483 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			483 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from collections.abc import Iterable
 | 
						|
from typing import (
 | 
						|
    Any,
 | 
						|
    NamedTuple,
 | 
						|
    Never,
 | 
						|
    SupportsIndex,
 | 
						|
    SupportsInt,
 | 
						|
    TypeAlias,
 | 
						|
    TypeVar,
 | 
						|
    overload,
 | 
						|
)
 | 
						|
from typing import Literal as L
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from numpy import (
 | 
						|
    complex128,
 | 
						|
    complexfloating,
 | 
						|
    float64,
 | 
						|
    # other
 | 
						|
    floating,
 | 
						|
    int32,
 | 
						|
    object_,
 | 
						|
    signedinteger,
 | 
						|
    timedelta64,
 | 
						|
    unsignedinteger,
 | 
						|
    # re-exports
 | 
						|
    vecdot,
 | 
						|
)
 | 
						|
from numpy._core.fromnumeric import matrix_transpose
 | 
						|
from numpy._core.numeric import tensordot
 | 
						|
from numpy._typing import (
 | 
						|
    ArrayLike,
 | 
						|
    DTypeLike,
 | 
						|
    NDArray,
 | 
						|
    _ArrayLike,
 | 
						|
    _ArrayLikeBool_co,
 | 
						|
    _ArrayLikeComplex_co,
 | 
						|
    _ArrayLikeFloat_co,
 | 
						|
    _ArrayLikeInt_co,
 | 
						|
    _ArrayLikeObject_co,
 | 
						|
    _ArrayLikeTD64_co,
 | 
						|
    _ArrayLikeUInt_co,
 | 
						|
)
 | 
						|
from numpy.linalg import LinAlgError
 | 
						|
 | 
						|
__all__ = [
 | 
						|
    "matrix_power",
 | 
						|
    "solve",
 | 
						|
    "tensorsolve",
 | 
						|
    "tensorinv",
 | 
						|
    "inv",
 | 
						|
    "cholesky",
 | 
						|
    "eigvals",
 | 
						|
    "eigvalsh",
 | 
						|
    "pinv",
 | 
						|
    "slogdet",
 | 
						|
    "det",
 | 
						|
    "svd",
 | 
						|
    "svdvals",
 | 
						|
    "eig",
 | 
						|
    "eigh",
 | 
						|
    "lstsq",
 | 
						|
    "norm",
 | 
						|
    "qr",
 | 
						|
    "cond",
 | 
						|
    "matrix_rank",
 | 
						|
    "LinAlgError",
 | 
						|
    "multi_dot",
 | 
						|
    "trace",
 | 
						|
    "diagonal",
 | 
						|
    "cross",
 | 
						|
    "outer",
 | 
						|
    "tensordot",
 | 
						|
    "matmul",
 | 
						|
    "matrix_transpose",
 | 
						|
    "matrix_norm",
 | 
						|
    "vector_norm",
 | 
						|
    "vecdot",
 | 
						|
]
 | 
						|
 | 
						|
_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any])
 | 
						|
 | 
						|
_ModeKind: TypeAlias = L["reduced", "complete", "r", "raw"]
 | 
						|
 | 
						|
###
 | 
						|
 | 
						|
fortran_int = np.intc
 | 
						|
 | 
						|
class EigResult(NamedTuple):
 | 
						|
    eigenvalues: NDArray[Any]
 | 
						|
    eigenvectors: NDArray[Any]
 | 
						|
 | 
						|
class EighResult(NamedTuple):
 | 
						|
    eigenvalues: NDArray[Any]
 | 
						|
    eigenvectors: NDArray[Any]
 | 
						|
 | 
						|
class QRResult(NamedTuple):
 | 
						|
    Q: NDArray[Any]
 | 
						|
    R: NDArray[Any]
 | 
						|
 | 
						|
class SlogdetResult(NamedTuple):
 | 
						|
    # TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
 | 
						|
    # a `(x.ndim - 2)`` dimensionl arrays otherwise
 | 
						|
    sign: Any
 | 
						|
    logabsdet: Any
 | 
						|
 | 
						|
class SVDResult(NamedTuple):
 | 
						|
    U: NDArray[Any]
 | 
						|
    S: NDArray[Any]
 | 
						|
    Vh: NDArray[Any]
 | 
						|
 | 
						|
@overload
 | 
						|
def tensorsolve(
 | 
						|
    a: _ArrayLikeInt_co,
 | 
						|
    b: _ArrayLikeInt_co,
 | 
						|
    axes: Iterable[int] | None = ...,
 | 
						|
) -> NDArray[float64]: ...
