refactor: clean up unused imports and improve code organization

This commit is contained in:
2025-09-13 09:29:08 +02:00
parent 7cbf75d6a8
commit 814f88932d
3 changed files with 42 additions and 40 deletions

View File

@ -2,10 +2,12 @@ import pandas as pd
import plotly.express as px
from dash import Dash, dcc, html
from dash.dependencies import Input, Output
import dash_bootstrap_components as dbc
from ..data.loader_gz import MTBFSchema
from . import ids
def render(app: Dash, data: pd.DataFrame) -> html.Div:
@app.callback(
Output(ids.BAR_CHART, "children"),
@ -17,32 +19,33 @@ def render(app: Dash, data: pd.DataFrame) -> html.Div:
],
)
def update_bar_chart(
years: list[str], weeks: list[str], hits_type: str, single_hitter_filter: list[str]
years: list[str], weeks: list[str], u_hits: bool, remove_single: bool
) -> html.Div:
filtered_data = data.query(
"year in @years and week in @weeks"
)
filtered_data = data.query("year in @years and week in @weeks")
if filtered_data.shape[0] == 0:
return html.Div("No data selected.")
if hits_type == "p-hits":
hits_col = MTBFSchema.P_HITS
else:
hits_col = MTBFSchema.U_HITS
hits_col = MTBFSchema.U_HITS if u_hits else MTBFSchema.P_HITS
hits_type = "U-Hits" if u_hits else "P-Hits"
# Count 'Y' values and create pareto
pareto_data = filtered_data[filtered_data[hits_col] == 'Y'].groupby(MTBFSchema.AIR).size().reset_index(name='count')
pareto_data = (
filtered_data[filtered_data[hits_col] == "Y"]
.groupby(MTBFSchema.AIR)
.size()
.reset_index(name="count")
)
if 'remove_single' in single_hitter_filter:
pareto_data = pareto_data[pareto_data['count'] > 1]
if remove_single:
pareto_data = pareto_data[pareto_data["count"] > 1]
pareto_data = pareto_data.sort_values('count', ascending=False)
pareto_data = pareto_data.sort_values("count", ascending=False)
fig = px.bar(
pareto_data,
x=MTBFSchema.AIR,
y="count",
title=f"{hits_type.capitalize()} per AIR (Pareto)",
title=f"{hits_type} per AIR (Pareto)",
labels={
MTBFSchema.AIR: "AIR",
"count": "Count",
@ -52,20 +55,15 @@ def render(app: Dash, data: pd.DataFrame) -> html.Div:
return html.Div(
children=[
dcc.RadioItems(
dbc.Switch(
id=ids.PU_HITS_SELECTOR,
options=[
{'label': 'P-Hits', 'value': 'p-hits'},
{'label': 'U-Hits', 'value': 'u-hits'},
],
value='p-hits',
labelStyle={'display': 'inline-block'}
label="P-Hits / U-Hits",
value=False,
),
dcc.Checklist(
dbc.Switch(
id=ids.SINGLE_HITTER_FILTER,
options=[{'label': 'Remove single hitters', 'value': 'remove_single'}],
value=[],
labelStyle={'display': 'inline-block'}
label="Remove single hitters",
value=False,
),
html.Div(id=ids.BAR_CHART),
]

