483 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			483 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								from collections.abc import Iterable
							 | 
						||
| 
								 | 
							
								from typing import (
							 | 
						||
| 
								 | 
							
								    Any,
							 | 
						||
| 
								 | 
							
								    NamedTuple,
							 | 
						||
| 
								 | 
							
								    Never,
							 | 
						||
| 
								 | 
							
								    SupportsIndex,
							 | 
						||
| 
								 | 
							
								    SupportsInt,
							 | 
						||
| 
								 | 
							
								    TypeAlias,
							 | 
						||
| 
								 | 
							
								    TypeVar,
							 | 
						||
| 
								 | 
							
								    overload,
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								from typing import Literal as L
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import numpy as np
							 | 
						||
| 
								 | 
							
								from numpy import (
							 | 
						||
| 
								 | 
							
								    complex128,
							 | 
						||
| 
								 | 
							
								    complexfloating,
							 | 
						||
| 
								 | 
							
								    float64,
							 | 
						||
| 
								 | 
							
								    # other
							 | 
						||
| 
								 | 
							
								    floating,
							 | 
						||
| 
								 | 
							
								    int32,
							 | 
						||
| 
								 | 
							
								    object_,
							 | 
						||
| 
								 | 
							
								    signedinteger,
							 | 
						||
| 
								 | 
							
								    timedelta64,
							 | 
						||
| 
								 | 
							
								    unsignedinteger,
							 | 
						||
| 
								 | 
							
								    # re-exports
							 | 
						||
| 
								 | 
							
								    vecdot,
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								from numpy._core.fromnumeric import matrix_transpose
							 | 
						||
| 
								 | 
							
								from numpy._core.numeric import tensordot
							 | 
						||
| 
								 | 
							
								from numpy._typing import (
							 | 
						||
| 
								 | 
							
								    ArrayLike,
							 | 
						||
| 
								 | 
							
								    DTypeLike,
							 | 
						||
| 
								 | 
							
								    NDArray,
							 | 
						||
| 
								 | 
							
								    _ArrayLike,
							 | 
						||
| 
								 | 
							
								    _ArrayLikeBool_co,
							 | 
						||
| 
								 | 
							
								    _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								    _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    _ArrayLikeObject_co,
							 | 
						||
| 
								 | 
							
								    _ArrayLikeTD64_co,
							 | 
						||
| 
								 | 
							
								    _ArrayLikeUInt_co,
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								from numpy.linalg import LinAlgError
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								__all__ = [
							 | 
						||
| 
								 | 
							