 | 
						|
@overload
 | 
						|
def tensorsolve(
 | 
						|
    a: _ArrayLikeFloat_co,
 | 
						|
    b: _ArrayLikeFloat_co,
 | 
						|
    axes: Iterable[int] | None = ...,
 | 
						|
) -> NDArray[floating]: ...
 | 
						|
@overload
 | 
						|
def tensorsolve(
 | 
						|
    a: _ArrayLikeComplex_co,
 | 
						|
    b: _ArrayLikeComplex_co,
 | 
						|
    axes: Iterable[int] | None = ...,
 | 
						|
) -> NDArray[complexfloating]: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def solve(
 | 
						|
    a: _ArrayLikeInt_co,
 | 
						|
    b: _ArrayLikeInt_co,
 | 
						|
) -> NDArray[float64]: ...
 | 
						|
@overload
 | 
						|
def solve(
 | 
						|
    a: _ArrayLikeFloat_co,
 | 
						|
    b: _ArrayLikeFloat_co,
 | 
						|
) -> NDArray[floating]: ...
 | 
						|
@overload
 | 
						|
def solve(
 | 
						|
    a: _ArrayLikeComplex_co,
 | 
						|
    b: _ArrayLikeComplex_co,
 | 
						|
) -> NDArray[complexfloating]: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def tensorinv(
 | 
						|
    a: _ArrayLikeInt_co,
 | 
						|
    ind: int = ...,
 | 
						|
) -> NDArray[float64]: ...
 | 
						|
@overload
 | 
						|
def tensorinv(
 | 
						|
    a: _ArrayLikeFloat_co,
 | 
						|
    ind: int = ...,
 | 
						|
) -> NDArray[floating]: ...
 | 
						|
@overload
 | 
						|
def tensorinv(
 | 
						|
    a: _ArrayLikeComplex_co,
 | 
						|
    ind: int = ...,
 | 
						|
) -> NDArray[complexfloating]: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
 | 
						|
@overload
 | 
						|
def inv(a: _ArrayLikeFloat_co) -> NDArray[floating]: ...
 | 
						|
@overload
 | 
						|
def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
 | 
						|
 | 
						|
# TODO: The supported input and output dtypes are dependent on the value of `n`.
 | 
						|
# For example: `n < 0` always casts integer types to float64
 | 
						|
def matrix_power(
 | 
						|
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
 | 
						|
    n: SupportsIndex,
 | 
						|
) -> NDArray[Any]: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def cholesky(a: _ArrayLikeInt_co, /, *, upper: bool = False) -> NDArray[float64]: ...
 | 
						|
@overload
 | 
						|
def cholesky(a: _ArrayLikeFloat_co, /, *, upper: bool = False) -> NDArray[floating]: ...
 | 
						|
@overload
 | 
						|
def cholesky(a: _ArrayLikeComplex_co, /, *, upper: bool = False) -> NDArray[complexfloating]: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def outer(x1: _ArrayLike[Never], x2: _ArrayLike[Never]) -> NDArray[Any]: ...
 | 
						|
@overload
 | 
						|
def outer(x1: _ArrayLikeBool_co, x2: _ArrayLikeBool_co) -> NDArray[np.bool]: ...
 | 
						|
@overload
 | 
						|
def outer(x1: _ArrayLikeUInt_co, x2: _ArrayLikeUInt_co) -> NDArray[unsignedinteger]: ...
 | 
						|
@overload
 | 
						|
def outer(x1: _ArrayLikeInt_co, x2: _ArrayLikeInt_co) -> NDArray[signedinteger]: ...
