done
This commit is contained in:
16
lib/python3.11/site-packages/plotly/matplotlylib/__init__.py
Normal file
16
lib/python3.11/site-packages/plotly/matplotlylib/__init__.py
Normal file
@ -0,0 +1,16 @@
|
||||
# ruff: noqa: F401
|
||||
|
||||
"""
|
||||
matplotlylib
|
||||
============
|
||||
|
||||
This module converts matplotlib figure objects into JSON structures which can
|
||||
be understood and visualized by Plotly.
|
||||
|
||||
Most of the functionality should be accessed through the parent directory's
|
||||
'tools' module or 'plotly' package.
|
||||
|
||||
"""
|
||||
|
||||
from plotly.matplotlylib.renderer import PlotlyRenderer
|
||||
from plotly.matplotlylib.mplexporter import Exporter
|
@ -0,0 +1,3 @@
|
||||
# ruff: noqa: F401
|
||||
from .renderers import Renderer
|
||||
from .exporter import Exporter
|
@ -0,0 +1,317 @@
|
||||
"""
|
||||
Matplotlib Exporter
|
||||
===================
|
||||
This submodule contains tools for crawling a matplotlib figure and exporting
|
||||
relevant pieces to a renderer.
|
||||
"""
|
||||
|
||||
import warnings
|
||||
import io
|
||||
from . import utils
|
||||
|
||||
import matplotlib
|
||||
from matplotlib import transforms
|
||||
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
||||
|
||||
|
||||
class Exporter(object):
|
||||
"""Matplotlib Exporter
|
||||
|
||||
Parameters
|
||||
----------
|
||||
renderer : Renderer object
|
||||
The renderer object called by the exporter to create a figure
|
||||
visualization. See mplexporter.Renderer for information on the
|
||||
methods which should be defined within the renderer.
|
||||
close_mpl : bool
|
||||
If True (default), close the matplotlib figure as it is rendered. This
|
||||
is useful for when the exporter is used within the notebook, or with
|
||||
an interactive matplotlib backend.
|
||||
"""
|
||||
|
||||
def __init__(self, renderer, close_mpl=True):
|
||||
self.close_mpl = close_mpl
|
||||
self.renderer = renderer
|
||||
|
||||
def run(self, fig):
|
||||
"""
|
||||
Run the exporter on the given figure
|
||||
|
||||
Parmeters
|
||||
---------
|
||||
fig : matplotlib.Figure instance
|
||||
The figure to export
|
||||
"""
|
||||
# Calling savefig executes the draw() command, putting elements
|
||||
# in the correct place.
|
||||
if fig.canvas is None:
|
||||
FigureCanvasAgg(fig)
|
||||
fig.savefig(io.BytesIO(), format="png", dpi=fig.dpi)
|
||||
if self.close_mpl:
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.close(fig)
|
||||
self.crawl_fig(fig)
|
||||
|
||||
@staticmethod
|
||||
def process_transform(
|
||||
transform, ax=None, data=None, return_trans=False, force_trans=None
|
||||
):
|
||||
"""Process the transform and convert data to figure or data coordinates
|
||||
|
||||
Parameters
|
||||
----------
|
||||
transform : matplotlib Transform object
|
||||
The transform applied to the data
|
||||
ax : matplotlib Axes object (optional)
|
||||
The axes the data is associated with
|
||||
data : ndarray (optional)
|
||||
The array of data to be transformed.
|
||||
return_trans : bool (optional)
|
||||
If true, return the final transform of the data
|
||||
force_trans : matplotlib.transform instance (optional)
|
||||
If supplied, first force the data to this transform
|
||||
|
||||
Returns
|
||||
-------
|
||||
code : string
|
||||
Code is either "data", "axes", "figure", or "display", indicating
|
||||
the type of coordinates output.
|
||||
transform : matplotlib transform
|
||||
the transform used to map input data to output data.
|
||||
Returned only if return_trans is True
|
||||
new_data : ndarray
|
||||
Data transformed to match the given coordinate code.
|
||||
Returned only if data is specified
|
||||
"""
|
||||
if isinstance(transform, transforms.BlendedGenericTransform):
|
||||
warnings.warn(
|
||||
"Blended transforms not yet supported. "
|
||||
"Zoom behavior may not work as expected."
|
||||
)
|
||||
|
||||
if force_trans is not None:
|
||||
if data is not None:
|
||||
data = (transform - force_trans).transform(data)
|
||||
transform = force_trans
|
||||
|
||||
code = "display"
|
||||
if ax is not None:
|
||||
for c, trans in [
|
||||
("data", ax.transData),
|
||||
("axes", ax.transAxes),
|
||||
("figure", ax.figure.transFigure),
|
||||
("display", transforms.IdentityTransform()),
|
||||
]:
|
||||
if transform.contains_branch(trans):
|
||||
code, transform = (c, transform - trans)
|
||||
break
|
||||
|
||||
if data is not None:
|
||||
if return_trans:
|
||||
return code, transform.transform(data), transform
|
||||
else:
|
||||
return code, transform.transform(data)
|
||||
else:
|
||||
if return_trans:
|
||||
return code, transform
|
||||
else:
|
||||
return code
|
||||
|
||||
def crawl_fig(self, fig):
|
||||
"""Crawl the figure and process all axes"""
|
||||
with self.renderer.draw_figure(fig=fig, props=utils.get_figure_properties(fig)):
|
||||
for ax in fig.axes:
|
||||
self.crawl_ax(ax)
|
||||
|
||||
def crawl_ax(self, ax):
|
||||
"""Crawl the axes and process all elements within"""
|
||||
with self.renderer.draw_axes(ax=ax, props=utils.get_axes_properties(ax)):
|
||||
for line in ax.lines:
|
||||
self.draw_line(ax, line)
|
||||
for text in ax.texts:
|
||||
self.draw_text(ax, text)
|
||||
for text, ttp in zip(
|
||||
[ax.xaxis.label, ax.yaxis.label, ax.title],
|
||||
["xlabel", "ylabel", "title"],
|
||||
):
|
||||
if hasattr(text, "get_text") and text.get_text():
|
||||
self.draw_text(ax, text, force_trans=ax.transAxes, text_type=ttp)
|
||||
for artist in ax.artists:
|
||||
# TODO: process other artists
|
||||
if isinstance(artist, matplotlib.text.Text):
|
||||
self.draw_text(ax, artist)
|
||||
for patch in ax.patches:
|
||||
self.draw_patch(ax, patch)
|
||||
for collection in ax.collections:
|
||||
self.draw_collection(ax, collection)
|
||||
for image in ax.images:
|
||||
self.draw_image(ax, image)
|
||||
|
||||
legend = ax.get_legend()
|
||||
if legend is not None:
|
||||
props = utils.get_legend_properties(ax, legend)
|
||||
with self.renderer.draw_legend(legend=legend, props=props):
|
||||
if props["visible"]:
|
||||
self.crawl_legend(ax, legend)
|
||||
|
||||
def crawl_legend(self, ax, legend):
|
||||
"""
|
||||
Recursively look through objects in legend children
|
||||
"""
|
||||
legendElements = list(
|
||||
utils.iter_all_children(legend._legend_box, skipContainers=True)
|
||||
)
|
||||
legendElements.append(legend.legendPatch)
|
||||
for child in legendElements:
|
||||
# force a large zorder so it appears on top
|
||||
child.set_zorder(1e6 + child.get_zorder())
|
||||
|
||||
# reorder border box to make sure marks are visible
|
||||
if isinstance(child, matplotlib.patches.FancyBboxPatch):
|
||||
child.set_zorder(child.get_zorder() - 1)
|
||||
|
||||
try:
|
||||
# What kind of object...
|
||||
if isinstance(child, matplotlib.patches.Patch):
|
||||
self.draw_patch(ax, child, force_trans=ax.transAxes)
|
||||
elif isinstance(child, matplotlib.text.Text):
|
||||
if child.get_text() != "None":
|
||||
self.draw_text(ax, child, force_trans=ax.transAxes)
|
||||
elif isinstance(child, matplotlib.lines.Line2D):
|
||||
self.draw_line(ax, child, force_trans=ax.transAxes)
|
||||
elif isinstance(child, matplotlib.collections.Collection):
|
||||
self.draw_collection(ax, child, force_pathtrans=ax.transAxes)
|
||||
else:
|
||||
warnings.warn("Legend element %s not impemented" % child)
|
||||
except NotImplementedError:
|
||||
warnings.warn("Legend element %s not impemented" % child)
|
||||
|
||||
def draw_line(self, ax, line, force_trans=None):
|
||||
"""Process a matplotlib line and call renderer.draw_line"""
|
||||
coordinates, data = self.process_transform(
|
||||
line.get_transform(), ax, line.get_xydata(), force_trans=force_trans
|
||||
)
|
||||
linestyle = utils.get_line_style(line)
|
||||
if linestyle["dasharray"] is None and linestyle["drawstyle"] == "default":
|
||||
linestyle = None
|
||||
markerstyle = utils.get_marker_style(line)
|
||||
if (
|
||||
markerstyle["marker"] in ["None", "none", None]
|
||||
or markerstyle["markerpath"][0].size == 0
|
||||
):
|
||||
markerstyle = None
|
||||
label = line.get_label()
|
||||
if markerstyle or linestyle:
|
||||
self.renderer.draw_marked_line(
|
||||
data=data,
|
||||
coordinates=coordinates,
|
||||
linestyle=linestyle,
|
||||
markerstyle=markerstyle,
|
||||
label=label,
|
||||
mplobj=line,
|
||||
)
|
||||
|
||||
def draw_text(self, ax, text, force_trans=None, text_type=None):
|
||||
"""Process a matplotlib text object and call renderer.draw_text"""
|
||||
content = text.get_text()
|
||||
if content:
|
||||
transform = text.get_transform()
|
||||
position = text.get_position()
|
||||
coords, position = self.process_transform(
|
||||
transform, ax, position, force_trans=force_trans
|
||||
)
|
||||
style = utils.get_text_style(text)
|
||||
self.renderer.draw_text(
|
||||
text=content,
|
||||
position=position,
|
||||
coordinates=coords,
|
||||
text_type=text_type,
|
||||
style=style,
|
||||
mplobj=text,
|
||||
)
|
||||
|
||||
def draw_patch(self, ax, patch, force_trans=None):
|
||||
"""Process a matplotlib patch object and call renderer.draw_path"""
|
||||
vertices, pathcodes = utils.SVG_path(patch.get_path())
|
||||
transform = patch.get_transform()
|
||||
coordinates, vertices = self.process_transform(
|
||||
transform, ax, vertices, force_trans=force_trans
|
||||
)
|
||||
linestyle = utils.get_path_style(patch, fill=patch.get_fill())
|
||||
self.renderer.draw_path(
|
||||
data=vertices,
|
||||
coordinates=coordinates,
|
||||
pathcodes=pathcodes,
|
||||
style=linestyle,
|
||||
mplobj=patch,
|
||||
)
|
||||
|
||||
def draw_collection(
|
||||
self, ax, collection, force_pathtrans=None, force_offsettrans=None
|
||||
):
|
||||
"""Process a matplotlib collection and call renderer.draw_collection"""
|
||||
(transform, transOffset, offsets, paths) = collection._prepare_points()
|
||||
|
||||
offset_coords, offsets = self.process_transform(
|
||||
transOffset, ax, offsets, force_trans=force_offsettrans
|
||||
)
|
||||
path_coords = self.process_transform(transform, ax, force_trans=force_pathtrans)
|
||||
|
||||
processed_paths = [utils.SVG_path(path) for path in paths]
|
||||
processed_paths = [
|
||||
(
|
||||
self.process_transform(
|
||||
transform, ax, path[0], force_trans=force_pathtrans
|
||||
)[1],
|
||||
path[1],
|
||||
)
|
||||
for path in processed_paths
|
||||
]
|
||||
|
||||
path_transforms = collection.get_transforms()
|
||||
try:
|
||||
# matplotlib 1.3: path_transforms are transform objects.
|
||||
# Convert them to numpy arrays.
|
||||
path_transforms = [t.get_matrix() for t in path_transforms]
|
||||
except AttributeError:
|
||||
# matplotlib 1.4: path transforms are already numpy arrays.
|
||||
pass
|
||||
|
||||
styles = {
|
||||
"linewidth": collection.get_linewidths(),
|
||||
"facecolor": collection.get_facecolors(),
|
||||
"edgecolor": collection.get_edgecolors(),
|
||||
"alpha": collection._alpha,
|
||||
"zorder": collection.get_zorder(),
|
||||
}
|
||||
|
||||
# TODO: When matplotlib's minimum version is bumped to 3.8, this can be
|
||||
# simplified since collection.get_offset_position no longer exists.
|
||||
offset_dict = {"data": "before", "screen": "after"}
|
||||
offset_order = (
|
||||
offset_dict[collection.get_offset_position()]
|
||||
if hasattr(collection, "get_offset_position")
|
||||
else "after"
|
||||
)
|
||||
|
||||
self.renderer.draw_path_collection(
|
||||
paths=processed_paths,
|
||||
path_coordinates=path_coords,
|
||||
path_transforms=path_transforms,
|
||||
offsets=offsets,
|
||||
offset_coordinates=offset_coords,
|
||||
offset_order=offset_order,
|
||||
styles=styles,
|
||||
mplobj=collection,
|
||||
)
|
||||
|
||||
def draw_image(self, ax, image):
|
||||
"""Process a matplotlib image object and call renderer.draw_image"""
|
||||
self.renderer.draw_image(
|
||||
imdata=utils.image_to_base64(image),
|
||||
extent=image.get_extent(),
|
||||
coordinates="data",
|
||||
style={"alpha": image.get_alpha(), "zorder": image.get_zorder()},
|
||||
mplobj=image,
|
||||
)
|
@ -0,0 +1,14 @@
|
||||
# ruff: noqa F401
|
||||
|
||||
"""
|
||||
Matplotlib Renderers
|
||||
====================
|
||||
This submodule contains renderer objects which define renderer behavior used
|
||||
within the Exporter class. The base renderer class is :class:`Renderer`, an
|
||||
abstract base class
|
||||
"""
|
||||
|
||||
from .base import Renderer
|
||||
from .vega_renderer import VegaRenderer, fig_to_vega
|
||||
from .vincent_renderer import VincentRenderer, fig_to_vincent
|
||||
from .fake_renderer import FakeRenderer, FullFakeRenderer
|
@ -0,0 +1,428 @@
|
||||
import warnings
|
||||
import itertools
|
||||
from contextlib import contextmanager
|
||||
from packaging.version import Version
|
||||
|
||||
import numpy as np
|
||||
import matplotlib as mpl
|
||||
from matplotlib import transforms
|
||||
|
||||
from .. import utils
|
||||
|
||||
|
||||
class Renderer(object):
|
||||
@staticmethod
|
||||
def ax_zoomable(ax):
|
||||
return bool(ax and ax.get_navigate())
|
||||
|
||||
@staticmethod
|
||||
def ax_has_xgrid(ax):
|
||||
return bool(ax and ax.xaxis._gridOnMajor and ax.yaxis.get_gridlines())
|
||||
|
||||
@staticmethod
|
||||
def ax_has_ygrid(ax):
|
||||
return bool(ax and ax.yaxis._gridOnMajor and ax.yaxis.get_gridlines())
|
||||
|
||||
@property
|
||||
def current_ax_zoomable(self):
|
||||
return self.ax_zoomable(self._current_ax)
|
||||
|
||||
@property
|
||||
def current_ax_has_xgrid(self):
|
||||
return self.ax_has_xgrid(self._current_ax)
|
||||
|
||||
@property
|
||||
def current_ax_has_ygrid(self):
|
||||
return self.ax_has_ygrid(self._current_ax)
|
||||
|
||||
@contextmanager
|
||||
def draw_figure(self, fig, props):
|
||||
if hasattr(self, "_current_fig") and self._current_fig is not None:
|
||||
warnings.warn("figure embedded in figure: something is wrong")
|
||||
self._current_fig = fig
|
||||
self._fig_props = props
|
||||
self.open_figure(fig=fig, props=props)
|
||||
yield
|
||||
self.close_figure(fig=fig)
|
||||
self._current_fig = None
|
||||
self._fig_props = {}
|
||||
|
||||
@contextmanager
|
||||
def draw_axes(self, ax, props):
|
||||
if hasattr(self, "_current_ax") and self._current_ax is not None:
|
||||
warnings.warn("axes embedded in axes: something is wrong")
|
||||
self._current_ax = ax
|
||||
self._ax_props = props
|
||||
self.open_axes(ax=ax, props=props)
|
||||
yield
|
||||
self.close_axes(ax=ax)
|
||||
self._current_ax = None
|
||||
self._ax_props = {}
|
||||
|
||||
@contextmanager
|
||||
def draw_legend(self, legend, props):
|
||||
self._current_legend = legend
|
||||
self._legend_props = props
|
||||
self.open_legend(legend=legend, props=props)
|
||||
yield
|
||||
self.close_legend(legend=legend)
|
||||
self._current_legend = None
|
||||
self._legend_props = {}
|
||||
|
||||
# Following are the functions which should be overloaded in subclasses
|
||||
|
||||
def open_figure(self, fig, props):
|
||||
"""
|
||||
Begin commands for a particular figure.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fig : matplotlib.Figure
|
||||
The Figure which will contain the ensuing axes and elements
|
||||
props : dictionary
|
||||
The dictionary of figure properties
|
||||
"""
|
||||
pass
|
||||
|
||||
def close_figure(self, fig):
|
||||
"""
|
||||
Finish commands for a particular figure.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fig : matplotlib.Figure
|
||||
The figure which is finished being drawn.
