polyfit(x, y, [0, 1, 2, 3, 4])
							 | 
						||
| 
								 | 
							
								        assert_equal(len(coef4), 5)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(poly.polyval(x, coef4), y)
							 | 
						||
| 
								 | 
							
								        #
							 | 
						||
| 
								 | 
							
								        coef2d = poly.polyfit(x, np.array([y, y]).T, 3)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
							 | 
						||
| 
								 | 
							
								        coef2d = poly.polyfit(x, np.array([y, y]).T, [0, 1, 2, 3])
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
							 | 
						||
| 
								 | 
							
								        # test weighting
							 | 
						||
| 
								 | 
							
								        w = np.zeros_like(x)
							 | 
						||
| 
								 | 
							
								        yw = y.copy()
							 | 
						||
| 
								 | 
							
								        w[1::2] = 1
							 | 
						||
| 
								 | 
							
								        yw[0::2] = 0
							 | 
						||
| 
								 | 
							
								        wcoef3 = poly.polyfit(x, yw, 3, w=w)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(wcoef3, coef3)
							 | 
						||
| 
								 | 
							
								        wcoef3 = poly.polyfit(x, yw, [0, 1, 2, 3], w=w)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(wcoef3, coef3)
							 | 
						||
| 
								 | 
							
								        #
							 | 
						||
| 
								 | 
							
								        wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, 3, w=w)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
							 | 
						||
| 
								 | 
							
								        wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
							 | 
						||
| 
								 | 
							
								        # test scaling with complex values x points whose square
							 | 
						||
| 
								 | 
							
								        # is zero when summed.
							 | 
						||
| 
								 | 
							
								        x = [1, 1j, -1, -1j]
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(poly.polyfit(x, x, 1), [0, 1])
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(poly.polyfit(x, x, [0, 1]), [0, 1])
							 | 
						||
| 
								 | 
							
								        # test fitting only even Polyendre polynomials
							 | 
						||
| 
								 | 
							
								        x = np.linspace(-1, 1)
							 | 
						||
| 
								 | 
							
								        y = f2(x)
							 | 
						||
| 
								 | 
							
								        coef1 = poly.polyfit(x, y, 4)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(poly.polyval(x, coef1), y)
							 | 
						||
| 
								 | 
							
								        coef2 = poly.polyfit(x, y, [0, 2, 4])
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(poly.polyval(x, coef2), y)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(coef1, coef2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polytrim(self):
							 | 
						||
| 
								 | 
							
								        coef = [2, -1, 1, 0]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Test exceptions
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, poly.polytrim, coef, -1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Test results
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polytrim(coef), coef[:-1])
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polytrim(coef, 1), coef[:-3])
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polytrim(coef, 2), [0])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyline(self):
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polyline(3, 4), [3, 4])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_polyline_zero(self):
							 | 
						||
| 
								 | 
							
								        assert_equal(poly.polyline(3, 0), [3])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_fit_degenerate_domain(self):
							 | 
						||
| 
								 | 
							
								        p = poly.Polynomial.fit([1], [2], deg=0)
							 | 
						||
| 
								 | 
							
								        assert_equal(p.coef, [2.])
							 | 
						||
| 
								 | 
							
								        p = poly.Polynomial.fit([1, 1], [2, 2.1], deg=0)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(p.coef, [2.05])
							 | 
						||
| 
								 | 
							
								        with assert_warns(pu.RankWarning):
							 | 
						||
| 
								 | 
							
								            p = poly.Polynomial.fit([1, 1], [2, 2.1], deg=1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_result_type(self):
							 | 
						||
| 
								 | 
							
								        w = np.array([-1, 1], dtype=np.float32)
							 | 
						||
| 
								 | 
							
								        p = np.polynomial.Polynomial(w, domain=w, window=w)
							 | 
						||
| 
								 | 
							
								        v = p(2)
							 | 
						||
| 
								 | 
							
								        assert_equal(v.dtype, np.float32)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        arr = np.polydiv(1, np.float32(1))
							 | 
						||
| 
								 | 
							
								        assert_equal(arr[0].dtype, np.float64)
							 |