 | 
						|
@overload
 | 
						|
def outer(x1: _ArrayLikeFloat_co, x2: _ArrayLikeFloat_co) -> NDArray[floating]: ...
 | 
						|
@overload
 | 
						|
def outer(
 | 
						|
    x1: _ArrayLikeComplex_co,
 | 
						|
    x2: _ArrayLikeComplex_co,
 | 
						|
) -> NDArray[complexfloating]: ...
 | 
						|
@overload
 | 
						|
def outer(
 | 
						|
    x1: _ArrayLikeTD64_co,
 | 
						|
    x2: _ArrayLikeTD64_co,
 | 
						|
    out: None = ...,
 | 
						|
) -> NDArray[timedelta64]: ...
 | 
						|
@overload
 | 
						|
def outer(x1: _ArrayLikeObject_co, x2: _ArrayLikeObject_co) -> NDArray[object_]: ...
 | 
						|
@overload
 | 
						|
def outer(
 | 
						|
    x1: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
 | 
						|
    x2: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
 | 
						|
) -> _ArrayT: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
 | 
						|
@overload
 | 
						|
def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
 | 
						|
@overload
 | 
						|
def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
 | 
						|
@overload
 | 
						|
def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating] | NDArray[complexfloating]: ...
 | 
						|
@overload
 | 
						|
def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
 | 
						|
@overload
 | 
						|
def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating]: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def eig(a: _ArrayLikeInt_co) -> EigResult: ...
 | 
						|
@overload
 | 
						|
def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
 | 
						|
@overload
 | 
						|
def eig(a: _ArrayLikeComplex_co) -> EigResult: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def eigh(
 | 
						|
    a: _ArrayLikeInt_co,
 | 
						|
    UPLO: L["L", "U", "l", "u"] = ...,
 | 
						|
) -> EighResult: ...
 | 
						|
@overload
 | 
						|
def eigh(
 | 
						|
    a: _ArrayLikeFloat_co,
 | 
						|
    UPLO: L["L", "U", "l", "u"] = ...,
 | 
						|
) -> EighResult: ...
 | 
						|
@overload
 | 
						|
def eigh(
 | 
						|
    a: _ArrayLikeComplex_co,
 | 
						|
    UPLO: L["L", "U", "l", "u"] = ...,
 | 
						|
) -> EighResult: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def svd(
 | 
						|
    a: _ArrayLikeInt_co,
 | 
						|
    full_matrices: bool = ...,
 | 
						|
    compute_uv: L[True] = ...,
 | 
						|
    hermitian: bool = ...,
 | 
						|
) -> SVDResult: ...
 | 
						|
@overload
 | 
						|
def svd(
 | 
						|
    a: _ArrayLikeFloat_co,
 | 
						|
    full_matrices: bool = ...,
 | 
						|
    compute_uv: L[True] = ...,
 | 
						|
    hermitian: bool = ...,
 | 
						|
) -> SVDResult: ...
 | 
						|
@overload
 | 
						|
def svd(
 | 
						|
    a: _ArrayLikeComplex_co,
 | 
						|
    full_matrices: bool = ...,
 | 
						|
    compute_uv: L[True] = ...,
 | 
						|
    hermitian: bool = ...,
 | 
						|
) -> SVDResult: ...
 | 
						|
@overload
 | 
						|
def svd(
 | 
						|
    a: _ArrayLikeInt_co,
 | 
						|
    full_matrices: bool = ...,
 | 
						|
    compute_uv: L[False] = ...,
 | 
						|
    hermitian: bool = ...,
 | 
						|
) -> NDArray[float64]: ...
 | 
						|
@overload
 | 
						|
def svd(
 | 
						|
    a: _ArrayLikeComplex_co,
 | 
						|
    full_matrices: bool = ...,
 | 
						|
    compute_uv: L[False] = ...,
 | 
						|
    hermitian: bool = ...,
 | 
						|
) -> NDArray[floating]: ...