|
||||
"""
|
||||
pass
|
||||
|
||||
def open_axes(self, ax, props):
|
||||
"""
|
||||
Begin commands for a particular axes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ax : matplotlib.Axes
|
||||
The Axes which will contain the ensuing axes and elements
|
||||
props : dictionary
|
||||
The dictionary of axes properties
|
||||
"""
|
||||
pass
|
||||
|
||||
def close_axes(self, ax):
|
||||
"""
|
||||
Finish commands for a particular axes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ax : matplotlib.Axes
|
||||
The Axes which is finished being drawn.
|
||||
"""
|
||||
pass
|
||||
|
||||
def open_legend(self, legend, props):
|
||||
"""
|
||||
Beging commands for a particular legend.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
legend : matplotlib.legend.Legend
|
||||
The Legend that will contain the ensuing elements
|
||||
props : dictionary
|
||||
The dictionary of legend properties
|
||||
"""
|
||||
pass
|
||||
|
||||
def close_legend(self, legend):
|
||||
"""
|
||||
Finish commands for a particular legend.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
legend : matplotlib.legend.Legend
|
||||
The Legend which is finished being drawn
|
||||
"""
|
||||
pass
|
||||
|
||||
def draw_marked_line(
|
||||
self, data, coordinates, linestyle, markerstyle, label, mplobj=None
|
||||
):
|
||||
"""Draw a line that also has markers.
|
||||
|
||||
If this isn't reimplemented by a renderer object, by default, it will
|
||||
make a call to BOTH draw_line and draw_markers when both markerstyle
|
||||
and linestyle are not None in the same Line2D object.
|
||||
|
||||
"""
|
||||
if linestyle is not None:
|
||||
self.draw_line(data, coordinates, linestyle, label, mplobj)
|
||||
if markerstyle is not None:
|
||||
self.draw_markers(data, coordinates, markerstyle, label, mplobj)
|
||||
|
||||
def draw_line(self, data, coordinates, style, label, mplobj=None):
|
||||
"""
|
||||
Draw a line. By default, draw the line via the draw_path() command.
|
||||
Some renderers might wish to override this and provide more
|
||||
fine-grained behavior.
|
||||
|
||||
In matplotlib, lines are generally created via the plt.plot() command,
|
||||
though this command also can create marker collections.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : array_like
|
||||
A shape (N, 2) array of datapoints.
|
||||
coordinates : string
|
||||
A string code, which should be either 'data' for data coordinates,
|
||||
or 'figure' for figure (pixel) coordinates.
|
||||
style : dictionary
|
||||
a dictionary specifying the appearance of the line.
|
||||
mplobj : matplotlib object
|
||||
the matplotlib plot element which generated this line
|
||||
"""
|
||||
pathcodes = ["M"] + (data.shape[0] - 1) * ["L"]
|
||||
pathstyle = dict(facecolor="none", **style)
|
||||
pathstyle["edgecolor"] = pathstyle.pop("color")
|
||||
pathstyle["edgewidth"] = pathstyle.pop("linewidth")
|
||||
self.draw_path(
|
||||
data=data,
|
||||
coordinates=coordinates,
|
||||
pathcodes=pathcodes,
|
||||
style=pathstyle,
|
||||
mplobj=mplobj,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _iter_path_collection(paths, path_transforms, offsets, styles):
|
||||
"""Build an iterator over the elements of the path collection"""
|
||||
N = max(len(paths), len(offsets))
|
||||
|
||||
# Before mpl 1.4.0, path_transform can be a false-y value, not a valid
|
||||
# transformation matrix.
|
||||
if Version(mpl.__version__) < Version("1.4.0"):
|
||||
if path_transforms is None:
|
||||
path_transforms = [np.eye(3)]
|
||||
|
||||
edgecolor = styles["edgecolor"]
|
||||
if np.size(edgecolor) == 0:
|
||||
edgecolor = ["none"]
|
||||
facecolor = styles["facecolor"]
|
||||
if np.size(facecolor) == 0:
|
||||
facecolor = ["none"]
|
||||
|
||||
elements = [
|
||||
paths,
|
||||
path_transforms,
|
||||
offsets,
|
||||
edgecolor,
|
||||
styles["linewidth"],
|
||||
facecolor,
|
||||
]
|
||||
|
||||
it = itertools
|
||||
return it.islice(zip(*map(it.cycle, elements)), N)
|
||||
|
||||
def draw_path_collection(
|
||||
self,
|
||||
paths,
|
||||
path_coordinates,
|
||||
path_transforms,
|
||||
offsets,
|
||||
offset_coordinates,
|
||||
offset_order,
|
||||
styles,
|
||||
mplobj=None,
|
||||
):
|
||||
"""
|
||||
Draw a collection of paths. The paths, offsets, and styles are all
|
||||
iterables, and the number of paths is max(len(paths), len(offsets)).
|
||||
|
||||
By default, this is implemented via multiple calls to the draw_path()
|
||||
function. For efficiency, Renderers may choose to customize this
|
||||
implementation.
|
||||
|
||||
Examples of path collections created by matplotlib are scatter plots,
|
||||
histograms, contour plots, and many others.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
paths : list
|
||||
list of tuples, where each tuple has two elements:
|
||||
(data, pathcodes). See draw_path() for a description of these.
|
||||
path_coordinates: string
|
||||
the coordinates code for the paths, which should be either
|
||||
'data' for data coordinates, or 'figure' for figure (pixel)
|
||||
coordinates.
|
||||
path_transforms: array_like
|
||||
an array of shape (*, 3, 3), giving a series of 2D Affine
|
||||
transforms for the paths. These encode translations, rotations,
|
||||
and scalings in the standard way.
|
||||
offsets: array_like
|
||||
An array of offsets of shape (N, 2)
|
||||
offset_coordinates : string
|
||||
the coordinates code for the offsets, which should be either
|
||||
'data' for data coordinates, or 'figure' for figure (pixel)
|
||||
coordinates.
|
||||
offset_order : string
|
||||
either "before" or "after". This specifies whether the offset
|
||||
is applied before the path transform, or after. The matplotlib
|
||||
backend equivalent is "before"->"data", "after"->"screen".
|
||||
styles: dictionary
|
||||
A dictionary in which each value is a list of length N, containing
|
||||
the style(s) for the paths.
|
||||
mplobj : matplotlib object
|
||||
the matplotlib plot element which generated this collection
|
||||
"""
|
||||
if offset_order == "before":
|
||||
raise NotImplementedError("offset before transform")
|
||||
|
||||
for tup in self._iter_path_collection(paths, path_transforms, offsets, styles):
|
||||
(path, path_transform, offset, ec, lw, fc) = tup
|
||||
vertices, pathcodes = path
|
||||
path_transform = transforms.Affine2D(path_transform)
|
||||
vertices = path_transform.transform(vertices)
|
||||
# This is a hack:
|
||||
if path_coordinates == "figure":
|
||||
path_coordinates = "points"
|
||||
style = {
|
||||
"edgecolor": utils.export_color(ec),
|
||||
"facecolor": utils.export_color(fc),
|
||||
"edgewidth": lw,
|
||||
"dasharray": "10,0",
|
||||
"alpha": styles["alpha"],
|
||||
"zorder": styles["zorder"],
|
||||
}
|
||||
self.draw_path(
|
||||
data=vertices,
|
||||
coordinates=path_coordinates,
|
||||
pathcodes=pathcodes,
|
||||
style=style,
|
||||
offset=offset,
|
||||
offset_coordinates=offset_coordinates,
|
||||
mplobj=mplobj,
|
||||
)
|
||||
|
||||
def draw_markers(self, data, coordinates, style, label, mplobj=None):
|
||||
"""
|
||||
Draw a set of markers. By default, this is done by repeatedly
|
||||
calling draw_path(), but renderers should generally overload
|
||||
this method to provide a more efficient implementation.
|
||||
|
||||
In matplotlib, markers are created using the plt.plot() command.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : array_like
|
||||
A shape (N, 2) array of datapoints.
|
||||
coordinates : string
|
||||
A string code, which should be either 'data' for data coordinates,
|
||||
or 'figure' for figure (pixel) coordinates.
|
||||
style : dictionary
|
||||
a dictionary specifying the appearance of the markers.
|
||||
mplobj : matplotlib object
|
||||
the matplotlib plot element which generated this marker collection
|
||||
"""
|
||||
vertices, pathcodes = style["markerpath"]
|
||||
pathstyle = dict(
|
||||
(key, style[key])
|
||||
for key in ["alpha", "edgecolor", "facecolor", "zorder", "edgewidth"]
|
||||
)
|
||||
pathstyle["dasharray"] = "10,0"
|
||||
for vertex in data:
|
||||
self.draw_path(
|
||||
data=vertices,
|
||||
coordinates="points",
|
||||
pathcodes=pathcodes,
|
||||
style=pathstyle,
|
||||
offset=vertex,
|
||||
offset_coordinates=coordinates,
|
||||
mplobj=mplobj,
|
||||
)
|
||||
|
||||
def draw_text(
|
||||
self, text, position, coordinates, style, text_type=None, mplobj=None
|
||||
):
|
||||
"""
|
||||
Draw text on the image.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
text : string
|
||||
The text to draw
|
||||
position : tuple
|
||||
The (x, y) position of the text
|
||||
coordinates : string
|
||||
A string code, which should be either 'data' for data coordinates,
|
||||
or 'figure' for figure (pixel) coordinates.
|
||||
style : dictionary
|
||||
a dictionary specifying the appearance of the text.
|
||||
text_type : string or None
|
||||
if specified, a type of text such as "xlabel", "ylabel", "title"
|
||||
mplobj : matplotlib object
|
||||
the matplotlib plot element which generated this text
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def draw_path(
|
||||
self,
|
||||
data,
|
||||
coordinates,
|
||||
pathcodes,
|
||||
style,
|
||||
offset=None,
|
||||
offset_coordinates="data",
|
||||
mplobj=None,
|
||||
):
|
||||
"""
|
||||
Draw a path.
|
||||
|
||||
In matplotlib, paths are created by filled regions, histograms,
|
||||
contour plots, patches, etc.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : array_like
|
||||
A shape (N, 2) array of datapoints.
|
||||
coordinates : string
|
||||
A string code, which should be either 'data' for data coordinates,
|
||||
'figure' for figure (pixel) coordinates, or "points" for raw
|
||||
point coordinates (useful in conjunction with offsets, below).
|
||||
pathcodes : list
|
||||
A list of single-character SVG pathcodes associated with the data.
|
||||
Path codes are one of ['M', 'm', 'L', 'l', 'Q', 'q', 'T', 't',
|
||||
'S', 's', 'C', 'c', 'Z', 'z']
|
||||
See the SVG specification for details. Note that some path codes
|
||||
consume more than one datapoint (while 'Z' consumes none), so
|
||||
in general, the length of the pathcodes list will not be the same
|
||||
as that of the data array.
|
||||
style : dictionary
|
||||
a dictionary specifying the appearance of the line.
|
||||
offset : list (optional)
|
||||
the (x, y) offset of the path. If not given, no offset will
|
||||
be used.
|
||||
offset_coordinates : string (optional)
|
||||
A string code, which should be either 'data' for data coordinates,
|
||||
or 'figure' for figure (pixel) coordinates.
|
||||
mplobj : matplotlib object
|
||||
the matplotlib plot element which generated this path
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def draw_image(self, imdata, extent, coordinates, style, mplobj=None):
|
||||
"""
|
||||
Draw an image.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
imdata : string
|
||||
base64 encoded png representation of the image
|
||||
extent : list
|
||||
the axes extent of the image: [xmin, xmax, ymin, ymax]
|
||||
coordinates: string
|
||||
A string code, which should be either 'data' for data coordinates,
|
||||
or 'figure' for figure (pixel) coordinates.
|
||||
style : dictionary
|
||||
a dictionary specifying the appearance of the image
|
||||
mplobj : matplotlib object
|
||||
the matplotlib plot object which generated this image
|
||||
"""
|
||||
raise NotImplementedError()
|
@ -0,0 +1,88 @@
|
||||
from .base import Renderer
|
||||
|
||||
|
||||
class FakeRenderer(Renderer):
|
||||
"""
|
||||
Fake Renderer
|
||||
|
||||
This is a fake renderer which simply outputs a text tree representing the
|
||||
elements found in the plot(s). This is used in the unit tests for the
|
||||
package.
|
||||
|
||||
Below are the methods your renderer must implement. You are free to do
|
||||
anything you wish within the renderer (i.e. build an XML or JSON
|
||||
representation, call an external API, etc.) Here the renderer just
|
||||
builds a simple string representation for testing purposes.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.output = ""
|
||||
|
||||
def open_figure(self, fig, props):
|
||||
self.output += "opening figure\n"
|
||||
|
||||
def close_figure(self, fig):
|
||||
self.output += "closing figure\n"
|
||||
|
||||
def open_axes(self, ax, props):
|
||||
self.output += " opening axes\n"
|
||||
|
||||
def close_axes(self, ax):
|
||||
self.output += " closing axes\n"
|
||||
|
||||
def open_legend(self, legend, props):
|
||||
self.output += " opening legend\n"
|
||||
|
||||
def close_legend(self, legend):
|
||||
self.output += " closing legend\n"
|
||||
|
||||
def draw_text(
|
||||
self, text, position, coordinates, style, text_type=None, mplobj=None
|
||||
):
|
||||
self.output += " draw text '{0}' {1}\n".format(text, text_type)
|
||||
|
||||
def draw_path(
|
||||
self,
|
||||
data,
|
||||
coordinates,
|
||||
pathcodes,
|
||||
style,
|
||||
offset=None,
|
||||
offset_coordinates="data",
|
||||
mplobj=None,
|
||||
):
|
||||
self.output += " draw path with {0} vertices\n".format(data.shape[0])
|
||||
|
||||
def draw_image(self, imdata, extent, coordinates, style, mplobj=None):
|
||||
self.output += " draw image of size {0}\n".format(len(imdata))
|
||||
|
||||
|
||||
class FullFakeRenderer(FakeRenderer):
|
||||
"""
|
||||
Renderer with the full complement of methods.
|
||||
|
||||
When the following are left undefined, they will be implemented via
|
||||
other methods in the class. They can be defined explicitly for
|
||||
more efficient or specialized use within the renderer implementation.
