857 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			857 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from collections.abc import Callable
 | 
						|
from typing import Any, Literal, TypeAlias, TypeVar, overload
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from numpy import dtype, float32, float64, int64
 | 
						|
from numpy._typing import (
 | 
						|
    ArrayLike,
 | 
						|
    DTypeLike,
 | 
						|
    NDArray,
 | 
						|
    _ArrayLikeFloat_co,
 | 
						|
    _ArrayLikeInt_co,
 | 
						|
    _BoolCodes,
 | 
						|
    _DoubleCodes,
 | 
						|
    _DTypeLike,
 | 
						|
    _DTypeLikeBool,
 | 
						|
    _Float32Codes,
 | 
						|
    _Float64Codes,
 | 
						|
    _FloatLike_co,
 | 
						|
    _Int8Codes,
 | 
						|
    _Int16Codes,
 | 
						|
    _Int32Codes,
 | 
						|
    _Int64Codes,
 | 
						|
    _IntPCodes,
 | 
						|
    _ShapeLike,
 | 
						|
    _SingleCodes,
 | 
						|
    _SupportsDType,
 | 
						|
    _UInt8Codes,
 | 
						|
    _UInt16Codes,
 | 
						|
    _UInt32Codes,
 | 
						|
    _UInt64Codes,
 | 
						|
    _UIntPCodes,
 | 
						|
)
 | 
						|
from numpy.random import BitGenerator, RandomState, SeedSequence
 | 
						|
 | 
						|
_IntegerT = TypeVar("_IntegerT", bound=np.integer)
 | 
						|
 | 
						|
_DTypeLikeFloat32: TypeAlias = (
 | 
						|
    dtype[float32]
 | 
						|
    | _SupportsDType[dtype[float32]]
 | 
						|
    | type[float32]
 | 
						|
    | _Float32Codes
 | 
						|
    | _SingleCodes
 | 
						|
)
 | 
						|
 | 
						|
_DTypeLikeFloat64: TypeAlias = (
 | 
						|
    dtype[float64]
 | 
						|
    | _SupportsDType[dtype[float64]]
 | 
						|
    | type[float]
 | 
						|
    | type[float64]
 | 
						|
    | _Float64Codes
 | 
						|
    | _DoubleCodes
 | 
						|
)
 | 
						|
 | 
						|
class Generator:
 | 
						|
    def __init__(self, bit_generator: BitGenerator) -> None: ...
 | 
						|
    def __repr__(self) -> str: ...
 | 
						|
    def __str__(self) -> str: ...
 | 
						|
    def __getstate__(self) -> None: ...
 | 
						|
    def __setstate__(self, state: dict[str, Any] | None) -> None: ...
 | 
						|
    def __reduce__(self) -> tuple[
 | 
						|
        Callable[[BitGenerator], Generator],
 | 
						|
        tuple[BitGenerator],
 | 
						|
        None]: ...
 | 
						|
    @property
 | 
						|
    def bit_generator(self) -> BitGenerator: ...
 | 
						|
    def spawn(self, n_children: int) -> list[Generator]: ...
 | 
						|
    def bytes(self, length: int) -> bytes: ...
 | 
						|
    @overload
 | 
						|
    def standard_normal(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        size: None = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
 | 
						|
        out: None = ...,
 | 
						|
    ) -> float: ...
 | 
						|
    @overload
 | 
						|
    def standard_normal(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def standard_normal(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        *,
 | 
						|
        out: NDArray[float64] = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def standard_normal(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 = ...,
 | 
						|
        out: NDArray[float32] | None = ...,
 | 
						|
    ) -> NDArray[float32]: ...
 | 
						|
    @overload
 | 
						|
    def standard_normal(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat64 = ...,
 | 
						|
        out: NDArray[float64] | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def permutation(self, x: int, axis: int = ...) -> NDArray[int64]: ...
 | 
						|
    @overload
 | 
						|
    def permutation(self, x: ArrayLike, axis: int = ...) -> NDArray[Any]: ...
 | 
						|
    @overload
 | 
						|
    def standard_exponential(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        size: None = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
 | 
						|
        method: Literal["zig", "inv"] = ...,
 | 
						|
        out: None = ...,
 | 
						|
    ) -> float: ...