 | 
						|
 | 
						|
def svdvals(
 | 
						|
    x: _ArrayLikeInt_co | _ArrayLikeFloat_co | _ArrayLikeComplex_co
 | 
						|
) -> NDArray[floating]: ...
 | 
						|
 | 
						|
# TODO: Returns a scalar for 2D arrays and
 | 
						|
# a `(x.ndim - 2)`` dimensionl array otherwise
 | 
						|
def cond(x: _ArrayLikeComplex_co, p: float | L["fro", "nuc"] | None = ...) -> Any: ...
 | 
						|
 | 
						|
# TODO: Returns `int` for <2D arrays and `intp` otherwise
 | 
						|
def matrix_rank(
 | 
						|
    A: _ArrayLikeComplex_co,
 | 
						|
    tol: _ArrayLikeFloat_co | None = ...,
 | 
						|
    hermitian: bool = ...,
 | 
						|
    *,
 | 
						|
    rtol: _ArrayLikeFloat_co | None = ...,
 | 
						|
) -> Any: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def pinv(
 | 
						|
    a: _ArrayLikeInt_co,
 | 
						|
    rcond: _ArrayLikeFloat_co = ...,
 | 
						|
    hermitian: bool = ...,
 | 
						|
) -> NDArray[float64]: ...
 | 
						|
@overload
 | 
						|
def pinv(
 | 
						|
    a: _ArrayLikeFloat_co,
 | 
						|
    rcond: _ArrayLikeFloat_co = ...,
 | 
						|
    hermitian: bool = ...,
 | 
						|
) -> NDArray[floating]: ...
 | 
						|
@overload
 | 
						|
def pinv(
 | 
						|
    a: _ArrayLikeComplex_co,
 | 
						|
    rcond: _ArrayLikeFloat_co = ...,
 | 
						|
    hermitian: bool = ...,
 | 
						|
) -> NDArray[complexfloating]: ...
 | 
						|
 | 
						|
# TODO: Returns a 2-tuple of scalars for 2D arrays and
 | 
						|
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
 | 
						|
def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...
 | 
						|
 | 
						|
# TODO: Returns a 2-tuple of scalars for 2D arrays and
 | 
						|
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
 | 
						|
def det(a: _ArrayLikeComplex_co) -> Any: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: float | None = ...) -> tuple[
 | 
						|
    NDArray[float64],
 | 
						|
    NDArray[float64],
 | 
						|
    int32,
 | 
						|
    NDArray[float64],
 | 
						|
]: ...
 | 
						|
@overload
 | 
						|
def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: float | None = ...) -> tuple[
 | 
						|
    NDArray[floating],
 | 
						|
    NDArray[floating],
 | 
						|
    int32,
 | 
						|
    NDArray[floating],
 | 
						|
]: ...
 | 
						|
@overload
 | 
						|
def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: float | None = ...) -> tuple[
 | 
						|
    NDArray[complexfloating],
 | 
						|
    NDArray[floating],
 | 
						|
    int32,
 | 
						|
    NDArray[floating],
 | 
						|
]: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def norm(
 | 
						|
    x: ArrayLike,
 | 
						|
    ord: float | L["fro", "nuc"] | None = ...,
 | 
						|
    axis: None = ...,
 | 
						|
    keepdims: bool = ...,
 | 
						|
) -> floating: ...
 | 
						|
@overload
 | 
						|
def norm(
 | 
						|
    x: ArrayLike,
 | 
						|
    ord: float | L["fro", "nuc"] | None = ...,
 | 
						|
    axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
 | 
						|
    keepdims: bool = ...,
 | 
						|
) -> Any: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def matrix_norm(
 | 
						|
    x: ArrayLike,
 | 
						|
    /,
 | 
						|
    *,
 | 
						|
    ord: float | L["fro", "nuc"] | None = ...,
 | 
						|
    keepdims: bool = ...,
 | 
						|
) -> floating: ...