View File

@ -7,6 +7,15 @@ import dash_bootstrap_components as dbc
from ..data.loader_gz import MTBFSchema
from . import ids
import pandas as pd
from dash import Dash, dcc, html, dash_table, Input, Output, State, callback_context
from datetime import datetime
import os
import dash_bootstrap_components as dbc
from ..data.loader_gz import MTBFSchema
from . import ids
def render(app: Dash, data: pd.DataFrame) -> html.Div:
@app.callback(
Output(ids.DATA_TABLE, "children"),
@ -18,7 +27,7 @@ def render(app: Dash, data: pd.DataFrame) -> html.Div:
],
)
def update_data_table(
years: list[str], weeks: list[str], hits_type: str, single_hitter_filter: list[str]
years: list[str], weeks: list[str], u_hits: bool, remove_single: bool
) -> html.Div:
filtered_data = data.query(
"year in @years and week in @weeks"
@ -26,10 +35,7 @@ def render(app: Dash, data: pd.DataFrame) -> html.Div:
if filtered_data.shape[0] == 0:
return html.Div("No data selected.")
if hits_type == "p-hits":
hits_col = MTBFSchema.P_HITS
else:
hits_col = MTBFSchema.U_HITS
hits_col = MTBFSchema.U_HITS if u_hits else MTBFSchema.P_HITS
# Count 'Y' values
hits_data = filtered_data[filtered_data[hits_col] == 'Y']
@ -40,10 +46,8 @@ def render(app: Dash, data: pd.DataFrame) -> html.Div:
close_notes=(MTBFSchema.CLOSE_NOTES, lambda x: ', '.join(x.dropna().astype(str).unique()))
).reset_index()
if 'remove_single' in single_hitter_filter:
if remove_single:
table_data = table_data[table_data['count'] > 1]
else:
table_data = table_data[table_data['count'] == 1]
table_data = table_data.sort_values('count', ascending=False)
@ -51,7 +55,7 @@ def render(app: Dash, data: pd.DataFrame) -> html.Div:
table_data = table_data[[MTBFSchema.AIR, 'air_issue_description', 'close_notes', 'count']]
return dash_table.DataTable(
id=ids.CATEGORY_TABLE, # Using this ID for feedback callbacks
id=ids.MTBF_PAR_TABLE, # Using this ID for feedback callbacks
data=table_data.to_dict("records"),
columns=[{"name": i, "id": i} for i in table_data.columns],
page_size=10,
@ -64,11 +68,11 @@ def render(app: Dash, data: pd.DataFrame) -> html.Div:
@app.callback(
Output(ids.FEEDBACK_MODAL, "is_open"),
Output(ids.FEEDBACK_MESSAGE, "children"),
Input(ids.CATEGORY_TABLE, "selected_rows"),
Input(ids.MTBF_PAR_TABLE, "selected_rows"),
Input(ids.SAVE_FEEDBACK_BUTTON_POPUP, "n_clicks"),
Input(ids.CLOSE_FEEDBACK_BUTTON_POPUP, "n_clicks"),
State(ids.FEEDBACK_MODAL, "is_open"),
State(ids.CATEGORY_TABLE, "data"),
State(ids.MTBF_PAR_TABLE, "data"),
State(ids.FEEDBACK_INPUT, "value"),
)
def handle_feedback_modal(selected_rows, save_clicks, close_clicks, is_open, table_data, comment):
@ -78,7 +82,7 @@ def render(app: Dash, data: pd.DataFrame) -> html.Div:
triggered_id = ctx.triggered[0]['prop_id'].split('.')[0]
if triggered_id == ids.CATEGORY_TABLE and selected_rows:
if triggered_id == ids.MTBF_PAR_TABLE and selected_rows:
return True, ""
if triggered_id == ids.SAVE_FEEDBACK_BUTTON_POPUP and selected_rows:
@ -107,8 +111,8 @@ def render(app: Dash, data: pd.DataFrame) -> html.Div:
@app.callback(
Output("feedback-category-label", "children"),
Input(ids.CATEGORY_TABLE, "selected_rows"),
State(ids.CATEGORY_TABLE, "data"),
Input(ids.MTBF_PAR_TABLE, "selected_rows"),
State(ids.MTBF_PAR_TABLE, "data"),
prevent_initial_call=True
)
def update_feedback_air_label(selected_rows, data):

View File

@ -11,7 +11,7 @@ SELECT_ALL_YEARS_BUTTON = "select-all-years-button"
WEEK_DROPDOWN = "week-dropdown"
SELECT_ALL_WEEKS_BUTTON = "select-all-weeks-button"
CATEGORY_TABLE = "category-table"
MTBF_PAR_TABLE = "mtbf-par-table"
FEEDBACK_INPUT = "feedback-input"
FEEDBACK_MESSAGE = "feedback-message"