done
This commit is contained in:
		| @ -0,0 +1,24 @@ | ||||
| from pandas.core.reshape.concat import concat as concat | ||||
| from pandas.core.reshape.encoding import ( | ||||
|     from_dummies as from_dummies, | ||||
|     get_dummies as get_dummies, | ||||
| ) | ||||
| from pandas.core.reshape.melt import ( | ||||
|     lreshape as lreshape, | ||||
|     melt as melt, | ||||
|     wide_to_long as wide_to_long, | ||||
| ) | ||||
| from pandas.core.reshape.merge import ( | ||||
|     merge as merge, | ||||
|     merge_asof as merge_asof, | ||||
|     merge_ordered as merge_ordered, | ||||
| ) | ||||
| from pandas.core.reshape.pivot import ( | ||||
|     crosstab as crosstab, | ||||
|     pivot as pivot, | ||||
|     pivot_table as pivot_table, | ||||
| ) | ||||
| from pandas.core.reshape.tile import ( | ||||
|     cut as cut, | ||||
|     qcut as qcut, | ||||
| ) | ||||
| @ -0,0 +1,179 @@ | ||||
| from collections.abc import ( | ||||
|     Iterable, | ||||
|     Mapping, | ||||
|     Sequence, | ||||
| ) | ||||
| from typing import ( | ||||
|     Literal, | ||||
|     overload, | ||||
| ) | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Series, | ||||
| ) | ||||
| from typing_extensions import Never | ||||
|  | ||||
| from pandas._typing import ( | ||||
|     S2, | ||||
|     Axis, | ||||
|     AxisIndex, | ||||
|     HashableT1, | ||||
|     HashableT2, | ||||
|     HashableT3, | ||||
|     HashableT4, | ||||
| ) | ||||
|  | ||||
| @overload | ||||
| def concat(  # type: ignore[overload-overlap] | ||||
|     objs: Iterable[DataFrame] | Mapping[HashableT1, DataFrame], | ||||
|     *, | ||||
|     axis: Axis = ..., | ||||
|     join: Literal["inner", "outer"] = ..., | ||||
|     ignore_index: bool = ..., | ||||
|     keys: Iterable[HashableT2] | None = ..., | ||||
|     levels: Sequence[list[HashableT3] | tuple[HashableT3, ...]] | None = ..., | ||||
|     names: list[HashableT4] | None = ..., | ||||
|     verify_integrity: bool = ..., | ||||
|     sort: bool = ..., | ||||
|     copy: bool = ..., | ||||
| ) -> DataFrame: ... | ||||
| @overload | ||||
| def concat(  # pyright: ignore[reportOverlappingOverload] | ||||
|     objs: Iterable[Series[S2]], | ||||
|     *, | ||||
|     axis: AxisIndex = ..., | ||||
|     join: Literal["inner", "outer"] = ..., | ||||
|     ignore_index: bool = ..., | ||||
|     keys: Iterable[HashableT2] | None = ..., | ||||
|     levels: Sequence[list[HashableT3] | tuple[HashableT3, ...]] | None = ..., | ||||
|     names: list[HashableT4] | None = ..., | ||||
|     verify_integrity: bool = ..., | ||||
|     sort: bool = ..., | ||||
|     copy: bool = ..., | ||||
| ) -> Series[S2]: ... | ||||
| @overload | ||||
| def concat(  # type: ignore[overload-overlap] | ||||
|     objs: Iterable[Series] | Mapping[HashableT1, Series], | ||||
|     *, | ||||
|     axis: AxisIndex = ..., | ||||
|     join: Literal["inner", "outer"] = ..., | ||||
|     ignore_index: bool = ..., | ||||
|     keys: Iterable[HashableT2] | None = ..., | ||||
|     levels: Sequence[list[HashableT3] | tuple[HashableT3, ...]] | None = ..., | ||||
|     names: list[HashableT4] | None = ..., | ||||
|     verify_integrity: bool = ..., | ||||
|     sort: bool = ..., | ||||
|     copy: bool = ..., | ||||
| ) -> Series: ... | ||||
| @overload | ||||
| def concat(  # type: ignore[overload-overlap] # pyright: ignore[reportOverlappingOverload] | ||||