 | 
						|
    @overload
 | 
						|
    def standard_exponential(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def standard_exponential(
 | 
						|
        self,
 | 
						|
        *,
 | 
						|
        out: NDArray[float64] = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def standard_exponential(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        *,
 | 
						|
        method: Literal["zig", "inv"] = ...,
 | 
						|
        out: NDArray[float64] | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def standard_exponential(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 = ...,
 | 
						|
        method: Literal["zig", "inv"] = ...,
 | 
						|
        out: NDArray[float32] | None = ...,
 | 
						|
    ) -> NDArray[float32]: ...
 | 
						|
    @overload
 | 
						|
    def standard_exponential(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat64 = ...,
 | 
						|
        method: Literal["zig", "inv"] = ...,
 | 
						|
        out: NDArray[float64] | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def random(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        size: None = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
 | 
						|
        out: None = ...,
 | 
						|
    ) -> float: ...
 | 
						|
    @overload
 | 
						|
    def random(
 | 
						|
        self,
 | 
						|
        *,
 | 
						|
        out: NDArray[float64] = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def random(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        *,
 | 
						|
        out: NDArray[float64] | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def random(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 = ...,
 | 
						|
        out: NDArray[float32] | None = ...,
 | 
						|
    ) -> NDArray[float32]: ...
 | 
						|
    @overload
 | 
						|
    def random(
 | 
						|
        self,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        dtype: _DTypeLikeFloat64 = ...,
 | 
						|
        out: NDArray[float64] | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def beta(
 | 
						|
        self,
 | 
						|
        a: _FloatLike_co,
 | 
						|
        b: _FloatLike_co,
 | 
						|
        size: None = ...,
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def beta(
 | 
						|
        self,
 | 
						|
        a: _ArrayLikeFloat_co,
 | 
						|
        b: _ArrayLikeFloat_co,
 | 
						|
        size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def exponential(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def exponential(self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...) -> NDArray[float64]: ...
 | 
						|
 | 
						|
    #
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        dtype: _DTypeLike[np.int64] | _Int64Codes = ...,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> np.int64: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        *,
 | 
						|
        dtype: type[bool],
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> bool: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        *,
 | 
						|
        dtype: type[int],
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> int: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        *,
 | 
						|
        dtype: _DTypeLike[np.bool] | _BoolCodes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> np.bool: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        *,
 | 
						|
        dtype: _DTypeLike[_IntegerT],
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> _IntegerT: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: _ArrayLikeInt_co | None = None,
 | 
						|
        size: _ShapeLike | None = None,
 | 
						|
        dtype: _DTypeLike[np.int64] | _Int64Codes = ...,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> NDArray[np.int64]: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: _ArrayLikeInt_co | None = None,
 | 
						|
        size: _ShapeLike | None = None,
 | 
						|
        *,
 | 
						|
        dtype: _DTypeLikeBool,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> NDArray[np.bool]: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: _ArrayLikeInt_co | None = None,
 | 
						|
        size: _ShapeLike | None = None,
 | 
						|
        *,
 | 
						|
        dtype: _DTypeLike[_IntegerT],
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> NDArray[_IntegerT]: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        *,
 | 
						|
        dtype: _Int8Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> np.int8: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: _ArrayLikeInt_co | None = None,
 | 
						|
        size: _ShapeLike | None = None,
 | 
						|
        *,
 | 
						|
        dtype: _Int8Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> NDArray[np.int8]: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        *,
 | 
						|
        dtype: _UInt8Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> np.uint8: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: _ArrayLikeInt_co | None = None,
 | 
						|
        size: _ShapeLike | None = None,
 | 
						|
        *,
 | 
						|
        dtype: _UInt8Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> NDArray[np.uint8]: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        *,
 | 
						|
        dtype: _Int16Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> np.int16: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: _ArrayLikeInt_co | None = None,
 | 
						|
        size: _ShapeLike | None = None,
 | 
						|
        *,
 | 
						|
        dtype: _Int16Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> NDArray[np.int16]: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        *,
 | 
						|
        dtype: _UInt16Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> np.uint16: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: _ArrayLikeInt_co | None = None,
 | 
						|
        size: _ShapeLike | None = None,
 | 
						|
        *,
 | 
						|
        dtype: _UInt16Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> NDArray[np.uint16]: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        *,
 | 
						|
        dtype: _Int32Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> np.int32: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: _ArrayLikeInt_co | None = None,
 | 
						|
        size: _ShapeLike | None = None,
 | 
						|
        *,
 | 
						|
        dtype: _Int32Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> NDArray[np.int32]: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        *,
 | 
						|
        dtype: _UInt32Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> np.uint32: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: _ArrayLikeInt_co | None = None,
 | 
						|
        size: _ShapeLike | None = None,
 | 
						|
        *,
 | 
						|
        dtype: _UInt32Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> NDArray[np.uint32]: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        *,
 | 
						|
        dtype: _UInt64Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> np.uint64: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: _ArrayLikeInt_co | None = None,
 | 
						|
        size: _ShapeLike | None = None,
 | 
						|
        *,
 | 
						|
        dtype: _UInt64Codes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> NDArray[np.uint64]: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        *,
 | 
						|
        dtype: _IntPCodes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> np.intp: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: _ArrayLikeInt_co | None = None,
 | 
						|
        size: _ShapeLike | None = None,
 | 
						|
        *,
 | 
						|
        dtype: _IntPCodes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> NDArray[np.intp]: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        *,
 | 
						|
        dtype: _UIntPCodes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> np.uintp: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: _ArrayLikeInt_co | None = None,
 | 
						|
        size: _ShapeLike | None = None,
 | 
						|
        *,
 | 
						|
        dtype: _UIntPCodes,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> NDArray[np.uintp]: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: int,
 | 
						|
        high: int | None = None,
 | 
						|
        size: None = None,
 | 
						|
        dtype: DTypeLike = ...,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> Any: ...
