Files
dash-api/lib/python3.11/site-packages/dash/development/_py_components_generation.py
2025-09-07 22:09:54 +02:00

791 lines
25 KiB
Python

from collections import OrderedDict
import copy
import numbers
import os
import typing
from textwrap import fill, dedent
from typing_extensions import TypedDict, NotRequired, Literal
from dash.development.base_component import _explicitize_args
from dash.exceptions import NonExistentEventException
from ._all_keywords import python_keywords
from ._collect_nodes import collect_nodes, filter_base_nodes
from ._py_prop_typing import (
get_custom_ignore,
get_custom_props,
get_prop_typing,
shapes,
get_custom_imports,
)
from .base_component import Component, ComponentType
import_string = """# AUTO GENERATED FILE - DO NOT EDIT
import typing # noqa: F401
from typing_extensions import TypedDict, NotRequired, Literal # noqa: F401
from dash.development.base_component import Component, _explicitize_args
{custom_imports}
ComponentType = typing.Union[
str,
int,
float,
Component,
None,
typing.Sequence[typing.Union[str, int, float, Component, None]],
]
NumberType = typing.Union[
typing.SupportsFloat, typing.SupportsInt, typing.SupportsComplex
]
"""
# pylint: disable=unused-argument,too-many-locals,too-many-branches
def generate_class_string(
typename,
props,
description,
namespace,
prop_reorder_exceptions=None,
max_props=None,
custom_typing_module=None,
):
"""Dynamically generate class strings to have nicely formatted docstrings,
keyword arguments, and repr.
Inspired by http://jameso.be/2013/08/06/namedtuple.html
Parameters
----------
typename
props
description
namespace
prop_reorder_exceptions
Returns
-------
string
"""
# TODO _prop_names, _type, _namespace, and available_properties
# can be modified by a Dash JS developer via setattr
# TODO - Tab out the repr for the repr of these components to make it
# look more like a hierarchical tree
# TODO - Include "description" "defaultValue" in the repr and docstring
#
# TODO - Handle "required"
#
# TODO - How to handle user-given `null` values? I want to include
# an expanded docstring like Dropdown(value=None, id=None)
# but by templating in those None values, I have no way of knowing
# whether a property is None because the user explicitly wanted
# it to be `null` or whether that was just the default value.
# The solution might be to deal with default values better although
# not all component authors will supply those.
c = '''class {typename}(Component):
"""{docstring}"""
_children_props = {children_props}
_base_nodes = {base_nodes}
_namespace = '{namespace}'
_type = '{typename}'
{shapes}
def __init__(
self,
{default_argtext}
):
self._prop_names = {list_of_valid_keys}
self._valid_wildcard_attributes =\
{list_of_valid_wildcard_attr_prefixes}
self.available_properties = {list_of_valid_keys}
self.available_wildcard_properties =\
{list_of_valid_wildcard_attr_prefixes}
_explicit_args = kwargs.pop('_explicit_args')
_locals = locals()
_locals.update(kwargs) # For wildcard attrs and excess named props
args = {args}
{required_validation}
super({typename}, self).__init__({argtext})
setattr({typename}, "__init__", _explicitize_args({typename}.__init__))
'''
filtered_props = (
filter_props(props)
if (prop_reorder_exceptions is not None and typename in prop_reorder_exceptions)
or (prop_reorder_exceptions is not None and "ALL" in prop_reorder_exceptions)
else reorder_props(filter_props(props))
)
wildcard_prefixes = repr(parse_wildcards(props))
list_of_valid_keys = repr(list(map(str, filtered_props.keys())))
custom_ignore = get_custom_ignore(custom_typing_module)
docstring = create_docstring(
component_name=typename,
props=filtered_props,
description=description,
prop_reorder_exceptions=prop_reorder_exceptions,
ignored_props=custom_ignore,
).replace("\r\n", "\n")
required_args = required_props(filtered_props)
is_children_required = "children" in required_args
required_args = [arg for arg in required_args if arg != "children"]
prohibit_events(props)
# pylint: disable=unused-variable
prop_keys = list(props.keys())
if "children" in props and "children" in list_of_valid_keys:
prop_keys.remove("children")
# TODO For dash 3.0, remove the Optional and = None for proper typing.
# Also add the other required props after children.
default_argtext = f"children: typing.Optional[{get_prop_typing('node', '', '', {})}] = None,\n "
args = "{k: _locals[k] for k in _explicit_args if k != 'children'}"
argtext = "children=children, **args"
else:
default_argtext = ""
args = "{k: _locals[k] for k in _explicit_args}"
argtext = "**args"
if len(required_args) == 0:
required_validation = ""
else:
required_validation = f"""
for k in {required_args}:
if k not in args:
raise TypeError(
'Required argument `' + k + '` was not specified.')
