from collections.abc import ( Hashable, Sequence, ) from typing import ( Any, Literal, ) from matplotlib.axes import Axes from matplotlib.colors import Colormap from matplotlib.figure import Figure from matplotlib.table import Table import numpy as np from pandas.core.frame import DataFrame from pandas.core.series import Series from typing_extensions import TypeAlias from pandas._typing import ( HashableT, npt, ) _Color: TypeAlias = str | Sequence[float] def table( ax: Axes, data: DataFrame | Series, **kwargs, ) -> Table: ... def register() -> None: ... def deregister() -> None: ... def scatter_matrix( frame: DataFrame, alpha: float = 0.5, figsize: tuple[float, float] | None = None, ax: Axes | None = None, grid: bool = False, diagonal: Literal["hist", "kde"] = "hist", marker: str = ".", density_kwds: dict[str, Any] | None = None, hist_kwds: dict[str, Any] | None = None, range_padding: float = 0.05, **kwargs, ) -> npt.NDArray[np.object_]: ... def radviz( frame: DataFrame, class_column: Hashable, ax: Axes | None = None, color: _Color | Sequence[_Color] | None = None, colormap: str | Colormap | None = None, **kwds, ) -> Axes: ... def andrews_curves( frame: DataFrame, class_column: Hashable, ax: Axes | None = None, samples: int = 200, color: _Color | Sequence[_Color] | None = None, colormap: str | Colormap | None = None, **kwargs, ) -> Axes: ... def bootstrap_plot( series: Series, fig: Figure | None = None, size: int = 50, samples: int = 500, **kwds, ) -> Figure: ... def parallel_coordinates( frame: DataFrame, class_column: Hashable, cols: list[HashableT] | None = None, ax: Axes | None = None, color: _Color | Sequence[_Color] | None = None, use_columns: bool = False, xticks: Sequence[float] | None = None, colormap: str | Colormap | None = None, axvlines: bool = True, axvlines_kwds: dict[str, Any] | None = None, sort_labels: bool = False, **kwargs, ) -> Axes: ... def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Axes: ... def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwargs) -> Axes: ... plot_params: dict[str, Any]