 | 
						|
    @overload
 | 
						|
    def integers(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeInt_co,
 | 
						|
        high: _ArrayLikeInt_co | None = None,
 | 
						|
        size: _ShapeLike | None = None,
 | 
						|
        dtype: DTypeLike = ...,
 | 
						|
        endpoint: bool = False,
 | 
						|
    ) -> NDArray[Any]: ...
 | 
						|
 | 
						|
    # TODO: Use a TypeVar _T here to get away from Any output?
 | 
						|
    #       Should be int->NDArray[int64], ArrayLike[_T] -> _T | NDArray[Any]
 | 
						|
    @overload
 | 
						|
    def choice(
 | 
						|
        self,
 | 
						|
        a: int,
 | 
						|
        size: None = ...,
 | 
						|
        replace: bool = ...,
 | 
						|
        p: _ArrayLikeFloat_co | None = ...,
 | 
						|
        axis: int = ...,
 | 
						|
        shuffle: bool = ...,
 | 
						|
    ) -> int: ...
 | 
						|
    @overload
 | 
						|
    def choice(
 | 
						|
        self,
 | 
						|
        a: int,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        replace: bool = ...,
 | 
						|
        p: _ArrayLikeFloat_co | None = ...,
 | 
						|
        axis: int = ...,
 | 
						|
        shuffle: bool = ...,
 | 
						|
    ) -> NDArray[int64]: ...
 | 
						|
    @overload
 | 
						|
    def choice(
 | 
						|
        self,
 | 
						|
        a: ArrayLike,
 | 
						|
        size: None = ...,
 | 
						|
        replace: bool = ...,
 | 
						|
        p: _ArrayLikeFloat_co | None = ...,
 | 
						|
        axis: int = ...,
 | 
						|
        shuffle: bool = ...,
 | 
						|
    ) -> Any: ...
 | 
						|
    @overload
 | 
						|
    def choice(
 | 
						|
        self,
 | 
						|
        a: ArrayLike,
 | 
						|
        size: _ShapeLike = ...,
 | 
						|
        replace: bool = ...,
 | 
						|
        p: _ArrayLikeFloat_co | None = ...,
 | 
						|
        axis: int = ...,
 | 
						|
        shuffle: bool = ...,
 | 
						|
    ) -> NDArray[Any]: ...
 | 
						|
    @overload
 | 
						|
    def uniform(
 | 
						|
        self,
 | 
						|
        low: _FloatLike_co = ...,
 | 
						|
        high: _FloatLike_co = ...,
 | 
						|
        size: None = ...,
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def uniform(
 | 
						|
        self,
 | 
						|
        low: _ArrayLikeFloat_co = ...,
 | 
						|
        high: _ArrayLikeFloat_co = ...,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def normal(
 | 
						|
        self,
 | 
						|
        loc: _FloatLike_co = ...,
 | 
						|
        scale: _FloatLike_co = ...,
 | 
						|
        size: None = ...,
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def normal(
 | 
						|
        self,
 | 
						|
        loc: _ArrayLikeFloat_co = ...,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def standard_gamma(  # type: ignore[misc]
 | 
						|
        self,
 | 
						|
        shape: _FloatLike_co,
 | 
						|
        size: None = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
 | 
						|
        out: None = ...,
 | 
						|
    ) -> float: ...