"""
if is_children_required:
required_validation += """
if 'children' not in _explicit_args:
raise TypeError('Required argument children was not specified.')
"""
default_arglist = []
for prop_key in prop_keys:
prop = props[prop_key]
if (
prop_key.endswith("-*")
or prop_key in python_keywords
or prop_key == "setProps"
):
continue
type_info = prop.get("type")
if not type_info:
print(f"Invalid prop type for typing: {prop_key}")
default_arglist.append(f"{prop_key} = None")
continue
type_name = type_info.get("name")
custom_props = get_custom_props(custom_typing_module)
typed = get_prop_typing(
type_name,
typename,
prop_key,
type_info,
custom_props=custom_props,
custom_ignore=custom_ignore,
)
arg_value = f"{prop_key}: typing.Optional[{typed}] = None"
default_arglist.append(arg_value)
if max_props:
final_max_props = max_props - (1 if "children" in props else 0)
if len(default_arglist) > final_max_props:
default_arglist = default_arglist[:final_max_props]
docstring += (
"\n\n"
"Note: due to the large number of props for this component,\n"
"not all of them appear in the constructor signature, but\n"
"they may still be used as keyword arguments."
)
default_argtext += ",\n ".join(default_arglist + ["**kwargs"])
nodes = collect_nodes({k: v for k, v in props.items() if k != "children"})
return dedent(
c.format(
typename=typename,
namespace=namespace,
filtered_props=filtered_props,
list_of_valid_wildcard_attr_prefixes=wildcard_prefixes,
list_of_valid_keys=list_of_valid_keys,
docstring=docstring,
default_argtext=default_argtext,
args=args,
argtext=argtext,
required_validation=required_validation,
children_props=nodes,
base_nodes=filter_base_nodes(nodes) + ["children"],
shapes="\n".join(shapes.get(typename, {}).values()),
)
)
def generate_class_file(
typename,
props,
description,
namespace,
prop_reorder_exceptions=None,
max_props=None,
custom_typing_module="dash_prop_typing",
):
"""Generate a Python class file (.py) given a class string.
Parameters
----------
typename
props
description
namespace
prop_reorder_exceptions
Returns
-------
"""
class_string = generate_class_string(
typename,
props,
description,
namespace,
prop_reorder_exceptions,
max_props,
custom_typing_module,
)
custom_imp = get_custom_imports(custom_typing_module)
custom_imp = custom_imp.get(typename) or custom_imp.get("*")
if custom_imp:
imports = import_string.format(
custom_imports="\n" + "\n".join(custom_imp) + "\n\n"
)
else:
imports = import_string.format(custom_imports="")
file_name = f"{typename:s}.py"
file_path = os.path.join(namespace, file_name)
with open(file_path, "w", encoding="utf-8") as f:
f.write(imports)
f.write(class_string)
print(f"Generated {file_name}")
def generate_imports(project_shortname, components):
with open(
os.path.join(project_shortname, "_imports_.py"), "w", encoding="utf-8"
) as f:
component_imports = "\n".join(f"from .{x} import {x}" for x in components)
all_list = ",\n".join(f' "{x}"' for x in components)
imports_string = f"{component_imports}\n\n__all__ = [\n{all_list}\n]"
f.write(imports_string)
def generate_classes_files(project_shortname, metadata, *component_generators):
components = []
for component_path, component_data in metadata.items():
component_name = component_path.split("/")[-1].split(".")[0]
components.append(component_name)
for generator in component_generators:
generator(
component_name,
component_data["props"],
component_data["description"],
project_shortname,
)
return components
def generate_class(
typename, props, description, namespace, prop_reorder_exceptions=None
):
"""Generate a Python class object given a class string.