|     objs: Iterable[Series | DataFrame] | Mapping[HashableT1, Series | DataFrame], | ||||
|     *, | ||||
|     axis: Axis = ..., | ||||
|     join: Literal["inner", "outer"] = ..., | ||||
|     ignore_index: bool = ..., | ||||
|     keys: Iterable[HashableT2] | None = ..., | ||||
|     levels: Sequence[list[HashableT3] | tuple[HashableT3, ...]] | None = ..., | ||||
|     names: list[HashableT4] | None = ..., | ||||
|     verify_integrity: bool = ..., | ||||
|     sort: bool = ..., | ||||
|     copy: bool = ..., | ||||
| ) -> DataFrame: ... | ||||
| @overload | ||||
| def concat( | ||||
|     objs: Iterable[None] | Mapping[HashableT1, None], | ||||
|     *, | ||||
|     axis: Axis = ..., | ||||
|     join: Literal["inner", "outer"] = ..., | ||||
|     ignore_index: bool = ..., | ||||
|     keys: Iterable[HashableT2] | None = ..., | ||||
|     levels: Sequence[list[HashableT3] | tuple[HashableT3, ...]] | None = ..., | ||||
|     names: list[HashableT4] | None = ..., | ||||
|     verify_integrity: bool = ..., | ||||
|     sort: bool = ..., | ||||
|     copy: bool = ..., | ||||
| ) -> Never: ... | ||||
| @overload | ||||
| def concat(  # type: ignore[overload-overlap] | ||||
|     objs: Iterable[DataFrame | None] | Mapping[HashableT1, DataFrame | None], | ||||
|     *, | ||||
|     axis: Axis = ..., | ||||
|     join: Literal["inner", "outer"] = ..., | ||||
|     ignore_index: bool = ..., | ||||
|     keys: Iterable[HashableT2] | None = ..., | ||||
|     levels: Sequence[list[HashableT3] | tuple[HashableT3, ...]] | None = ..., | ||||
|     names: list[HashableT4] | None = ..., | ||||
|     verify_integrity: bool = ..., | ||||
|     sort: bool = ..., | ||||
|     copy: bool = ..., | ||||
| ) -> DataFrame: ... | ||||
| @overload | ||||
| def concat(  # type: ignore[overload-overlap] | ||||
|     objs: Iterable[Series | None] | Mapping[HashableT1, Series | None], | ||||
|     *, | ||||
|     axis: AxisIndex = ..., | ||||
|     join: Literal["inner", "outer"] = ..., | ||||
|     ignore_index: bool = ..., | ||||
|     keys: Iterable[HashableT2] | None = ..., | ||||
|     levels: Sequence[list[HashableT3] | tuple[HashableT3, ...]] | None = ..., | ||||
|     names: list[HashableT4] | None = ..., | ||||
|     verify_integrity: bool = ..., | ||||
|     sort: bool = ..., | ||||
|     copy: bool = ..., | ||||
| ) -> Series: ... | ||||
| @overload | ||||
| def concat( | ||||
|     objs: ( | ||||
|         Iterable[Series | DataFrame | None] | ||||
|         | Mapping[HashableT1, Series | DataFrame | None] | ||||
|     ), | ||||
|     *, | ||||
|     axis: Axis = ..., | ||||
|     join: Literal["inner", "outer"] = ..., | ||||
|     ignore_index: bool = ..., | ||||
|     keys: Iterable[HashableT2] | None = ..., | ||||
|     levels: Sequence[list[HashableT3] | tuple[HashableT3, ...]] | None = ..., | ||||
|     names: list[HashableT4] | None = ..., | ||||
|     verify_integrity: bool = ..., | ||||
|     sort: bool = ..., | ||||
|     copy: bool = ..., | ||||
| ) -> DataFrame: ... | ||||
|  | ||||
| # Including either of the next 2 overloads causes mypy to complain about | ||||
| # test_pandas.py:test_types_concat() in assert_type(pd.concat([s, s2]), pd.Series) | ||||
| # It thinks that pd.concat([s, s2]) is Any .  May be due to Series being | ||||
| # Generic, or the axis argument being unspecified, and then there is partial | ||||