 | 
						|
    @overload
 | 
						|
    def standard_gamma(
 | 
						|
        self,
 | 
						|
        shape: _ArrayLikeFloat_co,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def standard_gamma(
 | 
						|
        self,
 | 
						|
        shape: _ArrayLikeFloat_co,
 | 
						|
        *,
 | 
						|
        out: NDArray[float64] = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def standard_gamma(
 | 
						|
        self,
 | 
						|
        shape: _ArrayLikeFloat_co,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
        dtype: _DTypeLikeFloat32 = ...,
 | 
						|
        out: NDArray[float32] | None = ...,
 | 
						|
    ) -> NDArray[float32]: ...
 | 
						|
    @overload
 | 
						|
    def standard_gamma(
 | 
						|
        self,
 | 
						|
        shape: _ArrayLikeFloat_co,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
        dtype: _DTypeLikeFloat64 = ...,
 | 
						|
        out: NDArray[float64] | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def gamma(
 | 
						|
        self, shape: _FloatLike_co, scale: _FloatLike_co = ..., size: None = ...
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def gamma(
 | 
						|
        self,
 | 
						|
        shape: _ArrayLikeFloat_co,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def f(
 | 
						|
        self, dfnum: _FloatLike_co, dfden: _FloatLike_co, size: None = ...
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def f(
 | 
						|
        self,
 | 
						|
        dfnum: _ArrayLikeFloat_co,
 | 
						|
        dfden: _ArrayLikeFloat_co,
 | 
						|
        size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def noncentral_f(
 | 
						|
        self,
 | 
						|
        dfnum: _FloatLike_co,
 | 
						|
        dfden: _FloatLike_co,
 | 
						|
        nonc: _FloatLike_co, size: None = ...
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def noncentral_f(
 | 
						|
        self,
 | 
						|
        dfnum: _ArrayLikeFloat_co,
 | 
						|
        dfden: _ArrayLikeFloat_co,
 | 
						|
        nonc: _ArrayLikeFloat_co,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def chisquare(self, df: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def chisquare(
 | 
						|
        self, df: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def noncentral_chisquare(
 | 
						|
        self, df: _FloatLike_co, nonc: _FloatLike_co, size: None = ...
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def noncentral_chisquare(
 | 
						|
        self,
 | 
						|
        df: _ArrayLikeFloat_co,
 | 
						|
        nonc: _ArrayLikeFloat_co,
 | 
						|
        size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def standard_t(self, df: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def standard_t(
 | 
						|
        self, df: _ArrayLikeFloat_co, size: None = ...
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def standard_t(
 | 
						|
        self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def vonmises(
 | 
						|
        self, mu: _FloatLike_co, kappa: _FloatLike_co, size: None = ...
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def vonmises(
 | 
						|
        self,
 | 
						|
        mu: _ArrayLikeFloat_co,
 | 
						|
        kappa: _ArrayLikeFloat_co,
 | 
						|
        size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def pareto(self, a: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def pareto(
 | 
						|
        self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def weibull(self, a: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def weibull(
 | 
						|
        self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def power(self, a: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def power(
 | 
						|
        self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def standard_cauchy(self, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def standard_cauchy(self, size: _ShapeLike = ...) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def laplace(
 | 
						|
        self,
 | 
						|
        loc: _FloatLike_co = ...,
 | 
						|
        scale: _FloatLike_co = ...,
 | 
						|
        size: None = ...,
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def laplace(
 | 
						|
        self,
 | 
						|
        loc: _ArrayLikeFloat_co = ...,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def gumbel(
 | 
						|
        self,
 | 
						|
        loc: _FloatLike_co = ...,
 | 
						|
        scale: _FloatLike_co = ...,
 | 
						|
        size: None = ...,
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def gumbel(
 | 
						|
        self,
 | 
						|
        loc: _ArrayLikeFloat_co = ...,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def logistic(
 | 
						|
        self,
 | 
						|
        loc: _FloatLike_co = ...,
 | 
						|
        scale: _FloatLike_co = ...,
 | 
						|
        size: None = ...,
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def logistic(
 | 
						|
        self,
 | 
						|
        loc: _ArrayLikeFloat_co = ...,
 | 
						|
        scale: _ArrayLikeFloat_co = ...,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def lognormal(
 | 
						|
        self,
 | 
						|
        mean: _FloatLike_co = ...,
 | 
						|
        sigma: _FloatLike_co = ...,
 | 
						|
        size: None = ...,
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def lognormal(
 | 
						|
        self,
 | 
						|
        mean: _ArrayLikeFloat_co = ...,
 | 
						|
        sigma: _ArrayLikeFloat_co = ...,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def rayleigh(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def rayleigh(
 | 
						|
        self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def wald(
 | 
						|
        self, mean: _FloatLike_co, scale: _FloatLike_co, size: None = ...
