153 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			153 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import sys
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from numpy import random
 | 
						|
from numpy.testing import (
 | 
						|
    assert_,
 | 
						|
    assert_array_equal,
 | 
						|
    assert_raises,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
class TestRegression:
 | 
						|
 | 
						|
    def test_VonMises_range(self):
 | 
						|
        # Make sure generated random variables are in [-pi, pi].
 | 
						|
        # Regression test for ticket #986.
 | 
						|
        for mu in np.linspace(-7., 7., 5):
 | 
						|
            r = random.mtrand.vonmises(mu, 1, 50)
 | 
						|
            assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
 | 
						|
 | 
						|
    def test_hypergeometric_range(self):
 | 
						|
        # Test for ticket #921
 | 
						|
        assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4))
 | 
						|
        assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0))
 | 
						|
 | 
						|
        # Test for ticket #5623
 | 
						|
        args = [
 | 
						|
            (2**20 - 2, 2**20 - 2, 2**20 - 2),  # Check for 32-bit systems
 | 
						|
        ]
 | 
						|
        is_64bits = sys.maxsize > 2**32
 | 
						|
        if is_64bits and sys.platform != 'win32':
 | 
						|
            # Check for 64-bit systems
 | 
						|
            args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
 | 
						|
        for arg in args:
 | 
						|
            assert_(np.random.hypergeometric(*arg) > 0)
 | 
						|
 | 
						|
    def test_logseries_convergence(self):
 | 
						|
        # Test for ticket #923
 | 
						|
        N = 1000
 | 
						|
        np.random.seed(0)
 | 
						|
        rvsn = np.random.logseries(0.8, size=N)
 | 
						|
        # these two frequency counts should be close to theoretical
 | 
						|
        # numbers with this large sample
 | 
						|
        # theoretical large N result is 0.49706795
 | 
						|
        freq = np.sum(rvsn == 1) / N
 | 
						|
        msg = f'Frequency was {freq:f}, should be > 0.45'
 | 
						|
        assert_(freq > 0.45, msg)
 | 
						|
        # theoretical large N result is 0.19882718
 | 
						|
        freq = np.sum(rvsn == 2) / N
 | 
						|
        msg = f'Frequency was {freq:f}, should be < 0.23'
 | 
						|
        assert_(freq < 0.23, msg)
 | 
						|
 | 
						|
    def test_shuffle_mixed_dimension(self):
 | 
						|
        # Test for trac ticket #2074
 | 
						|
        for t in [[1, 2, 3, None],
 | 
						|
                  [(1, 1), (2, 2), (3, 3), None],
 | 
						|
                  [1, (2, 2), (3, 3), None],
 | 
						|
                  [(1, 1), 2, 3, None]]:
 | 
						|
            np.random.seed(12345)
 | 
						|
            shuffled = list(t)
 | 
						|
            random.shuffle(shuffled)
 | 
						|
            expected = np.array([t[0], t[3], t[1], t[2]], dtype=object)
 | 
						|
            assert_array_equal(np.array(shuffled, dtype=object), expected)
 | 
						|
 | 
						|
    def test_call_within_randomstate(self):
 | 
						|
        # Check that custom RandomState does not call into global state
 | 
						|
        m = np.random.RandomState()
 | 
						|
        res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
 | 
						|
        for i in range(3):
 | 
						|
            np.random.seed(i)
 | 
						|
            m.seed(4321)
 | 
						|
            # If m.state is not honored, the result will change
 | 
						|
            assert_array_equal(m.choice(10, size=10, p=np.ones(10) / 10.), res)
 | 
						|
 | 
						|
    def test_multivariate_normal_size_types(self):
 | 
						|
        # Test for multivariate_normal issue with 'size' argument.
 | 
						|
        # Check that the multivariate_normal size argument can be a
 | 
						|
        # numpy integer.
 | 
						|
        np.random.multivariate_normal([0], [[0]], size=1)
 | 
						|
        np.random.multivariate_normal([0], [[0]], size=np.int_(1))
 | 
						|
        np.random.multivariate_normal([0], [[0]], size=np.int64(1))
 | 
						|
 | 
						|
    def test_beta_small_parameters(self):
 | 
						|
        # Test that beta with small a and b parameters does not produce
 | 
						|
        # NaNs due to roundoff errors causing 0 / 0, gh-5851
 | 
						|
        np.random.seed(1234567890)
 | 
						|
        x = np.random.beta(0.0001, 0.0001, size=100)
 | 
						|
        assert_(not np.any(np.isnan(x)), 'Nans in np.random.beta')
 | 
						|
 | 
						|
    def test_choice_sum_of_probs_tolerance(self):
 | 
						|
        # The sum of probs should be 1.0 with some tolerance.
 | 
						|
        # For low precision dtypes the tolerance was too tight.
 | 
						|
        # See numpy github issue 6123.
 | 
						|
        np.random.seed(1234)
 | 
						|
        a = [1, 2, 3]
 | 
						|
        counts = [4, 4, 2]
 | 
						|
        for dt in np.float16, np.float32, np.float64:
 | 
						|
            probs = np.array(counts, dtype=dt) / sum(counts)
 | 
						|
            c = np.random.choice(a, p=probs)
 | 
						|
            assert_(c in a)
 | 
						|
            assert_raises(ValueError, np.random.choice, a, p=probs * 0.9)
 | 
						|
 | 
						|
    def test_shuffle_of_array_of_different_length_strings(self):
 | 
						|
        # Test that permuting an array of different length strings
 | 
						|
        # will not cause a segfault on garbage collection
 | 
						|
        # Tests gh-7710
 | 
						|
        np.random.seed(1234)
 | 
						|
 | 
						|
        a = np.array(['a', 'a' * 1000])
 | 
						|
 | 
						|
        for _ in range(100):
 | 
						|
            np.random.shuffle(a)
 | 
						|
 | 
						|
        # Force Garbage Collection - should not segfault.
 | 
						|
        import gc
 | 
						|
        gc.collect()
 | 
						|
 | 
						|
    def test_shuffle_of_array_of_objects(self):
 | 
						|
        # Test that permuting an array of objects will not cause
 | 
						|
        # a segfault on garbage collection.
 | 
						|
        # See gh-7719
 | 
						|
        np.random.seed(1234)
 | 
						|
        a = np.array([np.arange(1), np.arange(4)], dtype=object)
 | 
						|
 | 
						|
        for _ in range(1000):
 | 
						|
            np.random.shuffle(a)
 | 
						|
 | 
						|
        # Force Garbage Collection - should not segfault.
 | 
						|
        import gc
 | 
						|
        gc.collect()
 | 
						|
 | 
						|
    def test_permutation_subclass(self):
 | 
						|
        class N(np.ndarray):
 | 
						|
            pass
 | 
						|
 | 
						|
        np.random.seed(1)
 | 
						|
        orig = np.arange(3).view(N)
 | 
						|
        perm = np.random.permutation(orig)
 | 
						|
        assert_array_equal(perm, np.array([0, 2, 1]))
 | 
						|
        assert_array_equal(orig, np.arange(3).view(N))
 | 
						|
 | 
						|
        class M:
 | 
						|
            a = np.arange(5)
 | 
						|
 | 
						|
            def __array__(self, dtype=None, copy=None):
 | 
						|
                return self.a
 | 
						|
 | 
						|
        np.random.seed(1)
 | 
						|
        m = M()
 | 
						|
        perm = np.random.permutation(m)
 | 
						|
        assert_array_equal(perm, np.array([2, 1, 4, 0, 3]))
 | 
						|
        assert_array_equal(m.__array__(), np.arange(5))
 |