| # overlap with the first 2 overloads. | ||||
| # | ||||
| # @overload | ||||
| # def concat( | ||||
| #     objs: Union[ | ||||
| #         Iterable[Union[Series, DataFrame]], Mapping[HashableT, Union[Series, DataFrame]] | ||||
| #     ], | ||||
| #     axis: Literal[0, "index"] = ..., | ||||
| #     join: str = ..., | ||||
| #     ignore_index: bool = ..., | ||||
| #     keys=..., | ||||
| #     levels=..., | ||||
| #     names=..., | ||||
| #     verify_integrity: bool = ..., | ||||
| #     sort: bool = ..., | ||||
| #     copy: bool = ..., | ||||
| # ) -> Union[DataFrame, Series]: ... | ||||
|  | ||||
| # @overload | ||||
| # def concat( | ||||
| #     objs: Union[ | ||||
| #         Iterable[Union[Series, DataFrame]], Mapping[HashableT, Union[Series, DataFrame]] | ||||
| #     ], | ||||
| #     axis: Axis = ..., | ||||
| #     join: str = ..., | ||||
| #     ignore_index: bool = ..., | ||||
| #     keys=..., | ||||
| #     levels=..., | ||||
| #     names=..., | ||||
| #     verify_integrity: bool = ..., | ||||
| #     sort: bool = ..., | ||||
| #     copy: bool = ..., | ||||
| # ) -> Union[DataFrame, Series]: ... | ||||
| @ -0,0 +1,29 @@ | ||||
| from collections.abc import ( | ||||
|     Hashable, | ||||
|     Iterable, | ||||
| ) | ||||
|  | ||||
| from pandas import DataFrame | ||||
|  | ||||
| from pandas._typing import ( | ||||
|     AnyArrayLike, | ||||
|     Dtype, | ||||
|     HashableT1, | ||||
|     HashableT2, | ||||
| ) | ||||
|  | ||||
| def get_dummies( | ||||
|     data: AnyArrayLike | DataFrame, | ||||
|     prefix: str | Iterable[str] | dict[HashableT1, str] | None = None, | ||||
|     prefix_sep: str = "_", | ||||
|     dummy_na: bool = False, | ||||
|     columns: list[HashableT2] | None = None, | ||||
|     sparse: bool = False, | ||||
|     drop_first: bool = False, | ||||
|     dtype: Dtype | None = None, | ||||
| ) -> DataFrame: ... | ||||
| def from_dummies( | ||||
|     data: DataFrame, | ||||
|     sep: str | None = None, | ||||
|     default_category: Hashable | dict[str, Hashable] | None = None, | ||||
| ) -> DataFrame: ... | ||||
| @ -0,0 +1,29 @@ | ||||
| from collections.abc import Hashable | ||||
|  | ||||
| import numpy as np | ||||
| from pandas.core.frame import DataFrame | ||||
|  | ||||
| from pandas._typing import HashableT | ||||
|  | ||||
| def melt( | ||||
|     frame: DataFrame, | ||||
|     id_vars: tuple | list | np.ndarray | None = None, | ||||
|     value_vars: tuple | list | np.ndarray | None = None, | ||||
|     var_name: str | None = None, | ||||
|     value_name: Hashable = "value", | ||||
|     col_level: int | str | None = None, | ||||
|     ignore_index: bool = True, | ||||
| ) -> DataFrame: ... | ||||
| def lreshape( | ||||
|     data: DataFrame, | ||||
|     groups: dict[HashableT, list[HashableT]], | ||||
|     dropna: bool = True, | ||||
| ) -> DataFrame: ... | ||||
| def wide_to_long( | ||||
|     df: DataFrame, | ||||
|     stubnames: str | list[str], | ||||
|     i: str | list[str], | ||||
|     j: str, | ||||
|     sep: str = "", | ||||
|     suffix: str = "\\d+", | ||||
| ) -> DataFrame: ... | ||||
| @ -0,0 +1,93 @@ | ||||
| from datetime import timedelta | ||||
| from typing import ( | ||||
|     Literal, | ||||
|     overload, | ||||
| ) | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Series, | ||||
|     Timedelta, | ||||