|
||||
"""
|
||||
|
||||
def draw_line(self, data, coordinates, style, label, mplobj=None):
|
||||
self.output += " draw line with {0} points\n".format(data.shape[0])
|
||||
|
||||
def draw_markers(self, data, coordinates, style, label, mplobj=None):
|
||||
self.output += " draw {0} markers\n".format(data.shape[0])
|
||||
|
||||
def draw_path_collection(
|
||||
self,
|
||||
paths,
|
||||
path_coordinates,
|
||||
path_transforms,
|
||||
offsets,
|
||||
offset_coordinates,
|
||||
offset_order,
|
||||
styles,
|
||||
mplobj=None,
|
||||
):
|
||||
self.output += " draw path collection with {0} offsets\n".format(
|
||||
offsets.shape[0]
|
||||
)
|
@ -0,0 +1,155 @@
|
||||
import warnings
|
||||
import json
|
||||
import random
|
||||
from .base import Renderer
|
||||
from ..exporter import Exporter
|
||||
|
||||
|
||||
class VegaRenderer(Renderer):
|
||||
def open_figure(self, fig, props):
|
||||
self.props = props
|
||||
self.figwidth = int(props["figwidth"] * props["dpi"])
|
||||
self.figheight = int(props["figheight"] * props["dpi"])
|
||||
self.data = []
|
||||
self.scales = []
|
||||
self.axes = []
|
||||
self.marks = []
|
||||
|
||||
def open_axes(self, ax, props):
|
||||
if len(self.axes) > 0:
|
||||
warnings.warn("multiple axes not yet supported")
|
||||
self.axes = [
|
||||
dict(type="x", scale="x", ticks=10),
|
||||
dict(type="y", scale="y", ticks=10),
|
||||
]
|
||||
self.scales = [
|
||||
dict(
|
||||
name="x",
|
||||
domain=props["xlim"],
|
||||
type="linear",
|
||||
range="width",
|
||||
),
|
||||
dict(
|
||||
name="y",
|
||||
domain=props["ylim"],
|
||||
type="linear",
|
||||
range="height",
|
||||
),
|
||||
]
|
||||
|
||||
def draw_line(self, data, coordinates, style, label, mplobj=None):
|
||||
if coordinates != "data":
|
||||
warnings.warn("Only data coordinates supported. Skipping this")
|
||||
dataname = "table{0:03d}".format(len(self.data) + 1)
|
||||
|
||||
# TODO: respect the other style settings
|
||||
self.data.append(
|
||||
{"name": dataname, "values": [dict(x=d[0], y=d[1]) for d in data]}
|
||||
)
|
||||
self.marks.append(
|
||||
{
|
||||
"type": "line",
|
||||
"from": {"data": dataname},
|
||||
"properties": {
|
||||
"enter": {
|
||||
"interpolate": {"value": "monotone"},
|
||||
"x": {"scale": "x", "field": "data.x"},
|
||||
"y": {"scale": "y", "field": "data.y"},
|
||||
"stroke": {"value": style["color"]},
|
||||
"strokeOpacity": {"value": style["alpha"]},
|
||||
"strokeWidth": {"value": style["linewidth"]},
|
||||
}
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
def draw_markers(self, data, coordinates, style, label, mplobj=None):
|
||||
if coordinates != "data":
|
||||
warnings.warn("Only data coordinates supported. Skipping this")
|
||||
dataname = "table{0:03d}".format(len(self.data) + 1)
|
||||
|
||||
# TODO: respect the other style settings
|
||||
self.data.append(
|
||||
{"name": dataname, "values": [dict(x=d[0], y=d[1]) for d in data]}
|
||||
)
|
||||
self.marks.append(
|
||||
{
|
||||
"type": "symbol",
|
||||
"from": {"data": dataname},
|
||||
"properties": {
|
||||
"enter": {
|
||||
"interpolate": {"value": "monotone"},
|
||||
"x": {"scale": "x", "field": "data.x"},
|
||||
"y": {"scale": "y", "field": "data.y"},
|
||||
"fill": {"value": style["facecolor"]},
|
||||
"fillOpacity": {"value": style["alpha"]},
|
||||
"stroke": {"value": style["edgecolor"]},
|
||||
"strokeOpacity": {"value": style["alpha"]},
|
||||
"strokeWidth": {"value": style["edgewidth"]},
|
||||
}
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
def draw_text(
|
||||
self, text, position, coordinates, style, text_type=None, mplobj=None
|
||||
):
|
||||
if text_type == "xlabel":
|
||||
self.axes[0]["title"] = text
|
||||
elif text_type == "ylabel":
|
||||
self.axes[1]["title"] = text
|
||||
|
||||
|
||||
class VegaHTML(object):
|
||||
def __init__(self, renderer):
|
||||
self.specification = dict(
|
||||
width=renderer.figwidth,
|
||||
height=renderer.figheight,
|
||||
data=renderer.data,
|
||||
scales=renderer.scales,
|
||||
axes=renderer.axes,
|
||||
marks=renderer.marks,
|
||||
)
|
||||
|
||||
def html(self):
|
||||
"""Build the HTML representation for IPython."""
|
||||
id = random.randint(0, 2**16)
|
||||
html = '<div id="vis%d"></div>' % id
|
||||
html += "<script>\n"
|
||||
html += VEGA_TEMPLATE % (json.dumps(self.specification), id)
|
||||
html += "</script>\n"
|
||||
return html
|
||||
|
||||
def _repr_html_(self):
|
||||
return self.html()
|
||||
|
||||
|
||||
def fig_to_vega(fig, notebook=False):
|
||||
"""Convert a matplotlib figure to vega dictionary
|
||||
|
||||
if notebook=True, then return an object which will display in a notebook
|
||||
otherwise, return an HTML string.
|
||||
"""
|
||||
renderer = VegaRenderer()
|
||||
Exporter(renderer).run(fig)
|
||||
vega_html = VegaHTML(renderer)
|
||||
if notebook:
|
||||
return vega_html
|
||||
else:
|
||||
return vega_html.html()
|
||||
|
||||
|
||||
VEGA_TEMPLATE = """
|
||||
( function() {
|
||||
var _do_plot = function() {
|
||||
if ( (typeof vg == 'undefined') && (typeof IPython != 'undefined')) {
|
||||
$([IPython.events]).on("vega_loaded.vincent", _do_plot);
|
||||
return;
|
||||
}
|
||||
vg.parse.spec(%s, function(chart) {
|
||||
chart({el: "#vis%d"}).update();
|
||||
});
|
||||
};
|
||||
_do_plot();
|
||||
})();
|
||||
"""
|
@ -0,0 +1,54 @@
|
||||
import warnings
|
||||
from .base import Renderer
|
||||
from ..exporter import Exporter
|
||||
|
||||
|
||||
class VincentRenderer(Renderer):
|
||||
def open_figure(self, fig, props):
|
||||
self.chart = None
|
||||
self.figwidth = int(props["figwidth"] * props["dpi"])
|
||||
self.figheight = int(props["figheight"] * props["dpi"])
|
||||
|
||||
def draw_line(self, data, coordinates, style, label, mplobj=None):
|
||||
import vincent # only import if VincentRenderer is used
|
||||
|
||||
if coordinates != "data":
|
||||
warnings.warn("Only data coordinates supported. Skipping this")
|
||||
linedata = {"x": data[:, 0], "y": data[:, 1]}
|
||||
line = vincent.Line(
|
||||
linedata, iter_idx="x", width=self.figwidth, height=self.figheight
|
||||
)
|
||||
|
||||
# TODO: respect the other style settings
|
||||
line.scales["color"].range = [style["color"]]
|
||||
|
||||
if self.chart is None:
|
||||
self.chart = line
|
||||
else:
|
||||
warnings.warn("Multiple plot elements not yet supported")
|
||||
|
||||
def draw_markers(self, data, coordinates, style, label, mplobj=None):
|
||||
import vincent # only import if VincentRenderer is used
|
||||
|
||||
if coordinates != "data":
|
||||
warnings.warn("Only data coordinates supported. Skipping this")
|
||||
markerdata = {"x": data[:, 0], "y": data[:, 1]}
|
||||
markers = vincent.Scatter(
|
||||
markerdata, iter_idx="x", width=self.figwidth, height=self.figheight
|
||||
)
|
||||
|
||||
# TODO: respect the other style settings
|
||||
markers.scales["color"].range = [style["facecolor"]]
|
||||
|
||||
if self.chart is None:
|
||||
self.chart = markers
|
||||
else:
|
||||
warnings.warn("Multiple plot elements not yet supported")
|
||||
|
||||
|
||||
def fig_to_vincent(fig):
|
||||
"""Convert a matplotlib figure to a vincent object"""
|
||||
renderer = VincentRenderer()
|
||||
exporter = Exporter(renderer)
|
||||
exporter.run(fig)
|
||||
return renderer.chart
|
@ -0,0 +1,3 @@
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
@ -0,0 +1,257 @@
|
||||
import matplotlib
|
||||
import numpy as np
|
||||
import pytest
|
||||
from packaging.version import Version
|
||||
|
||||
from ..exporter import Exporter
|
||||
from ..renderers import FakeRenderer, FullFakeRenderer
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def fake_renderer_output(fig, Renderer):
|
||||
renderer = Renderer()
|
||||
exporter = Exporter(renderer)
|
||||
exporter.run(fig)
|
||||
return renderer.output
|
||||
|
||||
|
||||
def _assert_output_equal(text1, text2):
|
||||
for line1, line2 in zip(text1.strip().split(), text2.strip().split()):
|
||||
assert line1 == line2
|
||||
|
||||
|
||||
def test_lines():
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(range(20), "-k")
|
||||
|
||||
_assert_output_equal(
|
||||
fake_renderer_output(fig, FakeRenderer),
|
||||
"""
|
||||
opening figure
|
||||
opening axes
|
||||
draw path with 20 vertices
|
||||
closing axes
|
||||
closing figure
|
||||
""",
|
||||
)
|
||||
|
||||
_assert_output_equal(
|
||||
fake_renderer_output(fig, FullFakeRenderer),
|
||||
"""
|
||||
opening figure
|
||||
opening axes
|
||||
draw line with 20 points
|
||||
closing axes
|
||||
closing figure
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
def test_markers():
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(range(2), "ok")
|
||||
|
||||
_assert_output_equal(
|
||||
fake_renderer_output(fig, FakeRenderer),
|
||||
"""
|
||||
opening figure
|
||||
opening axes
|
||||
draw path with 25 vertices
|
||||
draw path with 25 vertices
|
||||
closing axes
|
||||
closing figure
|
||||
""",
|
||||
)
|
||||
|
||||
_assert_output_equal(
|
||||
fake_renderer_output(fig, FullFakeRenderer),
|
||||
"""
|
||||
opening figure
|
||||
opening axes
|
||||
draw 2 markers
|
||||
closing axes
|
||||
closing figure
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
def test_path_collection():
|
||||
fig, ax = plt.subplots()
|
||||
ax.scatter(range(3), range(3))
|
||||
|
||||
_assert_output_equal(
|
||||
fake_renderer_output(fig, FakeRenderer),
|
||||
"""
|
||||
opening figure
|
||||
opening axes
|
||||
draw path with 25 vertices
|
||||
draw path with 25 vertices
|
||||
draw path with 25 vertices
|
||||
closing axes
|
||||
closing figure
|
||||
""",
|
||||
)
|
||||
|
||||
_assert_output_equal(
|
||||
fake_renderer_output(fig, FullFakeRenderer),
|
||||
"""
|
||||
opening figure
|
||||
opening axes
|
||||
draw path collection with 3 offsets
|
||||
closing axes
|
||||
closing figure
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
def test_text():
|
||||
fig, ax = plt.subplots()
|
||||
ax.set_xlabel("my x label")
|
||||
ax.set_ylabel("my y label")
|
||||
ax.set_title("my title")
|
||||
ax.text(0.5, 0.5, "my text")
|
||||
|
||||
_assert_output_equal(
|
||||
fake_renderer_output(fig, FakeRenderer),
|
||||
"""
|
||||
opening figure
|
||||
opening axes
|
||||
draw text 'my text' None
|
||||
draw text 'my x label' xlabel
|
||||
draw text 'my y label' ylabel
|
||||
draw text 'my title' title
|
||||
closing axes
|
||||
closing figure
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
def test_path():
|
||||
fig, ax = plt.subplots()
|
||||
ax.add_patch(plt.Circle((0, 0), 1))
|
||||
ax.add_patch(plt.Rectangle((0, 0), 1, 2))
|
||||
|
||||
_assert_output_equal(
|
||||
fake_renderer_output(fig, FakeRenderer),
|
||||
"""
|
||||
opening figure
|
||||
opening axes
|
||||
draw path with 25 vertices
|
||||
draw path with 4 vertices
|
||||
closing axes
|
||||
closing figure
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
def test_Figure():
|
||||
"""if the fig is not associated with a canvas, FakeRenderer shall
|
||||
not fail."""
|
||||
fig = plt.Figure()
|
||||
ax = fig.add_subplot(111)
|
||||
ax.add_patch(plt.Circle((0, 0), 1))
|
||||
ax.add_patch(plt.Rectangle((0, 0), 1, 2))
|
||||
|
||||
_assert_output_equal(
|
||||
fake_renderer_output(fig, FakeRenderer),
|
||||
"""
|
||||
opening figure
|
||||
opening axes
|
||||
draw path with 25 vertices
|
||||
draw path with 4 vertices
|
||||
closing axes
|
||||
closing figure
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
def test_multiaxes():
|
||||
fig, ax = plt.subplots(2)
|
||||
ax[0].plot(range(4))
|
||||
ax[1].plot(range(10))
|
||||
|
||||
_assert_output_equal(
|
||||
fake_renderer_output(fig, FakeRenderer),
|
||||
"""
|
||||
opening figure
|
||||
opening axes
|
||||
draw path with 4 vertices
|
||||
closing axes
|
||||
opening axes
|
||||
draw path with 10 vertices
|
||||
closing axes
|
||||
closing figure
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
def test_image():
|
||||
# Test fails for matplotlib 1.5+ because the size of the image
|
||||
# generated by matplotlib has changed.
|
||||
if Version(matplotlib.__version__) == Version("3.4.1"):
|
||||
image_size = 432
|
||||
else:
|
||||
pytest.skip("Test fails for older matplotlib")
|
||||
np.random.seed(0) # image size depends on the seed
|
||||
fig, ax = plt.subplots(figsize=(2, 2))
|
||||
ax.imshow(np.random.random((10, 10)), cmap=plt.cm.jet, interpolation="nearest")
|
||||
_assert_output_equal(
|
||||
fake_renderer_output(fig, FakeRenderer),
|
||||
f"""
|
||||
opening figure
|
||||
opening axes
|
||||
draw image of size {image_size}
|
||||
closing axes
|
||||
closing figure
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
def test_legend():
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot([1, 2, 3], label="label")
|
||||
ax.legend().set_visible(False)
|
||||
_assert_output_equal(
|
||||
fake_renderer_output(fig, FakeRenderer),
|
||||
"""
|
||||
opening figure
|
||||
opening axes
|
||||
draw path with 3 vertices
|
||||
opening legend
|
||||
closing legend
|
||||
closing axes
|
||||
closing figure
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
def test_legend_dots():
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot([1, 2, 3], label="label")
|
||||
ax.plot([2, 2, 2], "o", label="dots")
|
||||
ax.legend().set_visible(True)
|
||||
# legend draws 1 line and 1 marker
|
||||
# path around legend now has 13 vertices??
|
||||
_assert_output_equal(
|
||||
fake_renderer_output(fig, FullFakeRenderer),
|
||||
"""
|
||||
opening figure
|
||||
opening axes
|
||||
draw line with 3 points
|
||||
draw 3 markers
|
||||
opening legend
|
||||
draw line with 2 points
|
||||
draw text 'label' None
|
||||
draw 1 markers
|
||||
draw text 'dots' None
|
||||
draw path with 13 vertices
|
||||
closing legend
|
||||
closing axes
|
||||
closing figure
|
||||
""",
|
||||
)
|
||||
|
||||
|
||||
def test_blended():
|
||||
fig, ax = plt.subplots()
|
||||
ax.axvline(0)
|
@ -0,0 +1,40 @@
|
||||
from numpy.testing import assert_allclose, assert_equal
|
||||
from . import plt
|
||||
from .. import utils
|
||||
|
||||
|
||||
def test_path_data():
|
||||
circle = plt.Circle((0, 0), 1)
|
||||
vertices, codes = utils.SVG_path(circle.get_path())
|
||||
|
||||
assert_allclose(vertices.shape, (25, 2))
|
||||
assert_equal(codes, ["M", "C", "C", "C", "C", "C", "C", "C", "C", "Z"])
|
||||
|
||||
|
||||
def test_linestyle():
|
||||
linestyles = {
|
||||
"solid": "none",
|
||||
"-": "none",
|
||||
"dashed": "5.550000000000001,2.4000000000000004",
|
||||
"--": "5.550000000000001,2.4000000000000004",
|
||||
"dotted": "1.5,2.4749999999999996",
|
||||
":": "1.5,2.4749999999999996",
|
||||
"dashdot": "9.600000000000001,2.4000000000000004,1.5,2.4000000000000004",
|
||||
"-.": "9.600000000000001,2.4000000000000004,1.5,2.4000000000000004",
|
||||
"": None,
|
||||
"None": None,
|
||||
}
|
||||
|
||||
for ls, result in linestyles.items():
|
||||
(line,) = plt.plot([1, 2, 3], linestyle=ls)
|
||||
assert_equal(utils.get_dasharray(line), result)
|
||||
|
||||
|
||||
def test_axis_w_fixed_formatter():
|
||||
positions, labels = [0, 1, 10], ["A", "B", "C"]
|
||||
|
||||
plt.xticks(positions, labels)
|
||||
props = utils.get_axis_properties(plt.gca().xaxis)
|
||||
|
||||
assert_equal(props["tickvalues"], positions)
|
||||
assert_equal(props["tickformat"], labels)
|
@ -0,0 +1,55 @@
|
||||
"""
|
||||
Tools for matplotlib plot exporting
|
||||
"""
|
||||
|
||||
|
||||
def ipynb_vega_init():
|
||||
"""Initialize the IPython notebook display elements
|
||||
|
||||
This function borrows heavily from the excellent vincent package:
|
||||
http://github.com/wrobstory/vincent
|
||||
"""
|
||||
try:
|
||||
from IPython.core.display import display, HTML
|
||||
except ImportError:
|
||||
print("IPython Notebook could not be loaded.")