								    "matrix_power",
							 | 
						||
| 
								 | 
							
								    "solve",
							 | 
						||
| 
								 | 
							
								    "tensorsolve",
							 | 
						||
| 
								 | 
							
								    "tensorinv",
							 | 
						||
| 
								 | 
							
								    "inv",
							 | 
						||
| 
								 | 
							
								    "cholesky",
							 | 
						||
| 
								 | 
							
								    "eigvals",
							 | 
						||
| 
								 | 
							
								    "eigvalsh",
							 | 
						||
| 
								 | 
							
								    "pinv",
							 | 
						||
| 
								 | 
							
								    "slogdet",
							 | 
						||
| 
								 | 
							
								    "det",
							 | 
						||
| 
								 | 
							
								    "svd",
							 | 
						||
| 
								 | 
							
								    "svdvals",
							 | 
						||
| 
								 | 
							
								    "eig",
							 | 
						||
| 
								 | 
							
								    "eigh",
							 | 
						||
| 
								 | 
							
								    "lstsq",
							 | 
						||
| 
								 | 
							
								    "norm",
							 | 
						||
| 
								 | 
							
								    "qr",
							 | 
						||
| 
								 | 
							
								    "cond",
							 | 
						||
| 
								 | 
							
								    "matrix_rank",
							 | 
						||
| 
								 | 
							
								    "LinAlgError",
							 | 
						||
| 
								 | 
							
								    "multi_dot",
							 | 
						||
| 
								 | 
							
								    "trace",
							 | 
						||
| 
								 | 
							
								    "diagonal",
							 | 
						||
| 
								 | 
							
								    "cross",
							 | 
						||
| 
								 | 
							
								    "outer",
							 | 
						||
| 
								 | 
							
								    "tensordot",
							 | 
						||
| 
								 | 
							
								    "matmul",
							 | 
						||
| 
								 | 
							
								    "matrix_transpose",
							 | 
						||
| 
								 | 
							
								    "matrix_norm",
							 | 
						||
| 
								 | 
							
								    "vector_norm",
							 | 
						||
| 
								 | 
							
								    "vecdot",
							 | 
						||
| 
								 | 
							
								]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								_ModeKind: TypeAlias = L["reduced", "complete", "r", "raw"]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								###
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								fortran_int = np.intc
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class EigResult(NamedTuple):
							 | 
						||
| 
								 | 
							
								    eigenvalues: NDArray[Any]
							 | 
						||
| 
								 | 
							
								    eigenvectors: NDArray[Any]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class EighResult(NamedTuple):
							 | 
						||
| 
								 | 
							
								    eigenvalues: NDArray[Any]
							 | 
						||
| 
								 | 
							
								    eigenvectors: NDArray[Any]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class QRResult(NamedTuple):
							 | 
						||
| 
								 | 
							
								    Q: NDArray[Any]
							 | 
						||
| 
								 | 
							
								    R: NDArray[Any]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class SlogdetResult(NamedTuple):
							 | 
						||
| 
								 | 
							
								    # TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
							 | 
						||
| 
								 | 
							
								    # a `(x.ndim - 2)`` dimensionl arrays otherwise
							 | 
						||
| 
								 | 
							
								    sign: Any
							 | 
						||
| 
								 | 
							
								    logabsdet: Any
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class SVDResult(NamedTuple):
							 | 
						||
| 
								 | 
							
								    U: NDArray[Any]
							 | 
						||
| 
								 | 
							
								    S: NDArray[Any]
							 | 
						||
| 
								 | 
							
								    Vh: NDArray[Any]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def tensorsolve(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    b: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    axes: Iterable[int] | None = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[float64]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def tensorsolve(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								    b: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								    axes: Iterable[int] | None = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[floating]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def tensorsolve(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    b: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    axes: Iterable[int] | None = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[complexfloating]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def solve(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    b: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								) -> NDArray[float64]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def solve(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								    b: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								) -> NDArray[floating]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def solve(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    b: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								) -> NDArray[complexfloating]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def tensorinv(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    ind: int = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[float64]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def tensorinv(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								    ind: int = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[floating]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def tensorinv(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    ind: int = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[complexfloating]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def inv(a: _ArrayLikeFloat_co) -> NDArray[floating]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# TODO: The supported input and output dtypes are dependent on the value of `n`.
							 | 
						||
| 
								 | 
							
								# For example: `n < 0` always casts integer types to float64
							 | 
						||
| 
								 | 
							
								def matrix_power(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
							 | 
						||
| 
								 | 
							
								    n: SupportsIndex,
							 | 
						||
| 
								 | 
							
								) -> NDArray[Any]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def cholesky(a: _ArrayLikeInt_co, /, *, upper: bool = False) -> NDArray[float64]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def cholesky(a: _ArrayLikeFloat_co, /, *, upper: bool = False) -> NDArray[floating]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def cholesky(a: _ArrayLikeComplex_co, /, *, upper: bool = False) -> NDArray[complexfloating]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def outer(x1: _ArrayLike[Never], x2: _ArrayLike[Never]) -> NDArray[Any]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def outer(x1: _ArrayLikeBool_co, x2: _ArrayLikeBool_co) -> NDArray[np.bool]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def outer(x1: _ArrayLikeUInt_co, x2: _ArrayLikeUInt_co) -> NDArray[unsignedinteger]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def outer(x1: _ArrayLikeInt_co, x2: _ArrayLikeInt_co) -> NDArray[signedinteger]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def outer(x1: _ArrayLikeFloat_co, x2: _ArrayLikeFloat_co) -> NDArray[floating]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def outer(
							 | 
						||
| 
								 | 
							
