done
This commit is contained in:
		| @ -0,0 +1,13 @@ | ||||
| from pandas.core.window.ewm import ( | ||||
|     ExponentialMovingWindow as ExponentialMovingWindow, | ||||
|     ExponentialMovingWindowGroupby as ExponentialMovingWindowGroupby, | ||||
| ) | ||||
| from pandas.core.window.expanding import ( | ||||
|     Expanding as Expanding, | ||||
|     ExpandingGroupby as ExpandingGroupby, | ||||
| ) | ||||
| from pandas.core.window.rolling import ( | ||||
|     Rolling as Rolling, | ||||
|     RollingGroupby as RollingGroupby, | ||||
|     Window as Window, | ||||
| ) | ||||
| @ -0,0 +1,69 @@ | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Series, | ||||
| ) | ||||
| from pandas.core.window.rolling import ( | ||||
|     BaseWindow, | ||||
|     BaseWindowGroupby, | ||||
| ) | ||||
|  | ||||
| from pandas._typing import ( | ||||
|     NDFrameT, | ||||
|     WindowingEngine, | ||||
|     WindowingEngineKwargs, | ||||
| ) | ||||
|  | ||||
| class ExponentialMovingWindow(BaseWindow[NDFrameT]): | ||||
|     def mean( | ||||
|         self, | ||||
|         numeric_only: bool = False, | ||||
|         engine: WindowingEngine = None, | ||||
|         engine_kwargs: WindowingEngineKwargs = None, | ||||
|     ) -> NDFrameT: ... | ||||
|     def sum( | ||||
|         self, | ||||
|         numeric_only: bool = False, | ||||
|         engine: WindowingEngine = None, | ||||
|         engine_kwargs: WindowingEngineKwargs = None, | ||||
|     ) -> NDFrameT: ... | ||||
|     def std(self, bias: bool = False, numeric_only: bool = False) -> NDFrameT: ... | ||||
|     def var(self, bias: bool = False, numeric_only: bool = False) -> NDFrameT: ... | ||||
|     def cov( | ||||
|         self, | ||||
|         other: DataFrame | Series | None = None, | ||||
|         pairwise: bool | None = None, | ||||
|         bias: bool = False, | ||||
|         numeric_only: bool = False, | ||||
|     ) -> NDFrameT: ... | ||||
|     def corr( | ||||
|         self, | ||||
|         other: DataFrame | Series | None = None, | ||||
|         pairwise: bool | None = None, | ||||
|         numeric_only: bool = False, | ||||
|     ) -> NDFrameT: ... | ||||
|  | ||||
| class ExponentialMovingWindowGroupby( | ||||
|     BaseWindowGroupby[NDFrameT], ExponentialMovingWindow[NDFrameT] | ||||
| ): ... | ||||
|  | ||||
| class OnlineExponentialMovingWindow(ExponentialMovingWindow[NDFrameT]): | ||||
|     def reset(self) -> None: ... | ||||
|     def aggregate(self, func, *args, **kwargs): ... | ||||
|     def std(self, bias: bool = False, *args, **kwargs): ...  # pyrefly: ignore | ||||
|     def corr( | ||||
|         self, | ||||
|         other: DataFrame | Series | None = None, | ||||
|         pairwise: bool | None = None, | ||||
|         numeric_only: bool = False, | ||||
|     ): ... | ||||
|     def cov( | ||||
|         self, | ||||
|         other: DataFrame | Series | None = None, | ||||
|         pairwise: bool | None = None, | ||||
|         bias: bool = False, | ||||
|         numeric_only: bool = False, | ||||
|     ): ... | ||||
|     def var(self, bias: bool = False, numeric_only: bool = False): ... | ||||
|     def mean(  # pyrefly: ignore | ||||
|         self, *args, update: NDFrameT | None = ..., update_times: None = ..., **kwargs | ||||
|     ) -> NDFrameT: ... | ||||
| @ -0,0 +1,9 @@ | ||||