|
||||
|
||||
require_js = """
|
||||
if (window['d3'] === undefined) {{
|
||||
require.config({{ paths: {{d3: "http://d3js.org/d3.v3.min"}} }});
|
||||
require(["d3"], function(d3) {{
|
||||
window.d3 = d3;
|
||||
{0}
|
||||
}});
|
||||
}};
|
||||
if (window['topojson'] === undefined) {{
|
||||
require.config(
|
||||
{{ paths: {{topojson: "http://d3js.org/topojson.v1.min"}} }}
|
||||
);
|
||||
require(["topojson"], function(topojson) {{
|
||||
window.topojson = topojson;
|
||||
}});
|
||||
}};
|
||||
"""
|
||||
d3_geo_projection_js_url = "http://d3js.org/d3.geo.projection.v0.min.js"
|
||||
d3_layout_cloud_js_url = "http://wrobstory.github.io/d3-cloud/d3.layout.cloud.js"
|
||||
topojson_js_url = "http://d3js.org/topojson.v1.min.js"
|
||||
vega_js_url = "http://trifacta.github.com/vega/vega.js"
|
||||
|
||||
dep_libs = """$.getScript("%s", function() {
|
||||
$.getScript("%s", function() {
|
||||
$.getScript("%s", function() {
|
||||
$.getScript("%s", function() {
|
||||
$([IPython.events]).trigger("vega_loaded.vincent");
|
||||
})
|
||||
})
|
||||
})
|
||||
});""" % (
|
||||
d3_geo_projection_js_url,
|
||||
d3_layout_cloud_js_url,
|
||||
topojson_js_url,
|
||||
vega_js_url,
|
||||
)
|
||||
load_js = require_js.format(dep_libs)
|
||||
html = "<script>" + load_js + "</script>"
|
||||
display(HTML(html))
|
@ -0,0 +1,382 @@
|
||||
"""
|
||||
Utility Routines for Working with Matplotlib Objects
|
||||
====================================================
|
||||
"""
|
||||
|
||||
import itertools
|
||||
import io
|
||||
import base64
|
||||
|
||||
import numpy as np
|
||||
|
||||
import warnings
|
||||
|
||||
import matplotlib
|
||||
from matplotlib.colors import colorConverter
|
||||
from matplotlib.path import Path
|
||||
from matplotlib.markers import MarkerStyle
|
||||
from matplotlib.transforms import Affine2D
|
||||
from matplotlib import ticker
|
||||
|
||||
|
||||
def export_color(color):
|
||||
"""Convert matplotlib color code to hex color or RGBA color"""
|
||||
if color is None or colorConverter.to_rgba(color)[3] == 0:
|
||||
return "none"
|
||||
elif colorConverter.to_rgba(color)[3] == 1:
|
||||
rgb = colorConverter.to_rgb(color)
|
||||
return "#{0:02X}{1:02X}{2:02X}".format(*(int(255 * c) for c in rgb))
|
||||
else:
|
||||
c = colorConverter.to_rgba(color)
|
||||
return (
|
||||
"rgba("
|
||||
+ ", ".join(str(int(np.round(val * 255))) for val in c[:3])
|
||||
+ ", "
|
||||
+ str(c[3])
|
||||
+ ")"
|
||||
)
|
||||
|
||||
|
||||
def _many_to_one(input_dict):
|
||||
"""Convert a many-to-one mapping to a one-to-one mapping"""
|
||||
return dict((key, val) for keys, val in input_dict.items() for key in keys)
|
||||
|
||||
|
||||
LINESTYLES = _many_to_one(
|
||||
{
|
||||
("solid", "-", (None, None)): "none",
|
||||
("dashed", "--"): "6,6",
|
||||
("dotted", ":"): "2,2",
|
||||
("dashdot", "-."): "4,4,2,4",
|
||||
("", " ", "None", "none"): None,
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def get_dasharray(obj):
|
||||
"""Get an SVG dash array for the given matplotlib linestyle
|
||||
|
||||
Parameters
|
||||
----------
|
||||
obj : matplotlib object
|
||||
The matplotlib line or path object, which must have a get_linestyle()
|
||||
method which returns a valid matplotlib line code
|
||||
|
||||
Returns
|
||||
-------
|
||||
dasharray : string
|
||||
The HTML/SVG dasharray code associated with the object.
|
||||
"""
|
||||
if obj.__dict__.get("_dashSeq", None) is not None:
|
||||
return ",".join(map(str, obj._dashSeq))
|
||||
else:
|
||||
ls = obj.get_linestyle()
|
||||
dasharray = LINESTYLES.get(ls, "not found")
|
||||
if dasharray == "not found":
|
||||
warnings.warn(
|
||||
"line style '{0}' not understood: defaulting to solid line.".format(ls)
|
||||
)
|
||||
dasharray = LINESTYLES["solid"]
|
||||
return dasharray
|
||||
|
||||
|
||||
PATH_DICT = {
|
||||
Path.LINETO: "L",
|
||||
Path.MOVETO: "M",
|
||||
Path.CURVE3: "S",
|
||||
Path.CURVE4: "C",
|
||||
Path.CLOSEPOLY: "Z",
|
||||
}
|
||||
|
||||
|
||||
def SVG_path(path, transform=None, simplify=False):
|
||||
"""Construct the vertices and SVG codes for the path
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path : matplotlib.Path object
|
||||
|
||||
transform : matplotlib transform (optional)
|
||||
if specified, the path will be transformed before computing the output.
|
||||
|
||||
Returns
|
||||
-------
|
||||
vertices : array
|
||||
The shape (M, 2) array of vertices of the Path. Note that some Path
|
||||
codes require multiple vertices, so the length of these vertices may
|
||||
be longer than the list of path codes.
|
||||
path_codes : list
|
||||
A length N list of single-character path codes, N <= M. Each code is
|
||||
a single character, in ['L','M','S','C','Z']. See the standard SVG
|
||||
path specification for a description of these.
|
||||
"""
|
||||
if transform is not None:
|
||||
path = path.transformed(transform)
|
||||
|
||||
vc_tuples = [
|
||||
(vertices if path_code != Path.CLOSEPOLY else [], PATH_DICT[path_code])
|
||||
for (vertices, path_code) in path.iter_segments(simplify=simplify)
|
||||
]
|
||||
|
||||
if not vc_tuples:
|
||||
# empty path is a special case
|
||||
return np.zeros((0, 2)), []
|
||||
else:
|
||||
vertices, codes = zip(*vc_tuples)
|
||||
vertices = np.array(list(itertools.chain(*vertices))).reshape(-1, 2)
|
||||
return vertices, list(codes)
|
||||
|
||||
|
||||
def get_path_style(path, fill=True):
|
||||
"""Get the style dictionary for matplotlib path objects"""
|
||||
style = {}
|
||||
style["alpha"] = path.get_alpha()
|
||||
if style["alpha"] is None:
|
||||
style["alpha"] = 1
|
||||
style["edgecolor"] = export_color(path.get_edgecolor())
|
||||
if fill:
|
||||
style["facecolor"] = export_color(path.get_facecolor())
|
||||
else:
|
||||
style["facecolor"] = "none"
|
||||
style["edgewidth"] = path.get_linewidth()
|
||||
style["dasharray"] = get_dasharray(path)
|
||||
style["zorder"] = path.get_zorder()
|
||||
return style
|
||||
|
||||
|
||||
def get_line_style(line):
|
||||
"""Get the style dictionary for matplotlib line objects"""
|
||||
style = {}
|
||||
style["alpha"] = line.get_alpha()
|
||||
if style["alpha"] is None:
|
||||
style["alpha"] = 1
|
||||
style["color"] = export_color(line.get_color())
|
||||
style["linewidth"] = line.get_linewidth()
|
||||
style["dasharray"] = get_dasharray(line)
|
||||
style["zorder"] = line.get_zorder()
|
||||
style["drawstyle"] = line.get_drawstyle()
|
||||
return style
|
||||
|
||||
|
||||
def get_marker_style(line):
|
||||
"""Get the style dictionary for matplotlib marker objects"""
|
||||
style = {}
|
||||
style["alpha"] = line.get_alpha()
|
||||
if style["alpha"] is None:
|
||||
style["alpha"] = 1
|
||||
|
||||
style["facecolor"] = export_color(line.get_markerfacecolor())
|
||||
style["edgecolor"] = export_color(line.get_markeredgecolor())
|
||||
style["edgewidth"] = line.get_markeredgewidth()
|
||||
|
||||
style["marker"] = line.get_marker()
|
||||
markerstyle = MarkerStyle(line.get_marker())
|
||||
markersize = line.get_markersize()
|
||||
markertransform = markerstyle.get_transform() + Affine2D().scale(
|
||||
markersize, -markersize
|
||||
)
|
||||
style["markerpath"] = SVG_path(markerstyle.get_path(), markertransform)
|
||||
style["markersize"] = markersize
|
||||
style["zorder"] = line.get_zorder()
|
||||
return style
|
||||
|
||||
|
||||
def get_text_style(text):
|
||||
"""Return the text style dict for a text instance"""
|
||||
style = {}
|
||||
style["alpha"] = text.get_alpha()
|
||||
if style["alpha"] is None:
|
||||
style["alpha"] = 1
|
||||
style["fontsize"] = text.get_size()
|
||||
style["color"] = export_color(text.get_color())
|
||||
style["halign"] = text.get_horizontalalignment() # left, center, right
|
||||
style["valign"] = text.get_verticalalignment() # baseline, center, top
|
||||
style["malign"] = text._multialignment # text alignment when '\n' in text
|
||||
style["rotation"] = text.get_rotation()
|
||||
style["zorder"] = text.get_zorder()
|
||||
return style
|
||||
|
||||
|
||||
def get_axis_properties(axis):
|
||||
"""Return the property dictionary for a matplotlib.Axis instance"""
|
||||
props = {}
|
||||
label1On = axis._major_tick_kw.get("label1On", True)
|
||||
|
||||
if isinstance(axis, matplotlib.axis.XAxis):
|
||||
if label1On:
|
||||
props["position"] = "bottom"
|
||||
else:
|
||||
props["position"] = "top"
|
||||
elif isinstance(axis, matplotlib.axis.YAxis):
|
||||
if label1On:
|
||||
props["position"] = "left"
|
||||
else:
|
||||
props["position"] = "right"
|
||||
else:
|
||||
raise ValueError("{0} should be an Axis instance".format(axis))
|
||||
|
||||
# Use tick values if appropriate
|
||||
locator = axis.get_major_locator()
|
||||
props["nticks"] = len(locator())
|
||||
if isinstance(locator, ticker.FixedLocator):
|
||||
props["tickvalues"] = list(locator())
|
||||
else:
|
||||
props["tickvalues"] = None
|
||||
|
||||
# Find tick formats
|
||||
formatter = axis.get_major_formatter()
|
||||
if isinstance(formatter, ticker.NullFormatter):
|
||||
props["tickformat"] = ""
|
||||
elif isinstance(formatter, ticker.FixedFormatter):
|
||||
props["tickformat"] = list(formatter.seq)
|
||||
elif isinstance(formatter, ticker.FuncFormatter):
|
||||
props["tickformat"] = list(formatter.func.args[0].values())
|
||||
elif not any(label.get_visible() for label in axis.get_ticklabels()):
|
||||
props["tickformat"] = ""
|
||||
else:
|
||||
props["tickformat"] = None
|
||||
|
||||
# Get axis scale
|
||||
props["scale"] = axis.get_scale()
|
||||
|
||||
# Get major tick label size (assumes that's all we really care about!)
|
||||
labels = axis.get_ticklabels()
|
||||
if labels:
|
||||
props["fontsize"] = labels[0].get_fontsize()
|
||||
else:
|
||||
props["fontsize"] = None
|
||||
|
||||
# Get associated grid
|
||||
props["grid"] = get_grid_style(axis)
|
||||
|
||||
# get axis visibility
|
||||
props["visible"] = axis.get_visible()
|
||||
|
||||
return props
|
||||
|
||||
|
||||
def get_grid_style(axis):
|
||||
gridlines = axis.get_gridlines()
|
||||
if axis._major_tick_kw["gridOn"] and len(gridlines) > 0:
|
||||
color = export_color(gridlines[0].get_color())
|
||||
alpha = gridlines[0].get_alpha()
|
||||
dasharray = get_dasharray(gridlines[0])
|
||||
return dict(gridOn=True, color=color, dasharray=dasharray, alpha=alpha)
|
||||
else:
|
||||
return {"gridOn": False}
|
||||
|
||||
|
||||
def get_figure_properties(fig):
|
||||
return {
|
||||
"figwidth": fig.get_figwidth(),
|
||||
"figheight": fig.get_figheight(),
|
||||
"dpi": fig.dpi,
|
||||
}
|
||||
|
||||
|
||||
def get_axes_properties(ax):
|
||||
props = {
|
||||
"axesbg": export_color(ax.patch.get_facecolor()),
|
||||
"axesbgalpha": ax.patch.get_alpha(),
|
||||
"bounds": ax.get_position().bounds,
|
||||
"dynamic": ax.get_navigate(),
|
||||
"axison": ax.axison,
|
||||
"frame_on": ax.get_frame_on(),
|
||||
"patch_visible": ax.patch.get_visible(),
|
||||
"axes": [get_axis_properties(ax.xaxis), get_axis_properties(ax.yaxis)],
|
||||
}
|
||||
|
||||
for axname in ["x", "y"]:
|
||||
axis = getattr(ax, axname + "axis")
|
||||
domain = getattr(ax, "get_{0}lim".format(axname))()
|
||||
lim = domain
|
||||
if isinstance(axis.converter, matplotlib.dates.DateConverter):
|
||||
scale = "date"
|
||||
try:
|
||||
import pandas as pd
|
||||
from pandas.tseries.converter import PeriodConverter
|
||||
except ImportError:
|
||||
pd = None
|
||||
|
||||
if pd is not None and isinstance(axis.converter, PeriodConverter):
|
||||
_dates = [pd.Period(ordinal=int(d), freq=axis.freq) for d in domain]
|
||||
domain = [
|
||||
(d.year, d.month - 1, d.day, d.hour, d.minute, d.second, 0)
|
||||
for d in _dates
|
||||
]
|
||||
else:
|
||||
domain = [
|
||||
(
|
||||
d.year,
|
||||
d.month - 1,
|
||||
d.day,
|
||||
d.hour,
|
||||
d.minute,
|
||||
d.second,
|
||||
d.microsecond * 1e-3,
|
||||
)
|
||||
for d in matplotlib.dates.num2date(domain)
|
||||
]
|
||||
else:
|
||||
scale = axis.get_scale()
|
||||
|
||||
if scale not in ["date", "linear", "log"]:
|
||||
raise ValueError("Unknown axis scale: {0}".format(axis.get_scale()))
|
||||
|
||||
props[axname + "scale"] = scale
|
||||
props[axname + "lim"] = lim
|
||||
props[axname + "domain"] = domain
|
||||
|
||||
return props
|
||||
|
||||
|
||||
def iter_all_children(obj, skipContainers=False):
|
||||
"""
|
||||
Returns an iterator over all childen and nested children using
|
||||
obj's get_children() method
|
||||
|
||||
if skipContainers is true, only childless objects are returned.
|
||||
"""
|
||||
if hasattr(obj, "get_children") and len(obj.get_children()) > 0:
|
||||
for child in obj.get_children():
|
||||
if not skipContainers:
|
||||
yield child
|
||||
# could use `yield from` in python 3...
|
||||
for grandchild in iter_all_children(child, skipContainers):
|
||||
yield grandchild
|
||||
else:
|
||||
yield obj
|
||||
|
||||
|
||||
def get_legend_properties(ax, legend):
|
||||
handles, labels = ax.get_legend_handles_labels()
|
||||
visible = legend.get_visible()
|
||||
return {"handles": handles, "labels": labels, "visible": visible}
|
||||
|
||||
|
||||
def image_to_base64(image):
|
||||
"""
|
||||
Convert a matplotlib image to a base64 png representation
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : matplotlib image object
|
||||
The image to be converted.
|
||||
|
||||
Returns
|
||||
-------
|
||||
image_base64 : string
|
||||
The UTF8-encoded base64 string representation of the png image.