 | 
						|
@overload
 | 
						|
def matrix_norm(
 | 
						|
    x: ArrayLike,
 | 
						|
    /,
 | 
						|
    *,
 | 
						|
    ord: float | L["fro", "nuc"] | None = ...,
 | 
						|
    keepdims: bool = ...,
 | 
						|
) -> Any: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def vector_norm(
 | 
						|
    x: ArrayLike,
 | 
						|
    /,
 | 
						|
    *,
 | 
						|
    axis: None = ...,
 | 
						|
    ord: float | None = ...,
 | 
						|
    keepdims: bool = ...,
 | 
						|
) -> floating: ...
 | 
						|
@overload
 | 
						|
def vector_norm(
 | 
						|
    x: ArrayLike,
 | 
						|
    /,
 | 
						|
    *,
 | 
						|
    axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
 | 
						|
    ord: float | None = ...,
 | 
						|
    keepdims: bool = ...,
 | 
						|
) -> Any: ...
 | 
						|
 | 
						|
# TODO: Returns a scalar or array
 | 
						|
def multi_dot(
 | 
						|
    arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
 | 
						|
    *,
 | 
						|
    out: NDArray[Any] | None = ...,
 | 
						|
) -> Any: ...
 | 
						|
 | 
						|
def diagonal(
 | 
						|
    x: ArrayLike,  # >= 2D array
 | 
						|
    /,
 | 
						|
    *,
 | 
						|
    offset: SupportsIndex = ...,
 | 
						|
) -> NDArray[Any]: ...
 | 
						|
 | 
						|
def trace(
 | 
						|
    x: ArrayLike,  # >= 2D array
 | 
						|
    /,
 | 
						|
    *,
 | 
						|
    offset: SupportsIndex = ...,
 | 
						|
    dtype: DTypeLike = ...,
 | 
						|
) -> Any: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def cross(
 | 
						|
    x1: _ArrayLikeUInt_co,
 | 
						|
    x2: _ArrayLikeUInt_co,
 | 
						|
    /,
 | 
						|
    *,
 | 
						|
    axis: int = ...,
 | 
						|
) -> NDArray[unsignedinteger]: ...
 | 
						|
@overload
 | 
						|
def cross(
 | 
						|
    x1: _ArrayLikeInt_co,
 | 
						|
    x2: _ArrayLikeInt_co,
 | 
						|
    /,
 | 
						|
    *,
 | 
						|
    axis: int = ...,
 | 
						|
) -> NDArray[signedinteger]: ...
 | 
						|
@overload
 | 
						|
def cross(
 | 
						|
    x1: _ArrayLikeFloat_co,
 | 
						|
    x2: _ArrayLikeFloat_co,
 | 
						|
    /,
 | 
						|
    *,
 | 
						|
    axis: int = ...,
 | 
						|
) -> NDArray[floating]: ...
 | 
						|
@overload
 | 
						|
def cross(
 | 
						|
    x1: _ArrayLikeComplex_co,
 | 
						|
    x2: _ArrayLikeComplex_co,
 | 
						|
    /,
 | 
						|
    *,
 | 
						|
    axis: int = ...,
 | 
						|
) -> NDArray[complexfloating]: ...
 | 
						|
 | 
						|
@overload
 | 
						|
def matmul(
 | 
						|
    x1: _ArrayLikeInt_co,
 | 
						|
    x2: _ArrayLikeInt_co,
 | 
						|
) -> NDArray[signedinteger]: ...
 | 
						|
@overload
 | 
						|
def matmul(
 | 
						|
    x1: _ArrayLikeUInt_co,
 | 
						|
    x2: _ArrayLikeUInt_co,
 | 
						|
) -> NDArray[unsignedinteger]: ...
 | 
						|
@overload
 | 
						|
def matmul(
 | 
						|
    x1: _ArrayLikeFloat_co,
 | 
						|
    x2: _ArrayLikeFloat_co,
 | 
						|
) -> NDArray[floating]: ...
 | 
						|
@overload
 | 
						|
def matmul(
 | 
						|
    x1: _ArrayLikeComplex_co,
 | 
						|
    x2: _ArrayLikeComplex_co,
 | 
						|
) -> NDArray[complexfloating]: ...
 |