| from pandas.core.window.rolling import ( | ||||
|     BaseWindowGroupby, | ||||
|     RollingAndExpandingMixin, | ||||
| ) | ||||
|  | ||||
| from pandas._typing import NDFrameT | ||||
|  | ||||
| class Expanding(RollingAndExpandingMixin[NDFrameT]): ... | ||||
| class ExpandingGroupby(BaseWindowGroupby[NDFrameT], Expanding[NDFrameT]): ... | ||||
| @ -0,0 +1,168 @@ | ||||
| from collections.abc import ( | ||||
|     Callable, | ||||
|     Iterator, | ||||
| ) | ||||
| import datetime as dt | ||||
| from typing import ( | ||||
|     Any, | ||||
|     overload, | ||||
| ) | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Index, | ||||
|     Series, | ||||
| ) | ||||
| from pandas.core.base import SelectionMixin | ||||
| from pandas.core.indexers import BaseIndexer | ||||
| from typing_extensions import Self | ||||
|  | ||||
| from pandas._libs.tslibs import BaseOffset | ||||
| from pandas._typing import ( | ||||
|     AggFuncTypeBase, | ||||
|     AggFuncTypeFrame, | ||||
|     AggFuncTypeSeriesToFrame, | ||||
|     AxisInt, | ||||
|     CalculationMethod, | ||||
|     IntervalClosedType, | ||||
|     NDFrameT, | ||||
|     QuantileInterpolation, | ||||
|     WindowingEngine, | ||||
|     WindowingEngineKwargs, | ||||
|     WindowingRankType, | ||||
| ) | ||||
|  | ||||
| class BaseWindow(SelectionMixin[NDFrameT]): | ||||
|     on: str | Index | None | ||||
|     closed: IntervalClosedType | None | ||||
|     step: int | None | ||||
|     window: int | dt.timedelta | str | BaseOffset | BaseIndexer | None | ||||
|     min_periods: int | None | ||||
|     center: bool | None | ||||
|     win_type: str | None | ||||
|     axis: AxisInt | ||||
|     method: CalculationMethod | ||||
|     def __getitem__(self, key) -> Self: ... | ||||
|     def __getattr__(self, attr: str) -> Self: ... | ||||
|     def __iter__(self) -> Iterator[NDFrameT]: ... | ||||
|     @overload | ||||
|     def aggregate( | ||||
|         self: BaseWindow[Series], func: AggFuncTypeBase, *args: Any, **kwargs: Any | ||||
|     ) -> Series: ... | ||||
|     @overload | ||||
|     def aggregate( | ||||
|         self: BaseWindow[Series], | ||||
|         func: AggFuncTypeSeriesToFrame, | ||||
|         *args: Any, | ||||
|         **kwargs: Any, | ||||
|     ) -> DataFrame: ... | ||||
|     @overload | ||||
|     def aggregate( | ||||
|         self: BaseWindow[DataFrame], | ||||
|         func: AggFuncTypeFrame, | ||||
|         *args: Any, | ||||
|         **kwargs: Any, | ||||
|     ) -> DataFrame: ... | ||||
|     agg = aggregate | ||||
|  | ||||
| class BaseWindowGroupby(BaseWindow[NDFrameT]): ... | ||||
|  | ||||
| class Window(BaseWindow[NDFrameT]): | ||||
|     def sum(self, numeric_only: bool = False, **kwargs: Any) -> NDFrameT: ... | ||||
|     def mean(self, numeric_only: bool = False, **kwargs: Any) -> NDFrameT: ... | ||||
|     def var( | ||||
|         self, ddof: int = ..., numeric_only: bool = False, **kwargs: Any | ||||
|     ) -> NDFrameT: ... | ||||
|     def std( | ||||
|         self, ddof: int = ..., numeric_only: bool = False, **kwargs: Any | ||||
|     ) -> NDFrameT: ... | ||||
|  | ||||
| class RollingAndExpandingMixin(BaseWindow[NDFrameT]): | ||||
|     def count(self, numeric_only: bool = ...) -> NDFrameT: ... | ||||
|     def apply( | ||||
|         self, | ||||
|         func: Callable[..., Any], | ||||
|         raw: bool = ..., | ||||