|
||||
"""
|
||||
ax = image.axes
|
||||
binary_buffer = io.BytesIO()
|
||||
|
||||
# image is saved in axes coordinates: we need to temporarily
|
||||
# set the correct limits to get the correct image
|
||||
lim = ax.axis()
|
||||
ax.axis(image.get_extent())
|
||||
image.write_png(binary_buffer)
|
||||
ax.axis(lim)
|
||||
|
||||
binary_buffer.seek(0)
|
||||
return base64.b64encode(binary_buffer.read()).decode("utf-8")
|
610
lib/python3.11/site-packages/plotly/matplotlylib/mpltools.py
Normal file
610
lib/python3.11/site-packages/plotly/matplotlylib/mpltools.py
Normal file
@ -0,0 +1,610 @@
|
||||
"""
|
||||
Tools
|
||||
|
||||
A module for converting from mpl language to plotly language.
|
||||
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import warnings
|
||||
import matplotlib.dates
|
||||
|
||||
|
||||
def check_bar_match(old_bar, new_bar):
|
||||
"""Check if two bars belong in the same collection (bar chart).
|
||||
|
||||
Positional arguments:
|
||||
old_bar -- a previously sorted bar dictionary.
|
||||
new_bar -- a new bar dictionary that needs to be sorted.
|
||||
|
||||
"""
|
||||
tests = []
|
||||
tests += (new_bar["orientation"] == old_bar["orientation"],)
|
||||
tests += (new_bar["facecolor"] == old_bar["facecolor"],)
|
||||
if new_bar["orientation"] == "v":
|
||||
new_width = new_bar["x1"] - new_bar["x0"]
|
||||
old_width = old_bar["x1"] - old_bar["x0"]
|
||||
tests += (new_width - old_width < 0.000001,)
|
||||
tests += (new_bar["y0"] == old_bar["y0"],)
|
||||
elif new_bar["orientation"] == "h":
|
||||
new_height = new_bar["y1"] - new_bar["y0"]
|
||||
old_height = old_bar["y1"] - old_bar["y0"]
|
||||
tests += (new_height - old_height < 0.000001,)
|
||||
tests += (new_bar["x0"] == old_bar["x0"],)
|
||||
if all(tests):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def check_corners(inner_obj, outer_obj):
|
||||
inner_corners = inner_obj.get_window_extent().corners()
|
||||
outer_corners = outer_obj.get_window_extent().corners()
|
||||
if inner_corners[0][0] < outer_corners[0][0]:
|
||||
return False
|
||||
elif inner_corners[0][1] < outer_corners[0][1]:
|
||||
return False
|
||||
elif inner_corners[3][0] > outer_corners[3][0]:
|
||||
return False
|
||||
elif inner_corners[3][1] > outer_corners[3][1]:
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
|
||||
def convert_dash(mpl_dash):
|
||||
"""Convert mpl line symbol to plotly line symbol and return symbol."""
|
||||
if mpl_dash in DASH_MAP:
|
||||
return DASH_MAP[mpl_dash]
|
||||
else:
|
||||
dash_array = mpl_dash.split(",")
|
||||
|
||||
if len(dash_array) < 2:
|
||||
return "solid"
|
||||
|
||||
# Catch the exception where the off length is zero, in case
|
||||
# matplotlib 'solid' changes from '10,0' to 'N,0'
|
||||
if math.isclose(float(dash_array[1]), 0.0):
|
||||
return "solid"
|
||||
|
||||
# If we can't find the dash pattern in the map, convert it
|
||||
# into custom values in px, e.g. '7,5' -> '7px,5px'
|
||||
dashpx = ",".join([x + "px" for x in dash_array])
|
||||
|
||||
# TODO: rewrite the convert_dash code
|
||||
# only strings 'solid', 'dashed', etc allowed
|
||||
if dashpx == "7.4px,3.2px":
|
||||
dashpx = "dashed"
|
||||
elif dashpx == "12.8px,3.2px,2.0px,3.2px":
|
||||
dashpx = "dashdot"
|
||||
elif dashpx == "2.0px,3.3px":
|
||||
dashpx = "dotted"
|
||||
return dashpx
|
||||
|
||||
|
||||
def convert_path(path):
|
||||
code = tuple(path[1])
|
||||
if code in PATH_MAP:
|
||||
return PATH_MAP[code]
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def convert_symbol(mpl_symbol):
|
||||
"""Convert mpl marker symbol to plotly symbol and return symbol."""
|
||||
if isinstance(mpl_symbol, list):
|
||||
symbol = list()
|
||||
for s in mpl_symbol:
|
||||
symbol += [convert_symbol(s)]
|
||||
return symbol
|
||||
elif mpl_symbol in SYMBOL_MAP:
|
||||
return SYMBOL_MAP[mpl_symbol]
|
||||
else:
|
||||
return "circle" # default
|
||||
|
||||
|
||||
def hex_to_rgb(value):
|
||||
"""
|
||||
Change a hex color to an rgb tuple
|
||||
|
||||
:param (str|unicode) value: The hex string we want to convert.
|
||||
:return: (int, int, int) The red, green, blue int-tuple.
|
||||
|
||||
Example:
|
||||
|
||||
'#FFFFFF' --> (255, 255, 255)
|
||||
|
||||
"""
|
||||
value = value.lstrip("#")
|
||||
lv = len(value)
|
||||
return tuple(int(value[i : i + lv // 3], 16) for i in range(0, lv, lv // 3))
|
||||
|
||||
|
||||
def merge_color_and_opacity(color, opacity):
|
||||
"""
|
||||
Merge hex color with an alpha (opacity) to get an rgba tuple.
|
||||
|
||||
:param (str|unicode) color: A hex color string.
|
||||
:param (float|int) opacity: A value [0, 1] for the 'a' in 'rgba'.
|
||||
:return: (int, int, int, float) The rgba color and alpha tuple.
|
||||
|
||||
"""
|
||||
if color is None: # None can be used as a placeholder, just bail.
|
||||
return None
|
||||
|
||||
rgb_tup = hex_to_rgb(color)
|
||||
if opacity is None:
|
||||
return "rgb {}".format(rgb_tup)
|
||||
|
||||
rgba_tup = rgb_tup + (opacity,)
|
||||
return "rgba {}".format(rgba_tup)
|
||||
|
||||
|
||||
def convert_va(mpl_va):
|
||||
"""Convert mpl vertical alignment word to equivalent HTML word.
|
||||
|
||||
Text alignment specifiers from mpl differ very slightly from those used
|
||||
in HTML. See the VA_MAP for more details.
|
||||
|
||||
Positional arguments:
|
||||
mpl_va -- vertical mpl text alignment spec.
|
||||
|
||||
"""
|
||||
if mpl_va in VA_MAP:
|
||||
return VA_MAP[mpl_va]
|
||||
else:
|
||||
return None # let plotly figure it out!
|
||||
|
||||
|
||||
def convert_x_domain(mpl_plot_bounds, mpl_max_x_bounds):
|
||||
"""Map x dimension of current plot to plotly's domain space.
|
||||
|
||||
The bbox used to locate an axes object in mpl differs from the
|
||||
method used to locate axes in plotly. The mpl version locates each
|
||||
axes in the figure so that axes in a single-plot figure might have
|
||||
the bounds, [0.125, 0.125, 0.775, 0.775] (x0, y0, width, height),
|
||||
in mpl's figure coordinates. However, the axes all share one space in
|
||||
plotly such that the domain will always be [0, 0, 1, 1]
|
||||
(x0, y0, x1, y1). To convert between the two, the mpl figure bounds
|
||||
need to be mapped to a [0, 1] domain for x and y. The margins set
|
||||
upon opening a new figure will appropriately match the mpl margins.
|
||||
|
||||
Optionally, setting margins=0 and simply copying the domains from
|
||||
mpl to plotly would place axes appropriately. However,
|
||||
this would throw off axis and title labeling.
|
||||
|
||||
Positional arguments:
|
||||
mpl_plot_bounds -- the (x0, y0, width, height) params for current ax **
|
||||
mpl_max_x_bounds -- overall (x0, x1) bounds for all axes **
|
||||
|
||||
** these are all specified in mpl figure coordinates
|
||||
|
||||
"""
|
||||
mpl_x_dom = [mpl_plot_bounds[0], mpl_plot_bounds[0] + mpl_plot_bounds[2]]
|
||||
plotting_width = mpl_max_x_bounds[1] - mpl_max_x_bounds[0]
|
||||
x0 = (mpl_x_dom[0] - mpl_max_x_bounds[0]) / plotting_width
|
||||
x1 = (mpl_x_dom[1] - mpl_max_x_bounds[0]) / plotting_width
|
||||
return [x0, x1]
|
||||
|
||||
|
||||
def convert_y_domain(mpl_plot_bounds, mpl_max_y_bounds):
|
||||
"""Map y dimension of current plot to plotly's domain space.
|
||||
|
||||
The bbox used to locate an axes object in mpl differs from the
|
||||
method used to locate axes in plotly. The mpl version locates each
|
||||
axes in the figure so that axes in a single-plot figure might have
|
||||
the bounds, [0.125, 0.125, 0.775, 0.775] (x0, y0, width, height),
|
||||
in mpl's figure coordinates. However, the axes all share one space in
|
||||
plotly such that the domain will always be [0, 0, 1, 1]
|
||||
(x0, y0, x1, y1). To convert between the two, the mpl figure bounds
|
||||
need to be mapped to a [0, 1] domain for x and y. The margins set
|
||||
upon opening a new figure will appropriately match the mpl margins.
|
||||
|
||||
Optionally, setting margins=0 and simply copying the domains from
|
||||
mpl to plotly would place axes appropriately. However,
|
||||
this would throw off axis and title labeling.
|
||||
|
||||
Positional arguments:
|
||||
mpl_plot_bounds -- the (x0, y0, width, height) params for current ax **
|
||||
mpl_max_y_bounds -- overall (y0, y1) bounds for all axes **
|
||||
|
||||
** these are all specified in mpl figure coordinates
|
||||
|
||||
"""
|
||||
mpl_y_dom = [mpl_plot_bounds[1], mpl_plot_bounds[1] + mpl_plot_bounds[3]]
|
||||
plotting_height = mpl_max_y_bounds[1] - mpl_max_y_bounds[0]
|
||||
y0 = (mpl_y_dom[0] - mpl_max_y_bounds[0]) / plotting_height
|
||||
y1 = (mpl_y_dom[1] - mpl_max_y_bounds[0]) / plotting_height
|
||||
return [y0, y1]
|
||||
|
||||
|
||||
def display_to_paper(x, y, layout):
|
||||
"""Convert mpl display coordinates to plotly paper coordinates.
|
||||
|
||||
Plotly references object positions with an (x, y) coordinate pair in either
|
||||
'data' or 'paper' coordinates which reference actual data in a plot or
|
||||
the entire plotly axes space where the bottom-left of the bottom-left
|
||||
plot has the location (x, y) = (0, 0) and the top-right of the top-right
|
||||
plot has the location (x, y) = (1, 1). Display coordinates in mpl reference
|
||||
objects with an (x, y) pair in pixel coordinates, where the bottom-left
|
||||
corner is at the location (x, y) = (0, 0) and the top-right corner is at
|
||||
the location (x, y) = (figwidth*dpi, figheight*dpi). Here, figwidth and
|
||||
figheight are in inches and dpi are the dots per inch resolution.
|
||||
|
||||
"""
|
||||
num_x = x - layout["margin"]["l"]
|
||||
den_x = layout["width"] - (layout["margin"]["l"] + layout["margin"]["r"])
|
||||
num_y = y - layout["margin"]["b"]
|
||||
den_y = layout["height"] - (layout["margin"]["b"] + layout["margin"]["t"])
|
||||
return num_x / den_x, num_y / den_y
|
||||
|
||||
|
||||
def get_axes_bounds(fig):
|
||||
"""Return the entire axes space for figure.
|
||||
|
||||
An axes object in mpl is specified by its relation to the figure where
|
||||
(0,0) corresponds to the bottom-left part of the figure and (1,1)
|
||||
corresponds to the top-right. Margins exist in matplotlib because axes
|
||||
objects normally don't go to the edges of the figure.
|
||||
|
||||
In plotly, the axes area (where all subplots go) is always specified with
|
||||
the domain [0,1] for both x and y. This function finds the smallest box,
|
||||
specified by two points, that all of the mpl axes objects fit into. This
|
||||
box is then used to map mpl axes domains to plotly axes domains.
|
||||
|
||||
"""
|
||||
x_min, x_max, y_min, y_max = [], [], [], []
|
||||
for axes_obj in fig.get_axes():
|
||||
bounds = axes_obj.get_position().bounds
|
||||
x_min.append(bounds[0])
|
||||
x_max.append(bounds[0] + bounds[2])
|
||||
y_min.append(bounds[1])
|
||||
y_max.append(bounds[1] + bounds[3])
|
||||
x_min, y_min, x_max, y_max = min(x_min), min(y_min), max(x_max), max(y_max)
|
||||
return (x_min, x_max), (y_min, y_max)
|
||||
|
||||
|
||||
def get_axis_mirror(main_spine, mirror_spine):
|
||||
if main_spine and mirror_spine:
|
||||
return "ticks"
|
||||
elif main_spine and not mirror_spine:
|
||||
return False
|
||||
elif not main_spine and mirror_spine:
|
||||
return False # can't handle this case yet!
|
||||
else:
|
||||
return False # nuttin'!
|
||||
|
||||
|
||||
def get_bar_gap(bar_starts, bar_ends, tol=1e-10):
|
||||
if len(bar_starts) == len(bar_ends) and len(bar_starts) > 1:
|
||||
sides1 = bar_starts[1:]
|
||||
sides2 = bar_ends[:-1]
|
||||
gaps = [s2 - s1 for s2, s1 in zip(sides1, sides2)]
|
||||
gap0 = gaps[0]
|
||||
uniform = all([abs(gap0 - gap) < tol for gap in gaps])
|
||||
if uniform:
|
||||
return gap0
|
||||
|
||||
|
||||
def convert_rgba_array(color_list):
|
||||
clean_color_list = list()
|
||||
for c in color_list:
|
||||
clean_color_list += [
|
||||
dict(r=int(c[0] * 255), g=int(c[1] * 255), b=int(c[2] * 255), a=c[3])
|
||||
]
|
||||
plotly_colors = list()
|
||||
for rgba in clean_color_list:
|
||||
plotly_colors += ["rgba({r},{g},{b},{a})".format(**rgba)]
|
||||
if len(plotly_colors) == 1:
|
||||
return plotly_colors[0]
|
||||
else:
|
||||
return plotly_colors
|
||||
|
||||
|
||||
def convert_path_array(path_array):
|
||||
symbols = list()
|
||||
for path in path_array:
|
||||
symbols += [convert_path(path)]
|
||||
if len(symbols) == 1:
|
||||
return symbols[0]
|
||||
else:
|
||||
return symbols
|
||||
|
||||
|
||||
def convert_linewidth_array(width_array):
|
||||
if len(width_array) == 1:
|
||||
return width_array[0]
|
||||
else:
|
||||
return width_array
|
||||
|
||||
|
||||
def convert_size_array(size_array):
|
||||
size = [math.sqrt(s) for s in size_array]
|
||||
if len(size) == 1:
|
||||
return size[0]
|
||||
else:
|
||||
return size
|
||||
|
||||
|
||||
def get_markerstyle_from_collection(props):
|
||||
markerstyle = dict(
|
||||
alpha=None,
|
||||
facecolor=convert_rgba_array(props["styles"]["facecolor"]),
|
||||
marker=convert_path_array(props["paths"]),
|
||||
edgewidth=convert_linewidth_array(props["styles"]["linewidth"]),
|
||||
# markersize=convert_size_array(props['styles']['size']), # TODO!
|
||||
markersize=convert_size_array(props["mplobj"].get_sizes()),
|
||||
edgecolor=convert_rgba_array(props["styles"]["edgecolor"]),
|
||||
)
|
||||
return markerstyle
|
||||
|
||||
|
||||
def get_rect_xmin(data):
|
||||
"""Find minimum x value from four (x,y) vertices."""
|
||||
return min(data[0][0], data[1][0], data[2][0], data[3][0])
|
||||
|
||||
|
||||
def get_rect_xmax(data):
|
||||
"""Find maximum x value from four (x,y) vertices."""
|
||||
return max(data[0][0], data[1][0], data[2][0], data[3][0])
|
||||
|
||||
|
||||
def get_rect_ymin(data):
|
||||
"""Find minimum y value from four (x,y) vertices."""
|
||||
return min(data[0][1], data[1][1], data[2][1], data[3][1])
|
||||
|
||||
|
||||
def get_rect_ymax(data):
|
||||
"""Find maximum y value from four (x,y) vertices."""