Parameters
----------
typename
props
description
namespace
Returns
-------
"""
string = generate_class_string(
typename, props, description, namespace, prop_reorder_exceptions
)
scope = {
"Component": Component,
"ComponentType": ComponentType,
"_explicitize_args": _explicitize_args,
"typing": typing,
"numbers": numbers,
"TypedDict": TypedDict,
"NotRequired": NotRequired,
"Literal": Literal,
"NumberType": typing.Union[
typing.SupportsFloat, typing.SupportsComplex, typing.SupportsInt
],
}
# pylint: disable=exec-used
exec(string, scope)
result = scope[typename]
return result
def required_props(props):
"""Pull names of required props from the props object.
Parameters
----------
props: dict
Returns
-------
list
List of prop names (str) that are required for the Component
"""
return [prop_name for prop_name, prop in list(props.items()) if prop["required"]]
def create_docstring(
component_name,
props,
description,
prop_reorder_exceptions=None,
ignored_props=tuple(),
):
"""Create the Dash component docstring.
Parameters
----------
component_name: str
Component name
props: dict
Dictionary with {propName: propMetadata} structure
description: str
Component description
Returns
-------
str
Dash component docstring
"""
# Ensure props are ordered with children first
props = (
props
if (
prop_reorder_exceptions is not None
and component_name in prop_reorder_exceptions
)
or (prop_reorder_exceptions is not None and "ALL" in prop_reorder_exceptions)
else reorder_props(props)
)
n = "n" if component_name[0].lower() in "aeiou" else ""
args = "\n".join(
create_prop_docstring(
prop_name=p,
type_object=prop["type"] if "type" in prop else prop["flowType"],
required=prop["required"],
description=prop["description"],
default=prop.get("defaultValue"),
indent_num=0,
is_flow_type="flowType" in prop and "type" not in prop,
)
for p, prop in filter_props(props, ignored_props).items()
)
return (
f"A{n} {component_name} component.\n{description}\n\nKeyword arguments:\n{args}"
)
def prohibit_events(props):
"""Events have been removed. Raise an error if we see dashEvents or
fireEvents.
Parameters
----------
props: dict
Dictionary with {propName: propMetadata} structure
Raises
-------
?
"""
if "dashEvents" in props or "fireEvents" in props:
raise NonExistentEventException(
"Events are no longer supported by dash. Use properties instead, "
"eg `n_clicks` instead of a `click` event."
)
def parse_wildcards(props):
"""Pull out the wildcard attributes from the Component props.
Parameters
----------
props: dict
Dictionary with {propName: propMetadata} structure
Returns
-------
list
List of Dash valid wildcard prefixes
"""
list_of_valid_wildcard_attr_prefixes = []
for wildcard_attr in ["data-*", "aria-*"]:
if wildcard_attr in props:
list_of_valid_wildcard_attr_prefixes.append(wildcard_attr[:-1])
return list_of_valid_wildcard_attr_prefixes
def reorder_props(props):
"""If "children" is in props, then move it to the front to respect dash
convention, then 'id', then the remaining props sorted by prop name
Parameters
----------
props: dict
Dictionary with {propName: propMetadata} structure
Returns
-------
dict
Dictionary with {propName: propMetadata} structure
"""