| ) | ||||
|  | ||||
| from pandas._typing import ( | ||||
|     AnyArrayLike, | ||||
|     HashableT, | ||||
|     JoinHow, | ||||
|     Label, | ||||
|     MergeHow, | ||||
|     Suffixes, | ||||
|     ValidationOptions, | ||||
| ) | ||||
|  | ||||
| def merge( | ||||
|     left: DataFrame | Series, | ||||
|     right: DataFrame | Series, | ||||
|     how: MergeHow = "inner", | ||||
|     on: Label | list[HashableT] | AnyArrayLike | None = None, | ||||
|     left_on: Label | list[HashableT] | AnyArrayLike | None = None, | ||||
|     right_on: Label | list[HashableT] | AnyArrayLike | None = None, | ||||
|     left_index: bool = False, | ||||
|     right_index: bool = False, | ||||
|     sort: bool = False, | ||||
|     suffixes: Suffixes = ..., | ||||
|     indicator: bool | str = False, | ||||
|     validate: ValidationOptions | None = None, | ||||
| ) -> DataFrame: ... | ||||
| @overload | ||||
| def merge_ordered( | ||||
|     left: DataFrame, | ||||
|     right: DataFrame, | ||||
|     on: Label | list[HashableT] | None = ..., | ||||
|     left_on: Label | list[HashableT] | None = ..., | ||||
|     right_on: Label | list[HashableT] | None = ..., | ||||
|     left_by: Label | list[HashableT] | None = ..., | ||||
|     right_by: Label | list[HashableT] | None = ..., | ||||
|     fill_method: Literal["ffill"] | None = ..., | ||||
|     suffixes: Suffixes = ..., | ||||
|     how: JoinHow = ..., | ||||
| ) -> DataFrame: ... | ||||
| @overload | ||||
| def merge_ordered( | ||||
|     left: Series, | ||||
|     right: DataFrame | Series, | ||||
|     on: Label | list[HashableT] | None = ..., | ||||
|     left_on: Label | list[HashableT] | None = ..., | ||||
|     right_on: Label | list[HashableT] | None = ..., | ||||
|     left_by: None = ..., | ||||
|     right_by: None = ..., | ||||
|     fill_method: Literal["ffill"] | None = ..., | ||||
|     suffixes: ( | ||||
|         list[str | None] | tuple[str, str] | tuple[None, str] | tuple[str, None] | ||||
|     ) = ..., | ||||
|     how: JoinHow = ..., | ||||
| ) -> DataFrame: ... | ||||
| @overload | ||||
| def merge_ordered( | ||||
|     left: DataFrame | Series, | ||||
|     right: Series, | ||||
|     on: Label | list[HashableT] | None = ..., | ||||
|     left_on: Label | list[HashableT] | None = ..., | ||||
|     right_on: Label | list[HashableT] | None = ..., | ||||
|     left_by: None = ..., | ||||
|     right_by: None = ..., | ||||
|     fill_method: Literal["ffill"] | None = ..., | ||||
|     suffixes: Suffixes = ..., | ||||
|     how: JoinHow = ..., | ||||
| ) -> DataFrame: ... | ||||
| def merge_asof( | ||||
|     left: DataFrame | Series, | ||||
|     right: DataFrame | Series, | ||||
|     on: Label | None = None, | ||||
|     left_on: Label | None = None, | ||||
|     right_on: Label | None = None, | ||||
|     left_index: bool = False, | ||||
|     right_index: bool = False, | ||||
|     by: Label | list[HashableT] | None = None, | ||||
|     left_by: Label | list[HashableT] | None = None, | ||||
|     right_by: Label | list[HashableT] | None = None, | ||||
|     suffixes: Suffixes = ..., | ||||
|     tolerance: int | timedelta | Timedelta | None = None, | ||||
|     allow_exact_matches: bool = True, | ||||
|     direction: Literal["backward", "forward", "nearest"] = "backward", | ||||
| ) -> DataFrame: ... | ||||
							
								
								
									