|
||||
return max(data[0][1], data[1][1], data[2][1], data[3][1])
|
||||
|
||||
|
||||
def get_spine_visible(ax, spine_key):
|
||||
"""Return some spine parameters for the spine, `spine_key`."""
|
||||
spine = ax.spines[spine_key]
|
||||
ax_frame_on = ax.get_frame_on()
|
||||
position = spine._position or ("outward", 0.0)
|
||||
if isinstance(position, str):
|
||||
if position == "center":
|
||||
position = ("axes", 0.5)
|
||||
elif position == "zero":
|
||||
position = ("data", 0)
|
||||
position_type, amount = position
|
||||
if position_type == "outward" and amount == 0:
|
||||
spine_frame_like = True
|
||||
else:
|
||||
spine_frame_like = False
|
||||
if not spine.get_visible():
|
||||
return False
|
||||
elif not spine._edgecolor[-1]: # user's may have set edgecolor alpha==0
|
||||
return False
|
||||
elif not ax_frame_on and spine_frame_like:
|
||||
return False
|
||||
elif ax_frame_on and spine_frame_like:
|
||||
return True
|
||||
elif not ax_frame_on and not spine_frame_like:
|
||||
return True # we've already checked for that it's visible.
|
||||
else:
|
||||
return False # oh man, and i thought we exhausted the options...
|
||||
|
||||
|
||||
def is_bar(bar_containers, **props):
|
||||
"""A test to decide whether a path is a bar from a vertical bar chart."""
|
||||
|
||||
# is this patch in a bar container?
|
||||
for container in bar_containers:
|
||||
if props["mplobj"] in container:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def make_bar(**props):
|
||||
"""Make an intermediate bar dictionary.
|
||||
|
||||
This creates a bar dictionary which aids in the comparison of new bars to
|
||||
old bars from other bar chart (patch) collections. This is not the
|
||||
dictionary that needs to get passed to plotly as a data dictionary. That
|
||||
happens in PlotlyRenderer in that class's draw_bar method. In other
|
||||
words, this dictionary describes a SINGLE bar, whereas, plotly will
|
||||
require a set of bars to be passed in a data dictionary.
|
||||
|
||||
"""
|
||||
return {
|
||||
"bar": props["mplobj"],
|
||||
"x0": get_rect_xmin(props["data"]),
|
||||
"y0": get_rect_ymin(props["data"]),
|
||||
"x1": get_rect_xmax(props["data"]),
|
||||
"y1": get_rect_ymax(props["data"]),
|
||||
"alpha": props["style"]["alpha"],
|
||||
"edgecolor": props["style"]["edgecolor"],
|
||||
"facecolor": props["style"]["facecolor"],
|
||||
"edgewidth": props["style"]["edgewidth"],
|
||||
"dasharray": props["style"]["dasharray"],
|
||||
"zorder": props["style"]["zorder"],
|
||||
}
|
||||
|
||||
|
||||
def prep_ticks(ax, index, ax_type, props):
|
||||
"""Prepare axis obj belonging to axes obj.
|
||||
|
||||
positional arguments:
|
||||
ax - the mpl axes instance
|
||||
index - the index of the axis in `props`
|
||||
ax_type - 'x' or 'y' (for now)
|
||||
props - an mplexporter poperties dictionary
|
||||
|
||||
"""
|
||||
axis_dict = dict()
|
||||
if ax_type == "x":
|
||||
axis = ax.get_xaxis()
|
||||
elif ax_type == "y":
|
||||
axis = ax.get_yaxis()
|
||||
else:
|
||||
return dict() # whoops!
|
||||
|
||||
scale = props["axes"][index]["scale"]
|
||||
if scale == "linear":
|
||||
# get tick location information
|
||||
try:
|
||||
tickvalues = props["axes"][index]["tickvalues"]
|
||||
tick0 = tickvalues[0]
|
||||
dticks = [
|
||||
round(tickvalues[i] - tickvalues[i - 1], 12)
|
||||
for i in range(1, len(tickvalues) - 1)
|
||||
]
|
||||
if all([dticks[i] == dticks[i - 1] for i in range(1, len(dticks) - 1)]):
|
||||
dtick = tickvalues[1] - tickvalues[0]
|
||||
else:
|
||||
warnings.warn(
|
||||
"'linear' {0}-axis tick spacing not even, "
|
||||
"ignoring mpl tick formatting.".format(ax_type)
|
||||
)
|
||||
raise TypeError
|
||||
except (IndexError, TypeError):
|
||||
axis_dict["nticks"] = props["axes"][index]["nticks"]
|
||||
else:
|
||||
axis_dict["tick0"] = tick0
|
||||
axis_dict["dtick"] = dtick
|
||||
axis_dict["tickmode"] = None
|
||||
elif scale == "log":
|
||||
try:
|
||||
axis_dict["tick0"] = props["axes"][index]["tickvalues"][0]
|
||||
axis_dict["dtick"] = (
|
||||
props["axes"][index]["tickvalues"][1]
|
||||
- props["axes"][index]["tickvalues"][0]
|
||||
)
|
||||
axis_dict["tickmode"] = None
|
||||
except (IndexError, TypeError):
|
||||
axis_dict = dict(nticks=props["axes"][index]["nticks"])
|
||||
base = axis.get_transform().base
|
||||
if base == 10:
|
||||
if ax_type == "x":
|
||||
axis_dict["range"] = [
|
||||
math.log10(props["xlim"][0]),
|
||||
math.log10(props["xlim"][1]),
|
||||
]
|
||||
elif ax_type == "y":
|
||||
axis_dict["range"] = [
|
||||
math.log10(props["ylim"][0]),
|
||||
math.log10(props["ylim"][1]),
|
||||
]
|
||||
else:
|
||||
axis_dict = dict(range=None, type="linear")
|
||||
warnings.warn(
|
||||
"Converted non-base10 {0}-axis log scale to 'linear'".format(ax_type)
|
||||
)
|
||||
else:
|
||||
return dict()
|
||||
# get tick label formatting information
|
||||
formatter = axis.get_major_formatter().__class__.__name__
|
||||
if ax_type == "x" and "DateFormatter" in formatter:
|
||||
axis_dict["type"] = "date"
|
||||
try:
|
||||
axis_dict["tick0"] = mpl_dates_to_datestrings(axis_dict["tick0"], formatter)
|
||||
except KeyError:
|
||||
pass
|
||||
finally:
|
||||
axis_dict.pop("dtick", None)
|
||||
axis_dict.pop("tickmode", None)
|
||||
axis_dict["range"] = mpl_dates_to_datestrings(props["xlim"], formatter)
|
||||
|
||||
if formatter == "LogFormatterMathtext":
|
||||
axis_dict["exponentformat"] = "e"
|
||||
return axis_dict
|
||||
|
||||
|
||||
def prep_xy_axis(ax, props, x_bounds, y_bounds):
|
||||
xaxis = dict(
|
||||
type=props["axes"][0]["scale"],
|
||||
range=list(props["xlim"]),
|
||||
showgrid=props["axes"][0]["grid"]["gridOn"],
|
||||
domain=convert_x_domain(props["bounds"], x_bounds),
|
||||
side=props["axes"][0]["position"],
|
||||
tickfont=dict(size=props["axes"][0]["fontsize"]),
|
||||
)
|
||||
xaxis.update(prep_ticks(ax, 0, "x", props))
|
||||
yaxis = dict(
|
||||
type=props["axes"][1]["scale"],
|
||||
range=list(props["ylim"]),
|
||||
showgrid=props["axes"][1]["grid"]["gridOn"],
|
||||
domain=convert_y_domain(props["bounds"], y_bounds),
|
||||
side=props["axes"][1]["position"],
|
||||
tickfont=dict(size=props["axes"][1]["fontsize"]),
|
||||
)
|
||||
yaxis.update(prep_ticks(ax, 1, "y", props))
|
||||
return xaxis, yaxis
|
||||
|
||||
|
||||
def mpl_dates_to_datestrings(dates, mpl_formatter):
|
||||
"""Convert matplotlib dates to iso-formatted-like time strings.
|
||||
|
||||
Plotly's accepted format: "YYYY-MM-DD HH:MM:SS" (e.g., 2001-01-01 00:00:00)
|
||||
|
||||
Info on mpl dates: http://matplotlib.org/api/dates_api.html
|
||||
|
||||
"""
|
||||
_dates = dates
|
||||
|
||||
# this is a pandas datetime formatter, times show up in floating point days
|
||||
# since the epoch (1970-01-01T00:00:00+00:00)
|
||||
if mpl_formatter == "TimeSeries_DateFormatter":
|
||||
try:
|
||||
dates = matplotlib.dates.epoch2num([date * 24 * 60 * 60 for date in dates])
|
||||
dates = matplotlib.dates.num2date(dates)
|
||||
except Exception:
|
||||
return _dates
|
||||
|
||||
# the rest of mpl dates are in floating point days since
|
||||
# (0001-01-01T00:00:00+00:00) + 1. I.e., (0001-01-01T00:00:00+00:00) == 1.0
|
||||
# according to mpl --> try num2date(1)
|
||||
else:
|
||||
try:
|
||||
dates = matplotlib.dates.num2date(dates)
|
||||
except Exception:
|
||||
return _dates
|
||||
|
||||
time_stings = [
|
||||
" ".join(date.isoformat().split("+")[0].split("T")) for date in dates
|
||||
]
|
||||
return time_stings
|
||||
|
||||
|
||||
# dashed is dash in matplotlib
|
||||
DASH_MAP = {
|
||||
"10,0": "solid",
|
||||
"6,6": "dash",
|
||||
"2,2": "circle",
|
||||
"4,4,2,4": "dashdot",
|
||||
"none": "solid",
|
||||
"7.4,3.2": "dash",
|
||||
}
|
||||
|
||||
PATH_MAP = {
|
||||
("M", "C", "C", "C", "C", "C", "C", "C", "C", "Z"): "o",
|
||||
("M", "L", "L", "L", "L", "L", "L", "L", "L", "L", "Z"): "*",
|
||||
("M", "L", "L", "L", "L", "L", "L", "L", "Z"): "8",
|
||||
("M", "L", "L", "L", "L", "L", "Z"): "h",
|
||||
("M", "L", "L", "L", "L", "Z"): "p",
|
||||
("M", "L", "M", "L", "M", "L"): "1",
|
||||
("M", "L", "L", "L", "Z"): "s",
|
||||
("M", "L", "M", "L"): "+",
|
||||
("M", "L", "L", "Z"): "^",
|
||||
("M", "L"): "|",
|
||||
}
|
||||
|
||||
SYMBOL_MAP = {
|
||||
"o": "circle",
|
||||
"v": "triangle-down",
|
||||
"^": "triangle-up",
|
||||
"<": "triangle-left",
|
||||
">": "triangle-right",
|
||||
"s": "square",
|
||||
"+": "cross",
|
||||
"x": "x",
|
||||
"*": "star",
|
||||
"D": "diamond",
|
||||
"d": "diamond",
|
||||
}
|
||||
|
||||
VA_MAP = {"center": "middle", "baseline": "bottom", "top": "top"}
|
861
lib/python3.11/site-packages/plotly/matplotlylib/renderer.py
Normal file
861
lib/python3.11/site-packages/plotly/matplotlylib/renderer.py
Normal file
@ -0,0 +1,861 @@
|
||||
"""
|
||||
Renderer Module
|
||||
|
||||
This module defines the PlotlyRenderer class and a single function,
|
||||
fig_to_plotly, which is intended to be the main way that user's will interact
|
||||
with the matplotlylib package.
|
||||
|
||||
"""
|
||||
|
||||
import warnings
|
||||
|
||||
import plotly.graph_objs as go
|
||||
from plotly.matplotlylib.mplexporter import Renderer
|
||||
from plotly.matplotlylib import mpltools
|
||||
|
||||
|
||||
# Warning format
|
||||
def warning_on_one_line(msg, category, filename, lineno, file=None, line=None):
|
||||
return "%s:%s: %s:\n\n%s\n\n" % (filename, lineno, category.__name__, msg)
|
||||
|
||||
|
||||
warnings.formatwarning = warning_on_one_line
|
||||
|
||||
|
||||
class PlotlyRenderer(Renderer):
|
||||
"""A renderer class inheriting from base for rendering mpl plots in plotly.
|
||||
|
||||
A renderer class to be used with an exporter for rendering matplotlib
|
||||
plots in Plotly. This module defines the PlotlyRenderer class which handles
|
||||
the creation of the JSON structures that get sent to plotly.
|
||||
|
||||
All class attributes available are defined in __init__().
|
||||
|
||||
Basic Usage:
|
||||
|
||||
# (mpl code) #
|
||||
fig = gcf()
|
||||
renderer = PlotlyRenderer(fig)
|
||||
exporter = Exporter(renderer)
|
||||
exporter.run(fig) # ... et voila
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize PlotlyRenderer obj.
|
||||
|
||||
PlotlyRenderer obj is called on by an Exporter object to draw
|
||||
matplotlib objects like figures, axes, text, etc.
|
||||
|
||||
All class attributes are listed here in the __init__ method.
|
||||
|
||||
"""
|
||||
self.plotly_fig = go.Figure()
|
||||
self.mpl_fig = None
|
||||
self.current_mpl_ax = None
|
||||
self.bar_containers = None
|
||||
self.current_bars = []
|
||||
self.axis_ct = 0
|
||||
self.x_is_mpl_date = False
|
||||
self.mpl_x_bounds = (0, 1)
|
||||
self.mpl_y_bounds = (0, 1)
|
||||
self.msg = "Initialized PlotlyRenderer\n"
|
||||
|
||||
def open_figure(self, fig, props):
|
||||
"""Creates a new figure by beginning to fill out layout dict.
|
||||
|
||||
The 'autosize' key is set to false so that the figure will mirror
|
||||
sizes set by mpl. The 'hovermode' key controls what shows up when you
|
||||
mouse around a figure in plotly, it's set to show the 'closest' point.
|
||||
|
||||
Positional agurments:
|
||||
fig -- a matplotlib.figure.Figure object.
|
||||
props.keys(): [
|
||||
'figwidth',
|
||||
'figheight',
|
||||
'dpi'
|
||||
]
|
||||
|
||||
"""
|
||||
self.msg += "Opening figure\n"
|
||||
self.mpl_fig = fig
|
||||
self.plotly_fig["layout"] = go.Layout(
|
||||
width=int(props["figwidth"] * props["dpi"]),
|
||||
height=int(props["figheight"] * props["dpi"]),
|
||||
autosize=False,
|
||||
hovermode="closest",
|
||||
)
|
||||
self.mpl_x_bounds, self.mpl_y_bounds = mpltools.get_axes_bounds(fig)
|
||||
margin = go.layout.Margin(
|
||||
l=int(self.mpl_x_bounds[0] * self.plotly_fig["layout"]["width"]),
|
||||
r=int((1 - self.mpl_x_bounds[1]) * self.plotly_fig["layout"]["width"]),
|
||||
t=int((1 - self.mpl_y_bounds[1]) * self.plotly_fig["layout"]["height"]),
|
||||
b=int(self.mpl_y_bounds[0] * self.plotly_fig["layout"]["height"]),
|
||||
pad=0,
|
||||
)
|
||||
self.plotly_fig["layout"]["margin"] = margin
|
||||
|
||||
def close_figure(self, fig):
|
||||
"""Closes figure by cleaning up data and layout dictionaries.
|
||||
|
||||
The PlotlyRenderer's job is to create an appropriate set of data and
|
||||
layout dictionaries. When the figure is closed, some cleanup and
|
||||
repair is necessary. This method removes inappropriate dictionary
|
||||
entries, freeing up Plotly to use defaults and best judgements to
|
||||
complete the entries. This method is called by an Exporter object.
|
||||
|
||||
Positional arguments:
|
||||
fig -- a matplotlib.figure.Figure object.
|
||||
|
||||
"""
|
||||
self.plotly_fig["layout"]["showlegend"] = False
|
||||
self.msg += "Closing figure\n"
|
||||
|
||||
def open_axes(self, ax, props):
|
||||
"""Setup a new axes object (subplot in plotly).
|
||||
|
||||
Plotly stores information about subplots in different 'xaxis' and
|
||||
'yaxis' objects which are numbered. These are just dictionaries
|
||||
included in the layout dictionary. This function takes information
|
||||
from the Exporter, fills in appropriate dictionary entries,
|
||||
and updates the layout dictionary. PlotlyRenderer keeps track of the
|
||||
number of plots by incrementing the axis_ct attribute.