# Constructing an OrderedDict with duplicate keys, you get the order
# from the first one but the value from the last.
# Doing this to avoid mutating props, which can cause confusion.
props1 = [("children", "")] if "children" in props else []
props2 = [("id", "")] if "id" in props else []
return OrderedDict(props1 + props2 + sorted(list(props.items())))
def filter_props(props, ignored_props=tuple()):
"""Filter props from the Component arguments to exclude:
- Those without a "type" or a "flowType" field
- Those with arg.type.name in {'func', 'symbol', 'instanceOf'}
Parameters
----------
props: dict
Dictionary with {propName: propMetadata} structure
Returns
-------
dict
Filtered dictionary with {propName: propMetadata} structure
Examples
--------
```python
prop_args = {
'prop1': {
'type': {'name': 'bool'},
'required': False,
'description': 'A description',
'flowType': {},
'defaultValue': {'value': 'false', 'computed': False},
},
'prop2': {'description': 'A prop without a type'},
'prop3': {
'type': {'name': 'func'},
'description': 'A function prop',
},
}
# filtered_prop_args is now
# {
# 'prop1': {
# 'type': {'name': 'bool'},
# 'required': False,
# 'description': 'A description',
# 'flowType': {},
# 'defaultValue': {'value': 'false', 'computed': False},
# },
# }
filtered_prop_args = filter_props(prop_args)
```
"""
filtered_props = copy.deepcopy(props)
for arg_name, arg in list(filtered_props.items()):
if arg_name in ignored_props or ("type" not in arg and "flowType" not in arg):
filtered_props.pop(arg_name)
continue
# Filter out functions and instances --
# these cannot be passed from Python
if "type" in arg: # These come from PropTypes
arg_type = arg["type"]["name"]
if arg_type in {"func", "symbol", "instanceOf"}:
filtered_props.pop(arg_name)
elif "flowType" in arg: # These come from Flow & handled differently
arg_type_name = arg["flowType"]["name"]
if arg_type_name == "signature":
# This does the same as the PropTypes filter above, but "func"
# is under "type" if "name" is "signature" vs just in "name"
if "type" not in arg["flowType"] or arg["flowType"]["type"] != "object":
filtered_props.pop(arg_name)
else:
raise ValueError
return filtered_props
def fix_keywords(txt):
"""
replaces javascript keywords true, false, null with Python keywords
"""
fix_word = {"true": "True", "false": "False", "null": "None"}
for js_keyword, python_keyword in fix_word.items():
txt = txt.replace(js_keyword, python_keyword)
return txt
# pylint: disable=too-many-arguments
# pylint: disable=too-many-locals
def create_prop_docstring(
prop_name,
type_object,
required,
description,
default,
indent_num,
is_flow_type=False,
):
"""Create the Dash component prop docstring.
Parameters
----------
prop_name: str
Name of the Dash component prop
type_object: dict
react-docgen-generated prop type dictionary
required: bool
Component is required?
description: str
Dash component description
default: dict
Either None if a default value is not defined, or
dict containing the key 'value' that defines a
default value for the prop
indent_num: int
Number of indents to use for the context block
(creates 2 spaces for every indent)
is_flow_type: bool
Does the prop use Flow types? Otherwise, uses PropTypes
Returns
-------
str
Dash component prop docstring
"""
py_type_name = js_to_py_type(
type_object=type_object, is_flow_type=is_flow_type, indent_num=indent_num
)
indent_spacing = " " * indent_num
default = default["value"] if default else ""
default = fix_keywords(default)
is_required = "optional"
if required:
is_required = "required"
elif default and default not in ["None", "{}", "[]"]:
is_required = "default " + default.replace("\n", "")
# formats description
period = "." if description else ""
description = description.strip().strip(".").replace('"', r"\"") + period
desc_indent = indent_spacing + " "
description = fill(
description,
initial_indent=desc_indent,
subsequent_indent=desc_indent,
break_long_words=False,
break_on_hyphens=False,
)
description = f"\n{description}" if description else ""
colon = ":" if description else ""
description = fix_keywords(description)
if "\n" in py_type_name:
# corrects the type
dict_or_list = "list of dicts" if py_type_name.startswith("list") else "dict"
# format and rewrite the intro to the nested dicts
intro1, intro2, dict_descr = py_type_name.partition("with keys:")
intro = f"`{prop_name}` is a {intro1}{intro2}"
intro = fill(
intro,
initial_indent=desc_indent,
subsequent_indent=desc_indent,
break_long_words=False,
break_on_hyphens=False,
)
# captures optional nested dict description and puts the "or" condition on a new line
if "| dict with keys:" in dict_descr:
dict_part1, dict_part2 = dict_descr.split(" |", 1)
dict_part2 = "".join([desc_indent, "Or", dict_part2])
dict_descr = f"{dict_part1}\n\n {dict_part2}"
# ensures indent is correct if there is a second nested list of dicts
current_indent = dict_descr.lstrip("\n").find("-")
if current_indent == len(indent_spacing):
dict_descr = "".join(
"\n\n " + line for line in dict_descr.splitlines() if line != ""
)
return (
f"\n{indent_spacing}- {prop_name} ({dict_or_list}; {is_required}){colon}"
f"{description}"
f"\n\n{intro}{dict_descr}"
)
tn = f"{py_type_name}; " if py_type_name else ""
return f"\n{indent_spacing}- {prop_name} ({tn}{is_required}){colon}{description}"
def map_js_to_py_types_prop_types(type_object, indent_num):
"""Mapping from the PropTypes js type object to the Python type."""