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def wald(
 | 
						|
        self,
 | 
						|
        mean: _ArrayLikeFloat_co,
 | 
						|
        scale: _ArrayLikeFloat_co,
 | 
						|
        size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def triangular(
 | 
						|
        self,
 | 
						|
        left: _FloatLike_co,
 | 
						|
        mode: _FloatLike_co,
 | 
						|
        right: _FloatLike_co,
 | 
						|
        size: None = ...,
 | 
						|
    ) -> float: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def triangular(
 | 
						|
        self,
 | 
						|
        left: _ArrayLikeFloat_co,
 | 
						|
        mode: _ArrayLikeFloat_co,
 | 
						|
        right: _ArrayLikeFloat_co,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    @overload
 | 
						|
    def binomial(self, n: int, p: _FloatLike_co, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def binomial(
 | 
						|
        self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[int64]: ...
 | 
						|
    @overload
 | 
						|
    def negative_binomial(
 | 
						|
        self, n: _FloatLike_co, p: _FloatLike_co, size: None = ...
 | 
						|
    ) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def negative_binomial(
 | 
						|
        self,
 | 
						|
        n: _ArrayLikeFloat_co,
 | 
						|
        p: _ArrayLikeFloat_co,
 | 
						|
        size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[int64]: ...
 | 
						|
    @overload
 | 
						|
    def poisson(self, lam: _FloatLike_co = ..., size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def poisson(
 | 
						|
        self, lam: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[int64]: ...
 | 
						|
    @overload
 | 
						|
    def zipf(self, a: _FloatLike_co, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def zipf(
 | 
						|
        self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[int64]: ...
 | 
						|
    @overload
 | 
						|
    def geometric(self, p: _FloatLike_co, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def geometric(
 | 
						|
        self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[int64]: ...
 | 
						|
    @overload
 | 
						|
    def hypergeometric(
 | 
						|
        self, ngood: int, nbad: int, nsample: int, size: None = ...
 | 
						|
    ) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def hypergeometric(
 | 
						|
        self,
 | 
						|
        ngood: _ArrayLikeInt_co,
 | 
						|
        nbad: _ArrayLikeInt_co,
 | 
						|
        nsample: _ArrayLikeInt_co,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
    ) -> NDArray[int64]: ...
 | 
						|
    @overload
 | 
						|
    def logseries(self, p: _FloatLike_co, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
						|
    @overload
 | 
						|
    def logseries(
 | 
						|
        self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[int64]: ...
 | 
						|
    def multivariate_normal(
 | 
						|
        self,
 | 
						|
        mean: _ArrayLikeFloat_co,
 | 
						|
        cov: _ArrayLikeFloat_co,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
        check_valid: Literal["warn", "raise", "ignore"] = ...,
 | 
						|
        tol: float = ...,
 | 
						|
        *,
 | 
						|
        method: Literal["svd", "eigh", "cholesky"] = ...,
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    def multinomial(
 | 
						|
        self, n: _ArrayLikeInt_co,
 | 
						|
            pvals: _ArrayLikeFloat_co,
 | 
						|
            size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[int64]: ...
 | 
						|
    def multivariate_hypergeometric(
 | 
						|
        self,
 | 
						|
        colors: _ArrayLikeInt_co,
 | 
						|
        nsample: int,
 | 
						|
        size: _ShapeLike | None = ...,
 | 
						|
        method: Literal["marginals", "count"] = ...,
 | 
						|
    ) -> NDArray[int64]: ...
 | 
						|
    def dirichlet(
 | 
						|
        self, alpha: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
						|
    ) -> NDArray[float64]: ...
 | 
						|
    def permuted(
 | 
						|
        self, x: ArrayLike, *, axis: int | None = ..., out: NDArray[Any] | None = ...
 | 
						|
    ) -> NDArray[Any]: ...
 | 
						|
    def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ...
 | 
						|
 | 
						|
def default_rng(
 | 
						|
    seed: _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator | RandomState | None = ...
 | 
						|
) -> Generator: ...
 |