|         engine: WindowingEngine = ..., | ||||
|         engine_kwargs: WindowingEngineKwargs = ..., | ||||
|         args: tuple[Any, ...] | None = ..., | ||||
|         kwargs: dict[str, Any] | None = ..., | ||||
|     ) -> NDFrameT: ... | ||||
|     def sum( | ||||
|         self, | ||||
|         numeric_only: bool = ..., | ||||
|         engine: WindowingEngine = ..., | ||||
|         engine_kwargs: WindowingEngineKwargs = ..., | ||||
|     ) -> NDFrameT: ... | ||||
|     def max( | ||||
|         self, | ||||
|         numeric_only: bool = ..., | ||||
|         *args, | ||||
|         engine: WindowingEngine = ..., | ||||
|         engine_kwargs: WindowingEngineKwargs = ..., | ||||
|     ) -> NDFrameT: ... | ||||
|     def min( | ||||
|         self, | ||||
|         numeric_only: bool = ..., | ||||
|         engine: WindowingEngine = ..., | ||||
|         engine_kwargs: WindowingEngineKwargs = ..., | ||||
|     ) -> NDFrameT: ... | ||||
|     def mean( | ||||
|         self, | ||||
|         numeric_only: bool = ..., | ||||
|         engine: WindowingEngine = ..., | ||||
|         engine_kwargs: WindowingEngineKwargs = ..., | ||||
|     ) -> NDFrameT: ... | ||||
|     def median( | ||||
|         self, | ||||
|         numeric_only: bool = ..., | ||||
|         engine: WindowingEngine = ..., | ||||
|         engine_kwargs: WindowingEngineKwargs = ..., | ||||
|     ) -> NDFrameT: ... | ||||
|     def std( | ||||
|         self, | ||||
|         ddof: int = ..., | ||||
|         numeric_only: bool = ..., | ||||
|         engine: WindowingEngine = ..., | ||||
|         engine_kwargs: WindowingEngineKwargs = ..., | ||||
|     ) -> NDFrameT: ... | ||||
|     def var( | ||||
|         self, | ||||
|         ddof: int = ..., | ||||
|         numeric_only: bool = ..., | ||||
|         engine: WindowingEngine = ..., | ||||
|         engine_kwargs: WindowingEngineKwargs = ..., | ||||
|     ) -> NDFrameT: ... | ||||
|     def skew(self, numeric_only: bool = ...) -> NDFrameT: ... | ||||
|     def sem(self, ddof: int = ..., numeric_only: bool = ...) -> NDFrameT: ... | ||||
|     def kurt(self, numeric_only: bool = ...) -> NDFrameT: ... | ||||
|     def quantile( | ||||
|         self, | ||||
|         q: float, | ||||
|         interpolation: QuantileInterpolation = ..., | ||||
|         numeric_only: bool = ..., | ||||
|     ) -> NDFrameT: ... | ||||
|     def rank( | ||||
|         self, | ||||
|         method: WindowingRankType = ..., | ||||
|         ascending: bool = ..., | ||||
|         pct: bool = ..., | ||||
|         numeric_only: bool = ..., | ||||
|     ) -> NDFrameT: ... | ||||
|     def cov( | ||||
|         self, | ||||
|         other: DataFrame | Series | None = ..., | ||||
|         pairwise: bool | None = ..., | ||||
|         ddof: int = ..., | ||||
|         numeric_only: bool = ..., | ||||
|     ) -> NDFrameT: ... | ||||
|     def corr( | ||||
|         self, | ||||
|         other: DataFrame | Series | None = ..., | ||||
|         pairwise: bool | None = ..., | ||||
|         ddof: int = ..., | ||||
|         numeric_only: bool = ..., | ||||
|     ) -> NDFrameT: ... | ||||
|  | ||||
| class Rolling(RollingAndExpandingMixin[NDFrameT]): ... | ||||
| class RollingGroupby(BaseWindowGroupby[NDFrameT], Rolling[NDFrameT]): ... | ||||
		Reference in New Issue
	
	Block a user