def shape_or_exact():
return "dict with keys:\n" + "\n".join(
create_prop_docstring(
prop_name=prop_name,
type_object=prop,
required=prop["required"],
description=prop.get("description", ""),
default=prop.get("defaultValue"),
indent_num=indent_num + 2,
)
for prop_name, prop in type_object["value"].items()
)
def array_of():
inner = js_to_py_type(type_object["value"])
if inner:
return "list of " + (
inner + "s"
if inner.split(" ")[0] != "dict"
else inner.replace("dict", "dicts", 1)
)
return "list"
def tuple_of():
elements = [js_to_py_type(element) for element in type_object["elements"]]
return f"list of {len(elements)} elements: [{', '.join(elements)}]"
return dict(
array=lambda: "list",
bool=lambda: "boolean",
number=lambda: "number",
string=lambda: "string",
object=lambda: "dict",
any=lambda: "boolean | number | string | dict | list",
element=lambda: "dash component",
node=lambda: "a list of or a singular dash component, string or number",
# React's PropTypes.oneOf
enum=lambda: (
"a value equal to: "
+ ", ".join(str(t["value"]) for t in type_object["value"])
),
# React's PropTypes.oneOfType
union=lambda: " | ".join(
js_to_py_type(subType)
for subType in type_object["value"]
if js_to_py_type(subType) != ""
),
# React's PropTypes.arrayOf
arrayOf=array_of,
# React's PropTypes.objectOf
objectOf=lambda: (
"dict with strings as keys and values of type "
+ js_to_py_type(type_object["value"])
),
# React's PropTypes.shape
shape=shape_or_exact,
# React's PropTypes.exact
exact=shape_or_exact,
tuple=tuple_of,
)
def map_js_to_py_types_flow_types(type_object):
"""Mapping from the Flow js types to the Python type."""
return dict(
array=lambda: "list",
boolean=lambda: "boolean",
number=lambda: "number",
string=lambda: "string",
Object=lambda: "dict",
any=lambda: "bool | number | str | dict | list",
Element=lambda: "dash component",
Node=lambda: "a list of or a singular dash component, string or number",
# React's PropTypes.oneOfType
union=lambda: " | ".join(
js_to_py_type(subType)
for subType in type_object["elements"]
if js_to_py_type(subType) != ""
),
# Flow's Array type
Array=lambda: "list"
+ (
f' of {js_to_py_type(type_object["elements"][0])}s'
if js_to_py_type(type_object["elements"][0]) != ""
else ""
),
# React's PropTypes.shape
signature=lambda indent_num: (
"dict with keys:\n"
+ "\n".join(
create_prop_docstring(
prop_name=prop["key"],
type_object=prop["value"],
required=prop["value"]["required"],
description=prop["value"].get("description", ""),
default=prop.get("defaultValue"),
indent_num=indent_num + 2,
is_flow_type=True,
)
for prop in type_object["signature"]["properties"]
)
),
)
def js_to_py_type(type_object, is_flow_type=False, indent_num=0):
"""Convert JS types to Python types for the component definition.
Parameters
----------
type_object: dict
react-docgen-generated prop type dictionary
is_flow_type: bool
Does the prop use Flow types? Otherwise, uses PropTypes
indent_num: int
Number of indents to use for the docstring for the prop
Returns
-------
str
Python type string
"""
js_type_name = type_object["name"]
js_to_py_types = (
map_js_to_py_types_flow_types(type_object=type_object)
if is_flow_type
else map_js_to_py_types_prop_types(
type_object=type_object, indent_num=indent_num
)
)
if (
"computed" in type_object
and type_object["computed"]
or type_object.get("type", "") == "function"
):
return ""
if js_type_name in js_to_py_types:
if js_type_name == "signature": # This is a Flow object w/ signature
return js_to_py_types[js_type_name](indent_num) # type: ignore[reportCallIssue]
# All other types
return js_to_py_types[js_type_name]() # type: ignore[reportCallIssue]
return ""