										149
									
								
								lib/python3.11/site-packages/pandas-stubs/core/reshape/pivot.pyi
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										149
									
								
								lib/python3.11/site-packages/pandas-stubs/core/reshape/pivot.pyi
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,149 @@ | ||||
| from collections.abc import ( | ||||
|     Callable, | ||||
|     Hashable, | ||||
|     Mapping, | ||||
|     Sequence, | ||||
| ) | ||||
| import datetime | ||||
| from typing import ( | ||||
|     Literal, | ||||
|     overload, | ||||
| ) | ||||
|  | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| from pandas.core.frame import DataFrame | ||||
| from pandas.core.groupby.grouper import Grouper | ||||
| from pandas.core.indexes.base import Index | ||||
| from pandas.core.series import Series | ||||
| from typing_extensions import TypeAlias | ||||
|  | ||||
| from pandas._typing import ( | ||||
|     AnyArrayLike, | ||||
|     ArrayLike, | ||||
|     HashableT1, | ||||
|     HashableT2, | ||||
|     HashableT3, | ||||
|     Label, | ||||
|     Scalar, | ||||
|     ScalarT, | ||||
|     npt, | ||||
| ) | ||||
|  | ||||
| _PivotAggCallable: TypeAlias = Callable[[Series], ScalarT] | ||||
|  | ||||
| _PivotAggFunc: TypeAlias = ( | ||||
|     _PivotAggCallable | ||||
|     | np.ufunc | ||||
|     | Literal["mean", "sum", "count", "min", "max", "median", "std", "var"] | ||||
| ) | ||||
|  | ||||
| _NonIterableHashable: TypeAlias = ( | ||||
|     str | ||||
|     | datetime.date | ||||
|     | datetime.datetime | ||||
|     | datetime.timedelta | ||||
|     | bool | ||||
|     | int | ||||
|     | float | ||||
|     | complex | ||||
|     | pd.Timestamp | ||||
|     | pd.Timedelta | ||||
| ) | ||||
|  | ||||
| _PivotTableIndexTypes: TypeAlias = ( | ||||
|     Label | Sequence[HashableT1] | Series | Grouper | None | ||||
| ) | ||||
| _PivotTableColumnsTypes: TypeAlias = ( | ||||
|     Label | Sequence[HashableT2] | Series | Grouper | None | ||||
| ) | ||||
| _PivotTableValuesTypes: TypeAlias = Label | Sequence[HashableT3] | None | ||||
|  | ||||
| _ExtendedAnyArrayLike: TypeAlias = AnyArrayLike | ArrayLike | ||||
|  | ||||
| @overload | ||||
| def pivot_table( | ||||
|     data: DataFrame, | ||||
|     values: _PivotTableValuesTypes = ..., | ||||
|     index: _PivotTableIndexTypes = ..., | ||||
|     columns: _PivotTableColumnsTypes = ..., | ||||
|     aggfunc: ( | ||||
|         _PivotAggFunc | Sequence[_PivotAggFunc] | Mapping[Hashable, _PivotAggFunc] | ||||
|     ) = ..., | ||||
|     fill_value: Scalar | None = ..., | ||||
|     margins: bool = ..., | ||||
|     dropna: bool = ..., | ||||
|     margins_name: str = ..., | ||||
|     observed: bool = ..., | ||||
|     sort: bool = ..., | ||||
| ) -> DataFrame: ... | ||||
|  | ||||
| # Can only use Index or ndarray when index or columns is a Grouper | ||||
| @overload | ||||
| def pivot_table( | ||||
|     data: DataFrame, | ||||
|     values: _PivotTableValuesTypes = ..., | ||||
|     *, | ||||
|     index: Grouper, | ||||
|     columns: _PivotTableColumnsTypes | Index | npt.NDArray = ..., | ||||
|     aggfunc: ( | ||||
|         _PivotAggFunc | Sequence[_PivotAggFunc] | Mapping[Hashable, _PivotAggFunc] | ||||
|     ) = ..., | ||||
|     fill_value: Scalar | None = ..., | ||||
|     margins: bool = ..., | ||||
|     dropna: bool = ..., | ||||