								    x1: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    x2: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								) -> NDArray[complexfloating]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def outer(
							 | 
						||
| 
								 | 
							
								    x1: _ArrayLikeTD64_co,
							 | 
						||
| 
								 | 
							
								    x2: _ArrayLikeTD64_co,
							 | 
						||
| 
								 | 
							
								    out: None = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[timedelta64]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def outer(x1: _ArrayLikeObject_co, x2: _ArrayLikeObject_co) -> NDArray[object_]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def outer(
							 | 
						||
| 
								 | 
							
								    x1: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
							 | 
						||
| 
								 | 
							
								    x2: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
							 | 
						||
| 
								 | 
							
								) -> _ArrayT: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating] | NDArray[complexfloating]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def eig(a: _ArrayLikeInt_co) -> EigResult: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def eig(a: _ArrayLikeComplex_co) -> EigResult: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def eigh(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    UPLO: L["L", "U", "l", "u"] = ...,
							 | 
						||
| 
								 | 
							
								) -> EighResult: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def eigh(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								    UPLO: L["L", "U", "l", "u"] = ...,
							 | 
						||
| 
								 | 
							
								) -> EighResult: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def eigh(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    UPLO: L["L", "U", "l", "u"] = ...,
							 | 
						||
| 
								 | 
							
								) -> EighResult: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def svd(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    full_matrices: bool = ...,
							 | 
						||
| 
								 | 
							
								    compute_uv: L[True] = ...,
							 | 
						||
| 
								 | 
							
								    hermitian: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> SVDResult: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def svd(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								    full_matrices: bool = ...,
							 | 
						||
| 
								 | 
							
								    compute_uv: L[True] = ...,
							 | 
						||
| 
								 | 
							
								    hermitian: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> SVDResult: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def svd(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    full_matrices: bool = ...,
							 | 
						||
| 
								 | 
							
								    compute_uv: L[True] = ...,
							 | 
						||
| 
								 | 
							
								    hermitian: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> SVDResult: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def svd(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    full_matrices: bool = ...,
							 | 
						||
| 
								 | 
							
								    compute_uv: L[False] = ...,
							 | 
						||
| 
								 | 
							
								    hermitian: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[float64]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def svd(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    full_matrices: bool = ...,
							 | 
						||
| 
								 | 
							
								    compute_uv: L[False] = ...,
							 | 
						||
| 
								 | 
							
								    hermitian: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[floating]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def svdvals(
							 | 
						||
| 
								 | 
							
								    x: _ArrayLikeInt_co | _ArrayLikeFloat_co | _ArrayLikeComplex_co
							 | 
						||
| 
								 | 
							
								) -> NDArray[floating]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# TODO: Returns a scalar for 2D arrays and
							 | 
						||
| 
								 | 
							
								# a `(x.ndim - 2)`` dimensionl array otherwise
							 | 
						||
| 
								 | 
							
								def cond(x: _ArrayLikeComplex_co, p: float | L["fro", "nuc"] | None = ...) -> Any: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# TODO: Returns `int` for <2D arrays and `intp` otherwise
							 | 
						||
| 
								 | 
							
								def matrix_rank(
							 | 
						||
| 
								 | 
							
								    A: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    tol: _ArrayLikeFloat_co | None = ...,
							 | 
						||
| 
								 | 
							
								    hermitian: bool = ...,
							 | 
						||
| 
								 | 
							
								    *,
							 | 
						||
| 
								 | 
							
								    rtol: _ArrayLikeFloat_co | None = ...,
							 | 
						||
| 
								 | 
							
								) -> Any: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def pinv(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    rcond: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								    hermitian: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[float64]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def pinv(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								    rcond: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								    hermitian: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[floating]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def pinv(
							 | 
						||
| 
								 | 
							
								    a: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    rcond: _ArrayLikeFloat_co = ...,
							 | 
						||
| 
								 | 
							
								    hermitian: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[complexfloating]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# TODO: Returns a 2-tuple of scalars for 2D arrays and
							 | 
						||
| 
								 | 
							
								# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
							 | 
						||
| 
								 | 
							
								def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# TODO: Returns a 2-tuple of scalars for 2D arrays and
							 | 
						||
| 
								 | 
							
								# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
							 | 
						||
| 
								 | 
							
								def det(a: _ArrayLikeComplex_co) -> Any: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: float | None = ...) -> tuple[
							 | 
						||
| 
								 | 
							
								    NDArray[float64],
							 | 
						||
| 
								 | 
							
								    NDArray[float64],
							 | 
						||
| 
								 | 
							
								    int32,
							 | 
						||
| 
								 | 
							
								    NDArray[float64],
							 | 
						||
| 
								 | 
							
								]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: float | None = ...) -> tuple[
							 | 
						||
| 
								 | 
							
								    NDArray[floating],
							 | 
						||
| 
								 | 
							
								    NDArray[floating],
							 | 
						||
| 
								 | 
							
								    int32,
							 | 
						||
| 
								 | 
							
								    NDArray[floating],
							 | 
						||
| 
								 | 
							
								]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: float | None = ...) -> tuple[
							 | 
						||
| 
								 | 
							
								    NDArray[complexfloating],
							 | 
						||
| 
								 | 
							
								    NDArray[floating],
							 | 
						||
| 
								 | 
							
								    int32,
							 | 
						||
| 
								 | 
							
								    NDArray[floating],
							 | 
						||
| 
								 | 
							
								]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def norm(
							 | 
						||
| 
								 | 
							
								    x: ArrayLike,
							 | 
						||
| 
								 | 
							
								    ord: float | L["fro", "nuc"] | None = ...,
							 | 
						||
| 
								 | 
							
								    axis: None = ...,
							 | 
						||
| 
								 | 
							
								    keepdims: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> floating: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def norm(
							 | 
						||
| 
								 | 
							
								    x: ArrayLike,
							 | 
						||
| 
								 | 
							
								    ord: float | L["fro", "nuc"] | None = ...,
							 | 
						||
| 
								 | 
							
								    axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
							 | 
						||
| 
								 | 
							
								    keepdims: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> Any: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def matrix_norm(
							 | 
						||
| 
								 | 
							
								    x: ArrayLike,
							 | 
						||
| 
								 | 
							
								    /,
							 | 
						||
| 
								 | 
							
								    *,
							 | 
						||
| 
								 | 
							
								    ord: float | L["fro", "nuc"] | None = ...,
							 | 
						||
| 
								 | 
							
								    keepdims: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> floating: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def matrix_norm(
							 | 
						||
| 
								 | 
							
								    x: ArrayLike,
							 | 
						||
| 
								 | 
							
								    /,
							 | 
						||
| 
								 | 
							
								    *,
							 | 
						||
| 
								 | 
							
								    ord: float | L["fro", "nuc"] | None = ...,
							 | 
						||
| 
								 | 
							
								    keepdims: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> Any: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def vector_norm(
							 | 
						||
| 
								 | 
							
								    x: ArrayLike,
							 | 
						||
| 
								 | 
							
								    /,
							 | 
						||
| 
								 | 
							
								    *,
							 | 
						||
| 
								 | 
							
								    axis: None = ...,
							 | 
						||
| 
								 | 
							
								    ord: float | None = ...,
							 | 
						||
| 
								 | 
							
								    keepdims: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> floating: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def vector_norm(
							 | 
						||
| 
								 | 
							