|
||||
|
||||
Setting the proper plot domain in plotly is a bit tricky. Refer to
|
||||
the documentation for mpltools.convert_x_domain and
|
||||
mpltools.convert_y_domain.
|
||||
|
||||
Positional arguments:
|
||||
ax -- an mpl axes object. This will become a subplot in plotly.
|
||||
props.keys() -- [
|
||||
'axesbg', (background color for axes obj)
|
||||
'axesbgalpha', (alpha, or opacity for background)
|
||||
'bounds', ((x0, y0, width, height) for axes)
|
||||
'dynamic', (zoom/pan-able?)
|
||||
'axes', (list: [xaxis, yaxis])
|
||||
'xscale', (log, linear, or date)
|
||||
'yscale',
|
||||
'xlim', (range limits for x)
|
||||
'ylim',
|
||||
'xdomain' (xdomain=xlim, unless it's a date)
|
||||
'ydomain'
|
||||
]
|
||||
|
||||
"""
|
||||
self.msg += " Opening axes\n"
|
||||
self.current_mpl_ax = ax
|
||||
self.bar_containers = [
|
||||
c
|
||||
for c in ax.containers # empty is OK
|
||||
if c.__class__.__name__ == "BarContainer"
|
||||
]
|
||||
self.current_bars = []
|
||||
self.axis_ct += 1
|
||||
# set defaults in axes
|
||||
xaxis = go.layout.XAxis(
|
||||
anchor="y{0}".format(self.axis_ct), zeroline=False, ticks="inside"
|
||||
)
|
||||
yaxis = go.layout.YAxis(
|
||||
anchor="x{0}".format(self.axis_ct), zeroline=False, ticks="inside"
|
||||
)
|
||||
# update defaults with things set in mpl
|
||||
mpl_xaxis, mpl_yaxis = mpltools.prep_xy_axis(
|
||||
ax=ax, props=props, x_bounds=self.mpl_x_bounds, y_bounds=self.mpl_y_bounds
|
||||
)
|
||||
xaxis.update(mpl_xaxis)
|
||||
yaxis.update(mpl_yaxis)
|
||||
bottom_spine = mpltools.get_spine_visible(ax, "bottom")
|
||||
top_spine = mpltools.get_spine_visible(ax, "top")
|
||||
left_spine = mpltools.get_spine_visible(ax, "left")
|
||||
right_spine = mpltools.get_spine_visible(ax, "right")
|
||||
xaxis["mirror"] = mpltools.get_axis_mirror(bottom_spine, top_spine)
|
||||
yaxis["mirror"] = mpltools.get_axis_mirror(left_spine, right_spine)
|
||||
xaxis["showline"] = bottom_spine
|
||||
yaxis["showline"] = top_spine
|
||||
|
||||
# put axes in our figure
|
||||
self.plotly_fig["layout"]["xaxis{0}".format(self.axis_ct)] = xaxis
|
||||
self.plotly_fig["layout"]["yaxis{0}".format(self.axis_ct)] = yaxis
|
||||
|
||||
# let all subsequent dates be handled properly if required
|
||||
|
||||
if "type" in dir(xaxis) and xaxis["type"] == "date":
|
||||
self.x_is_mpl_date = True
|
||||
|
||||
def close_axes(self, ax):
|
||||
"""Close the axes object and clean up.
|
||||
|
||||
Bars from bar charts are given to PlotlyRenderer one-by-one,
|
||||
thus they need to be taken care of at the close of each axes object.
|
||||
The self.current_bars variable should be empty unless a bar
|
||||
chart has been created.
|
||||
|
||||
Positional arguments:
|
||||
ax -- an mpl axes object, not required at this time.
|
||||
|
||||
"""
|
||||
self.draw_bars(self.current_bars)
|
||||
self.msg += " Closing axes\n"
|
||||
self.x_is_mpl_date = False
|
||||
|
||||
def draw_bars(self, bars):
|
||||
# sort bars according to bar containers
|
||||
mpl_traces = []
|
||||
for container in self.bar_containers:
|
||||
mpl_traces.append(
|
||||
[
|
||||
bar_props
|
||||
for bar_props in self.current_bars
|
||||
if bar_props["mplobj"] in container
|
||||
]
|
||||
)
|
||||
for trace in mpl_traces:
|
||||
self.draw_bar(trace)
|
||||
|
||||
def draw_bar(self, coll):
|
||||
"""Draw a collection of similar patches as a bar chart.
|
||||
|
||||
After bars are sorted, an appropriate data dictionary must be created
|
||||
to tell plotly about this data. Just like draw_line or draw_markers,
|
||||
draw_bar translates patch/path information into something plotly
|
||||
understands.
|
||||
|
||||
Positional arguments:
|
||||
patch_coll -- a collection of patches to be drawn as a bar chart.
|
||||
|
||||
"""
|
||||
tol = 1e-10
|
||||
trace = [mpltools.make_bar(**bar_props) for bar_props in coll]
|
||||
widths = [bar_props["x1"] - bar_props["x0"] for bar_props in trace]
|
||||
heights = [bar_props["y1"] - bar_props["y0"] for bar_props in trace]
|
||||
vertical = abs(sum(widths[0] - widths[iii] for iii in range(len(widths)))) < tol
|
||||
horizontal = (
|
||||
abs(sum(heights[0] - heights[iii] for iii in range(len(heights)))) < tol
|
||||
)
|
||||
if vertical and horizontal:
|
||||
# Check for monotonic x. Can't both be true!
|
||||
x_zeros = [bar_props["x0"] for bar_props in trace]
|
||||
if all(
|
||||
(x_zeros[iii + 1] > x_zeros[iii] for iii in range(len(x_zeros[:-1])))
|
||||
):
|
||||
orientation = "v"
|
||||
else:
|
||||
orientation = "h"
|
||||
elif vertical:
|
||||
orientation = "v"
|
||||
else:
|
||||
orientation = "h"
|
||||
if orientation == "v":
|
||||
self.msg += " Attempting to draw a vertical bar chart\n"
|
||||
old_heights = [bar_props["y1"] for bar_props in trace]
|
||||
for bar in trace:
|
||||
bar["y0"], bar["y1"] = 0, bar["y1"] - bar["y0"]
|
||||
new_heights = [bar_props["y1"] for bar_props in trace]
|
||||
# check if we're stacked or not...
|
||||
for old, new in zip(old_heights, new_heights):
|
||||
if abs(old - new) > tol:
|
||||
self.plotly_fig["layout"]["barmode"] = "stack"
|
||||
self.plotly_fig["layout"]["hovermode"] = "x"
|
||||
x = [bar["x0"] + (bar["x1"] - bar["x0"]) / 2 for bar in trace]
|
||||
y = [bar["y1"] for bar in trace]
|
||||
bar_gap = mpltools.get_bar_gap(
|
||||
[bar["x0"] for bar in trace], [bar["x1"] for bar in trace]
|
||||
)
|
||||
if self.x_is_mpl_date:
|
||||
x = [bar["x0"] for bar in trace]
|
||||
formatter = (
|
||||
self.current_mpl_ax.get_xaxis()
|
||||
.get_major_formatter()
|
||||
.__class__.__name__
|
||||
)
|
||||
x = mpltools.mpl_dates_to_datestrings(x, formatter)
|
||||
else:
|
||||
self.msg += " Attempting to draw a horizontal bar chart\n"
|
||||
old_rights = [bar_props["x1"] for bar_props in trace]
|
||||
for bar in trace:
|
||||
bar["x0"], bar["x1"] = 0, bar["x1"] - bar["x0"]
|
||||
new_rights = [bar_props["x1"] for bar_props in trace]
|
||||
# check if we're stacked or not...
|
||||
for old, new in zip(old_rights, new_rights):
|
||||
if abs(old - new) > tol:
|
||||
self.plotly_fig["layout"]["barmode"] = "stack"
|
||||
self.plotly_fig["layout"]["hovermode"] = "y"
|
||||
x = [bar["x1"] for bar in trace]
|
||||
y = [bar["y0"] + (bar["y1"] - bar["y0"]) / 2 for bar in trace]
|
||||
bar_gap = mpltools.get_bar_gap(
|
||||
[bar["y0"] for bar in trace], [bar["y1"] for bar in trace]
|
||||
)
|
||||
bar = go.Bar(
|
||||
orientation=orientation,
|
||||
x=x,
|
||||
y=y,
|
||||
xaxis="x{0}".format(self.axis_ct),
|
||||
yaxis="y{0}".format(self.axis_ct),
|
||||
opacity=trace[0]["alpha"], # TODO: get all alphas if array?
|
||||
marker=go.bar.Marker(
|
||||
color=trace[0]["facecolor"], # TODO: get all
|
||||
line=dict(width=trace[0]["edgewidth"]),
|
||||
),
|
||||
) # TODO ditto
|
||||
if len(bar["x"]) > 1:
|
||||
self.msg += " Heck yeah, I drew that bar chart\n"
|
||||
(self.plotly_fig.add_trace(bar),)
|
||||
if bar_gap is not None:
|
||||
self.plotly_fig["layout"]["bargap"] = bar_gap
|
||||
else:
|
||||
self.msg += " Bar chart not drawn\n"
|
||||
warnings.warn(
|
||||
"found box chart data with length <= 1, "
|
||||
"assuming data redundancy, not plotting."
|
||||
)
|
||||
|
||||
def draw_legend_shapes(self, mode, shape, **props):
|
||||
"""Create a shape that matches lines or markers in legends.
|
||||
|
||||
Main issue is that path for circles do not render, so we have to use 'circle'
|
||||
instead of 'path'.
|
||||
"""
|
||||
for single_mode in mode.split("+"):
|
||||
x = props["data"][0][0]
|
||||
y = props["data"][0][1]
|
||||
if single_mode == "markers" and props.get("markerstyle"):
|
||||
size = shape.pop("size", 6)
|
||||
symbol = shape.pop("symbol")
|
||||
# aligning to "center"
|
||||
x0 = 0
|
||||
y0 = 0
|
||||
x1 = size
|
||||
y1 = size
|
||||
markerpath = props["markerstyle"].get("markerpath")
|
||||
if markerpath is None and symbol != "circle":
|
||||
self.msg += (
|
||||
"not sure how to handle this marker without a valid path\n"
|
||||
)
|
||||
return
|
||||
# marker path to SVG path conversion
|
||||
path = " ".join(
|
||||
[f"{a} {t[0]},{t[1]}" for a, t in zip(markerpath[1], markerpath[0])]
|
||||
)
|
||||
|
||||
if symbol == "circle":
|
||||
# symbols like . and o in matplotlib, use circle
|
||||
# plotly also maps many other markers to circle, such as 1,8 and p
|
||||
path = None
|
||||
shape_type = "circle"
|
||||
x0 = -size / 2
|
||||
y0 = size / 2
|
||||
x1 = size / 2
|
||||
y1 = size + size / 2
|
||||
else:
|
||||
# triangles, star etc
|
||||
shape_type = "path"
|
||||
legend_shape = go.layout.Shape(
|
||||
type=shape_type,
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x0=x0,
|
||||
y0=y0,
|
||||
x1=x1,
|
||||
y1=y1,
|
||||
xsizemode="pixel",
|
||||
ysizemode="pixel",
|
||||
xanchor=x,
|
||||
yanchor=y,
|
||||
path=path,
|
||||
**shape,
|
||||
)
|
||||
|
||||
elif single_mode == "lines":
|
||||
mode = "line"
|
||||
x1 = props["data"][1][0]
|
||||
y1 = props["data"][1][1]
|
||||
|
||||
legend_shape = go.layout.Shape(
|
||||
type=mode,
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x0=x,
|
||||
y0=y + 0.02,
|
||||
x1=x1,
|
||||
y1=y1 + 0.02,
|
||||
**shape,
|
||||
)
|
||||
else:
|
||||
self.msg += "not sure how to handle this element\n"
|
||||
return
|
||||
self.plotly_fig.add_shape(legend_shape)
|
||||
self.msg += " Heck yeah, I drew that shape\n"
|
||||
|
||||
def draw_marked_line(self, **props):
|
||||
"""Create a data dict for a line obj.
|
||||
|
||||
This will draw 'lines', 'markers', or 'lines+markers'. For legend elements,
|
||||
this will use layout.shapes, so they can be positioned with paper refs.
|
||||
|
||||
props.keys() -- [
|
||||
'coordinates', ('data', 'axes', 'figure', or 'display')
|
||||
'data', (a list of xy pairs)
|
||||
'mplobj', (the matplotlib.lines.Line2D obj being rendered)
|
||||
'label', (the name of the Line2D obj being rendered)
|
||||
'linestyle', (linestyle dict, can be None, see below)
|
||||
'markerstyle', (markerstyle dict, can be None, see below)
|
||||
]
|
||||
|
||||
props['linestyle'].keys() -- [
|
||||
'alpha', (opacity of Line2D obj)
|
||||
'color', (color of the line if it exists, not the marker)
|
||||
'linewidth',
|
||||
'dasharray', (code for linestyle, see DASH_MAP in mpltools.py)
|
||||
'zorder', (viewing precedence when stacked with other objects)
|
||||
]
|
||||
|
||||
props['markerstyle'].keys() -- [
|
||||
'alpha', (opacity of Line2D obj)
|
||||
'marker', (the mpl marker symbol, see SYMBOL_MAP in mpltools.py)
|
||||
'facecolor', (color of the marker face)
|
||||
'edgecolor', (color of the marker edge)
|
||||
'edgewidth', (width of marker edge)
|
||||
'markerpath', (an SVG path for drawing the specified marker)
|
||||
'zorder', (viewing precedence when stacked with other objects)
|
||||
]
|
||||
|
||||
"""
|
||||
self.msg += " Attempting to draw a line "
|
||||
line, marker, shape = {}, {}, {}
|
||||
if props["linestyle"] and props["markerstyle"]:
|
||||
self.msg += "... with both lines+markers\n"
|
||||
mode = "lines+markers"
|
||||
elif props["linestyle"]:
|
||||
self.msg += "... with just lines\n"
|
||||
mode = "lines"
|
||||
elif props["markerstyle"]:
|
||||
self.msg += "... with just markers\n"
|
||||
mode = "markers"
|
||||
if props["linestyle"]:
|
||||
color = mpltools.merge_color_and_opacity(
|
||||
props["linestyle"]["color"], props["linestyle"]["alpha"]
|
||||
)
|
||||
|
||||
if props["coordinates"] == "data":
|
||||
line = go.scatter.Line(
|
||||
color=color,
|
||||
width=props["linestyle"]["linewidth"],
|
||||
dash=mpltools.convert_dash(props["linestyle"]["dasharray"]),
|
||||
)
|
||||
else:
|
||||
shape = dict(
|
||||
line=dict(
|
||||
color=color,
|
||||
width=props["linestyle"]["linewidth"],
|
||||
dash=mpltools.convert_dash(props["linestyle"]["dasharray"]),
|
||||
)
|
||||
)
|
||||
if props["markerstyle"]:
|
||||
if props["coordinates"] == "data":
|
||||
marker = go.scatter.Marker(
|
||||
opacity=props["markerstyle"]["alpha"],
|
||||
color=props["markerstyle"]["facecolor"],
|
||||
symbol=mpltools.convert_symbol(props["markerstyle"]["marker"]),
|
||||
size=props["markerstyle"]["markersize"],
|
||||
line=dict(
|
||||
color=props["markerstyle"]["edgecolor"],
|
||||
width=props["markerstyle"]["edgewidth"],
|
||||
),
|
||||
)
|
||||
else:
|
||||
shape = dict(
|
||||
opacity=props["markerstyle"]["alpha"],
|
||||
fillcolor=props["markerstyle"]["facecolor"],
|
||||
symbol=mpltools.convert_symbol(props["markerstyle"]["marker"]),
|
||||
size=props["markerstyle"]["markersize"],
|
||||
line=dict(
|
||||
color=props["markerstyle"]["edgecolor"],
|
||||
width=props["markerstyle"]["edgewidth"],
|
||||
),
|
||||
)
|
||||
if props["coordinates"] == "data":
|
||||
marked_line = go.Scatter(
|
||||
mode=mode,
|
||||
name=(
|
||||
str(props["label"])
|
||||
if isinstance(props["label"], str)
|
||||
else props["label"]
|
||||
),
|
||||
x=[xy_pair[0] for xy_pair in props["data"]],
|
||||
y=[xy_pair[1] for xy_pair in props["data"]],
|
||||
xaxis="x{0}".format(self.axis_ct),
|
||||
yaxis="y{0}".format(self.axis_ct),
|
||||
line=line,
|
||||
marker=marker,
|
||||
)
|
||||
if self.x_is_mpl_date:
|
||||
formatter = (
|
||||
self.current_mpl_ax.get_xaxis()
|
||||
.get_major_formatter()
|
||||
.__class__.__name__
|
||||
)
|
||||
marked_line["x"] = mpltools.mpl_dates_to_datestrings(
|
||||
marked_line["x"], formatter
|
||||
)
|
||||
(self.plotly_fig.add_trace(marked_line),)
|
||||
self.msg += " Heck yeah, I drew that line\n"
|
||||
elif props["coordinates"] == "axes":
|
||||
# dealing with legend graphical elements
|
||||
self.draw_legend_shapes(mode=mode, shape=shape, **props)
|
||||
else:
|
||||
self.msg += " Line didn't have 'data' coordinates, not drawing\n"
|
||||
warnings.warn(
|
||||
"Bummer! Plotly can currently only draw Line2D "
|
||||
"objects from matplotlib that are in 'data' "
|
||||
"coordinates!"