								    x: ArrayLike,
							 | 
						||
| 
								 | 
							
								    /,
							 | 
						||
| 
								 | 
							
								    *,
							 | 
						||
| 
								 | 
							
								    axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
							 | 
						||
| 
								 | 
							
								    ord: float | None = ...,
							 | 
						||
| 
								 | 
							
								    keepdims: bool = ...,
							 | 
						||
| 
								 | 
							
								) -> Any: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# TODO: Returns a scalar or array
							 | 
						||
| 
								 | 
							
								def multi_dot(
							 | 
						||
| 
								 | 
							
								    arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
							 | 
						||
| 
								 | 
							
								    *,
							 | 
						||
| 
								 | 
							
								    out: NDArray[Any] | None = ...,
							 | 
						||
| 
								 | 
							
								) -> Any: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def diagonal(
							 | 
						||
| 
								 | 
							
								    x: ArrayLike,  # >= 2D array
							 | 
						||
| 
								 | 
							
								    /,
							 | 
						||
| 
								 | 
							
								    *,
							 | 
						||
| 
								 | 
							
								    offset: SupportsIndex = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[Any]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def trace(
							 | 
						||
| 
								 | 
							
								    x: ArrayLike,  # >= 2D array
							 | 
						||
| 
								 | 
							
								    /,
							 | 
						||
| 
								 | 
							
								    *,
							 | 
						||
| 
								 | 
							
								    offset: SupportsIndex = ...,
							 | 
						||
| 
								 | 
							
								    dtype: DTypeLike = ...,
							 | 
						||
| 
								 | 
							
								) -> Any: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def cross(
							 | 
						||
| 
								 | 
							
								    x1: _ArrayLikeUInt_co,
							 | 
						||
| 
								 | 
							
								    x2: _ArrayLikeUInt_co,
							 | 
						||
| 
								 | 
							
								    /,
							 | 
						||
| 
								 | 
							
								    *,
							 | 
						||
| 
								 | 
							
								    axis: int = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[unsignedinteger]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def cross(
							 | 
						||
| 
								 | 
							
								    x1: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    x2: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    /,
							 | 
						||
| 
								 | 
							
								    *,
							 | 
						||
| 
								 | 
							
								    axis: int = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[signedinteger]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def cross(
							 | 
						||
| 
								 | 
							
								    x1: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								    x2: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								    /,
							 | 
						||
| 
								 | 
							
								    *,
							 | 
						||
| 
								 | 
							
								    axis: int = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[floating]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def cross(
							 | 
						||
| 
								 | 
							
								    x1: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    x2: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    /,
							 | 
						||
| 
								 | 
							
								    *,
							 | 
						||
| 
								 | 
							
								    axis: int = ...,
							 | 
						||
| 
								 | 
							
								) -> NDArray[complexfloating]: ...
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def matmul(
							 | 
						||
| 
								 | 
							
								    x1: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								    x2: _ArrayLikeInt_co,
							 | 
						||
| 
								 | 
							
								) -> NDArray[signedinteger]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def matmul(
							 | 
						||
| 
								 | 
							
								    x1: _ArrayLikeUInt_co,
							 | 
						||
| 
								 | 
							
								    x2: _ArrayLikeUInt_co,
							 | 
						||
| 
								 | 
							
								) -> NDArray[unsignedinteger]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def matmul(
							 | 
						||
| 
								 | 
							
								    x1: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								    x2: _ArrayLikeFloat_co,
							 | 
						||
| 
								 | 
							
								) -> NDArray[floating]: ...
							 | 
						||
| 
								 | 
							
								@overload
							 | 
						||
| 
								 | 
							
								def matmul(
							 | 
						||
| 
								 | 
							
								    x1: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								    x2: _ArrayLikeComplex_co,
							 | 
						||
| 
								 | 
							
								) -> NDArray[complexfloating]: ...
							 |