|
||||
)
|
||||
|
||||
def draw_image(self, **props):
|
||||
"""Draw image.
|
||||
|
||||
Not implemented yet!
|
||||
|
||||
"""
|
||||
self.msg += " Attempting to draw image\n"
|
||||
self.msg += " Not drawing image\n"
|
||||
warnings.warn(
|
||||
"Aw. Snap! You're gonna have to hold off on "
|
||||
"the selfies for now. Plotly can't import "
|
||||
"images from matplotlib yet!"
|
||||
)
|
||||
|
||||
def draw_path_collection(self, **props):
|
||||
"""Add a path collection to data list as a scatter plot.
|
||||
|
||||
Current implementation defaults such collections as scatter plots.
|
||||
Matplotlib supports collections that have many of the same parameters
|
||||
in common like color, size, path, etc. However, they needn't all be
|
||||
the same. Plotly does not currently support such functionality and
|
||||
therefore, the style for the first object is taken and used to define
|
||||
the remaining paths in the collection.
|
||||
|
||||
props.keys() -- [
|
||||
'paths', (structure: [vertices, path_code])
|
||||
'path_coordinates', ('data', 'axes', 'figure', or 'display')
|
||||
'path_transforms', (mpl transform, including Affine2D matrix)
|
||||
'offsets', (offset from axes, helpful if in 'data')
|
||||
'offset_coordinates', ('data', 'axes', 'figure', or 'display')
|
||||
'offset_order',
|
||||
'styles', (style dict, see below)
|
||||
'mplobj' (the collection obj being drawn)
|
||||
]
|
||||
|
||||
props['styles'].keys() -- [
|
||||
'linewidth', (one or more linewidths)
|
||||
'facecolor', (one or more facecolors for path)
|
||||
'edgecolor', (one or more edgecolors for path)
|
||||
'alpha', (one or more opacites for path)
|
||||
'zorder', (precedence when stacked)
|
||||
]
|
||||
|
||||
"""
|
||||
self.msg += " Attempting to draw a path collection\n"
|
||||
if props["offset_coordinates"] == "data":
|
||||
markerstyle = mpltools.get_markerstyle_from_collection(props)
|
||||
scatter_props = {
|
||||
"coordinates": "data",
|
||||
"data": props["offsets"],
|
||||
"label": None,
|
||||
"markerstyle": markerstyle,
|
||||
"linestyle": None,
|
||||
}
|
||||
self.msg += " Drawing path collection as markers\n"
|
||||
self.draw_marked_line(**scatter_props)
|
||||
else:
|
||||
self.msg += " Path collection not linked to 'data', not drawing\n"
|
||||
warnings.warn(
|
||||
"Dang! That path collection is out of this "
|
||||
"world. I totally don't know what to do with "
|
||||
"it yet! Plotly can only import path "
|
||||
"collections linked to 'data' coordinates"
|
||||
)
|
||||
|
||||
def draw_path(self, **props):
|
||||
"""Draw path, currently only attempts to draw bar charts.
|
||||
|
||||
This function attempts to sort a given path into a collection of
|
||||
horizontal or vertical bar charts. Most of the actual code takes
|
||||
place in functions from mpltools.py.
|
||||
|
||||
props.keys() -- [
|
||||
'data', (a list of verticies for the path)
|
||||
'coordinates', ('data', 'axes', 'figure', or 'display')
|
||||
'pathcodes', (code for the path, structure: ['M', 'L', 'Z', etc.])
|
||||
'style', (style dict, see below)
|
||||
'mplobj' (the mpl path object)
|
||||
]
|
||||
|
||||
props['style'].keys() -- [
|
||||
'alpha', (opacity of path obj)
|
||||
'edgecolor',
|
||||
'facecolor',
|
||||
'edgewidth',
|
||||
'dasharray', (style for path's enclosing line)
|
||||
'zorder' (precedence of obj when stacked)
|
||||
]
|
||||
|
||||
"""
|
||||
self.msg += " Attempting to draw a path\n"
|
||||
is_bar = mpltools.is_bar(self.current_mpl_ax.containers, **props)
|
||||
if is_bar:
|
||||
self.current_bars += [props]
|
||||
else:
|
||||
self.msg += " This path isn't a bar, not drawing\n"
|
||||
warnings.warn(
|
||||
"I found a path object that I don't think is part "
|
||||
"of a bar chart. Ignoring."
|
||||
)
|
||||
|
||||
def draw_text(self, **props):
|
||||
"""Create an annotation dict for a text obj.
|
||||
|
||||
Currently, plotly uses either 'page' or 'data' to reference
|
||||
annotation locations. These refer to 'display' and 'data',
|
||||
respectively for the 'coordinates' key used in the Exporter.
|
||||
Appropriate measures are taken to transform text locations to
|
||||
reference one of these two options.
|
||||
|
||||
props.keys() -- [
|
||||
'text', (actual content string, not the text obj)
|
||||
'position', (an x, y pair, not an mpl Bbox)
|
||||
'coordinates', ('data', 'axes', 'figure', 'display')
|
||||
'text_type', ('title', 'xlabel', or 'ylabel')
|
||||
'style', (style dict, see below)
|
||||
'mplobj' (actual mpl text object)
|
||||
]
|
||||
|
||||
props['style'].keys() -- [
|
||||
'alpha', (opacity of text)
|
||||
'fontsize', (size in points of text)
|
||||
'color', (hex color)
|
||||
'halign', (horizontal alignment, 'left', 'center', or 'right')
|
||||
'valign', (vertical alignment, 'baseline', 'center', or 'top')
|
||||
'rotation',
|
||||
'zorder', (precedence of text when stacked with other objs)
|
||||
]
|
||||
|
||||
"""
|
||||
self.msg += " Attempting to draw an mpl text object\n"
|
||||
if not mpltools.check_corners(props["mplobj"], self.mpl_fig):
|
||||
warnings.warn(
|
||||
"Looks like the annotation(s) you are trying \n"
|
||||
"to draw lies/lay outside the given figure size.\n\n"
|
||||
"Therefore, the resulting Plotly figure may not be \n"
|
||||
"large enough to view the full text. To adjust \n"
|
||||
"the size of the figure, use the 'width' and \n"
|
||||
"'height' keys in the Layout object. Alternatively,\n"
|
||||
"use the Margin object to adjust the figure's margins."
|
||||
)
|
||||
align = props["mplobj"]._multialignment
|
||||
if not align:
|
||||
align = props["style"]["halign"] # mpl default
|
||||
if "annotations" not in self.plotly_fig["layout"]:
|
||||
self.plotly_fig["layout"]["annotations"] = []
|
||||
if props["text_type"] == "xlabel":
|
||||
self.msg += " Text object is an xlabel\n"
|
||||
self.draw_xlabel(**props)
|
||||
elif props["text_type"] == "ylabel":
|
||||
self.msg += " Text object is a ylabel\n"
|
||||
self.draw_ylabel(**props)
|
||||
elif props["text_type"] == "title":
|
||||
self.msg += " Text object is a title\n"
|
||||
self.draw_title(**props)
|
||||
else: # just a regular text annotation...
|
||||
self.msg += " Text object is a normal annotation\n"
|
||||
if props["coordinates"] != "data":
|
||||
self.msg += " Text object isn't linked to 'data' coordinates\n"
|
||||
x_px, y_px = (
|
||||
props["mplobj"].get_transform().transform(props["position"])
|
||||
)
|
||||
x, y = mpltools.display_to_paper(x_px, y_px, self.plotly_fig["layout"])
|
||||
xref = "paper"
|
||||
yref = "paper"
|
||||
xanchor = props["style"]["halign"] # no difference here!
|
||||
yanchor = mpltools.convert_va(props["style"]["valign"])
|
||||
else:
|
||||
self.msg += " Text object is linked to 'data' coordinates\n"
|
||||
x, y = props["position"]
|
||||
axis_ct = self.axis_ct
|
||||
xaxis = self.plotly_fig["layout"]["xaxis{0}".format(axis_ct)]
|
||||
yaxis = self.plotly_fig["layout"]["yaxis{0}".format(axis_ct)]
|
||||
if (
|
||||
xaxis["range"][0] < x < xaxis["range"][1]
|
||||
and yaxis["range"][0] < y < yaxis["range"][1]
|
||||
):
|
||||
xref = "x{0}".format(self.axis_ct)
|
||||
yref = "y{0}".format(self.axis_ct)
|
||||
else:
|
||||
self.msg += (
|
||||
" Text object is outside "
|
||||
"plotting area, making 'paper' reference.\n"
|
||||
)
|
||||
x_px, y_px = (
|
||||
props["mplobj"].get_transform().transform(props["position"])
|
||||
)
|
||||
x, y = mpltools.display_to_paper(
|
||||
x_px, y_px, self.plotly_fig["layout"]
|
||||
)
|
||||
xref = "paper"
|
||||
yref = "paper"
|
||||
xanchor = props["style"]["halign"] # no difference here!
|
||||
yanchor = mpltools.convert_va(props["style"]["valign"])
|
||||
annotation = go.layout.Annotation(
|
||||
text=(
|
||||
str(props["text"])
|
||||
if isinstance(props["text"], str)
|
||||
else props["text"]
|
||||
),
|
||||
opacity=props["style"]["alpha"],
|
||||
x=x,
|
||||
y=y,
|
||||
xref=xref,
|
||||
yref=yref,
|
||||
align=align,
|
||||
xanchor=xanchor,
|
||||
yanchor=yanchor,
|
||||
showarrow=False, # change this later?
|
||||
font=go.layout.annotation.Font(
|
||||
color=props["style"]["color"], size=props["style"]["fontsize"]
|
||||
),
|
||||
)
|
||||
self.plotly_fig["layout"]["annotations"] += (annotation,)
|
||||
self.msg += " Heck, yeah I drew that annotation\n"
|
||||
|
||||
def draw_title(self, **props):
|
||||
"""Add a title to the current subplot in layout dictionary.
|
||||
|
||||
If there exists more than a single plot in the figure, titles revert
|
||||
to 'page'-referenced annotations.
|
||||
|
||||
props.keys() -- [
|
||||
'text', (actual content string, not the text obj)
|
||||
'position', (an x, y pair, not an mpl Bbox)
|
||||
'coordinates', ('data', 'axes', 'figure', 'display')
|
||||
'text_type', ('title', 'xlabel', or 'ylabel')
|
||||
'style', (style dict, see below)
|
||||
'mplobj' (actual mpl text object)
|
||||
]
|
||||
|
||||
props['style'].keys() -- [
|
||||
'alpha', (opacity of text)
|
||||
'fontsize', (size in points of text)
|
||||
'color', (hex color)
|
||||
'halign', (horizontal alignment, 'left', 'center', or 'right')
|
||||
'valign', (vertical alignment, 'baseline', 'center', or 'top')
|
||||
'rotation',
|
||||
'zorder', (precedence of text when stacked with other objs)
|
||||
]
|
||||
|
||||
"""
|
||||
self.msg += " Attempting to draw a title\n"
|
||||
if len(self.mpl_fig.axes) > 1:
|
||||
self.msg += " More than one subplot, adding title as annotation\n"
|
||||
x_px, y_px = props["mplobj"].get_transform().transform(props["position"])
|
||||
x, y = mpltools.display_to_paper(x_px, y_px, self.plotly_fig["layout"])
|
||||
annotation = go.layout.Annotation(
|
||||
text=props["text"],
|
||||
font=go.layout.annotation.Font(
|
||||
color=props["style"]["color"], size=props["style"]["fontsize"]
|
||||
),
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=x,
|
||||
y=y,
|
||||
xanchor="center",
|
||||
yanchor="bottom",
|
||||
showarrow=False, # no arrow for a title!
|
||||
)
|
||||
self.plotly_fig["layout"]["annotations"] += (annotation,)
|
||||
else:
|
||||
self.msg += " Only one subplot found, adding as a plotly title\n"
|
||||
self.plotly_fig["layout"]["title"] = props["text"]
|
||||
title_font = dict(
|
||||
size=props["style"]["fontsize"], color=props["style"]["color"]
|
||||
)
|
||||
self.plotly_fig["layout"]["title_font"] = title_font
|
||||
|
||||
def draw_xlabel(self, **props):
|
||||
"""Add an xaxis label to the current subplot in layout dictionary.
|
||||
|
||||
props.keys() -- [
|
||||
'text', (actual content string, not the text obj)
|
||||
'position', (an x, y pair, not an mpl Bbox)
|
||||
'coordinates', ('data', 'axes', 'figure', 'display')
|
||||
'text_type', ('title', 'xlabel', or 'ylabel')
|
||||
'style', (style dict, see below)
|
||||
'mplobj' (actual mpl text object)
|
||||
]
|
||||
|
||||
props['style'].keys() -- [
|
||||
'alpha', (opacity of text)
|
||||
'fontsize', (size in points of text)
|
||||
'color', (hex color)
|
||||
'halign', (horizontal alignment, 'left', 'center', or 'right')
|
||||
'valign', (vertical alignment, 'baseline', 'center', or 'top')
|
||||
'rotation',
|
||||
'zorder', (precedence of text when stacked with other objs)
|
||||
]
|
||||
|
||||
"""
|
||||
self.msg += " Adding xlabel\n"
|
||||
axis_key = "xaxis{0}".format(self.axis_ct)
|
||||
self.plotly_fig["layout"][axis_key]["title"] = str(props["text"])
|
||||
title_font = dict(
|
||||
size=props["style"]["fontsize"], color=props["style"]["color"]
|
||||
)
|
||||
self.plotly_fig["layout"][axis_key]["title_font"] = title_font
|
||||
|
||||
def draw_ylabel(self, **props):
|
||||
"""Add a yaxis label to the current subplot in layout dictionary.
|
||||
|
||||
props.keys() -- [
|
||||
'text', (actual content string, not the text obj)
|
||||
'position', (an x, y pair, not an mpl Bbox)
|
||||
'coordinates', ('data', 'axes', 'figure', 'display')
|
||||
'text_type', ('title', 'xlabel', or 'ylabel')
|
||||
'style', (style dict, see below)
|
||||
'mplobj' (actual mpl text object)
|
||||
]
|
||||
|
||||
props['style'].keys() -- [
|
||||
'alpha', (opacity of text)
|
||||
'fontsize', (size in points of text)
|
||||
'color', (hex color)
|
||||
'halign', (horizontal alignment, 'left', 'center', or 'right')
|
||||
'valign', (vertical alignment, 'baseline', 'center', or 'top')
|
||||
'rotation',
|
||||
'zorder', (precedence of text when stacked with other objs)
|
||||
]
|
||||
|
||||
"""
|
||||
self.msg += " Adding ylabel\n"
|
||||
axis_key = "yaxis{0}".format(self.axis_ct)
|
||||
self.plotly_fig["layout"][axis_key]["title"] = props["text"]
|
||||
title_font = dict(
|
||||
size=props["style"]["fontsize"], color=props["style"]["color"]
|
||||
)
|
||||
self.plotly_fig["layout"][axis_key]["title_font"] = title_font
|
||||
|
||||
def resize(self):
|
||||
"""Revert figure layout to allow plotly to resize.
|
||||
|
||||
By default, PlotlyRenderer tries its hardest to precisely mimic an
|
||||
mpl figure. However, plotly is pretty good with aesthetics. By
|
||||
running PlotlyRenderer.resize(), layout parameters are deleted. This
|
||||
lets plotly choose them instead of mpl.
|
||||
|
||||
"""
|
||||
self.msg += "Resizing figure, deleting keys from layout\n"
|
||||
for key in ["width", "height", "autosize", "margin"]:
|
||||
try:
|
||||
del self.plotly_fig["layout"][key]
|
||||
except (KeyError, AttributeError):
|
||||
pass
|
||||
|
||||
def strip_style(self):
|
||||
self.msg += "Stripping mpl style is no longer supported\n"
|
Reference in New Issue
Block a user