|     margins_name: str = ..., | ||||
|     observed: bool = ..., | ||||
|     sort: bool = ..., | ||||
| ) -> DataFrame: ... | ||||
| @overload | ||||
| def pivot_table( | ||||
|     data: DataFrame, | ||||
|     values: _PivotTableValuesTypes = ..., | ||||
|     index: _PivotTableIndexTypes | Index | npt.NDArray = ..., | ||||
|     *, | ||||
|     columns: Grouper, | ||||
|     aggfunc: ( | ||||
|         _PivotAggFunc | Sequence[_PivotAggFunc] | Mapping[Hashable, _PivotAggFunc] | ||||
|     ) = ..., | ||||
|     fill_value: Scalar | None = ..., | ||||
|     margins: bool = ..., | ||||
|     dropna: bool = ..., | ||||
|     margins_name: str = ..., | ||||
|     observed: bool = ..., | ||||
|     sort: bool = ..., | ||||
| ) -> DataFrame: ... | ||||
| def pivot( | ||||
|     data: DataFrame, | ||||
|     *, | ||||
|     index: _NonIterableHashable | Sequence[HashableT1] = ..., | ||||
|     columns: _NonIterableHashable | Sequence[HashableT2] = ..., | ||||
|     values: _NonIterableHashable | Sequence[HashableT3] = ..., | ||||
| ) -> DataFrame: ... | ||||
| @overload | ||||
| def crosstab( | ||||
|     index: list | _ExtendedAnyArrayLike | list[Sequence | _ExtendedAnyArrayLike], | ||||
|     columns: list | _ExtendedAnyArrayLike | list[Sequence | _ExtendedAnyArrayLike], | ||||
|     values: list | _ExtendedAnyArrayLike, | ||||
|     rownames: list[HashableT1] | None = ..., | ||||
|     colnames: list[HashableT2] | None = ..., | ||||
|     *, | ||||
|     aggfunc: str | np.ufunc | Callable[[Series], float], | ||||
|     margins: bool = ..., | ||||
|     margins_name: str = ..., | ||||
|     dropna: bool = ..., | ||||
|     normalize: bool | Literal[0, 1, "all", "index", "columns"] = ..., | ||||
| ) -> DataFrame: ... | ||||
| @overload | ||||
| def crosstab( | ||||
|     index: list | _ExtendedAnyArrayLike | list[Sequence | _ExtendedAnyArrayLike], | ||||
|     columns: list | _ExtendedAnyArrayLike | list[Sequence | _ExtendedAnyArrayLike], | ||||
|     values: None = ..., | ||||
|     rownames: list[HashableT1] | None = ..., | ||||
|     colnames: list[HashableT2] | None = ..., | ||||
|     aggfunc: None = ..., | ||||
|     margins: bool = ..., | ||||
|     margins_name: str = ..., | ||||
|     dropna: bool = ..., | ||||
|     normalize: bool | Literal[0, 1, "all", "index", "columns"] = ..., | ||||
| ) -> DataFrame: ... | ||||
							
								
								
									
										273
									
								
								lib/python3.11/site-packages/pandas-stubs/core/reshape/tile.pyi
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										273
									
								
								lib/python3.11/site-packages/pandas-stubs/core/reshape/tile.pyi
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,273 @@ | ||||
| from collections.abc import Sequence | ||||
| from typing import ( | ||||
|     Literal, | ||||
|     overload, | ||||
| ) | ||||
|  | ||||
| import numpy as np | ||||
| from pandas import ( | ||||
|     Categorical, | ||||
|     CategoricalDtype, | ||||
|     DatetimeIndex, | ||||
|     Index, | ||||
|     Interval, | ||||
|     IntervalIndex, | ||||
|     Series, | ||||
|     Timestamp, | ||||
| ) | ||||
| from pandas.core.series import TimestampSeries | ||||
|  | ||||
| from pandas._typing import ( | ||||
|     IntervalT, | ||||
|     Label, | ||||
|     npt, | ||||
| ) | ||||
|  | ||||
| @overload | ||||
| def cut( | ||||
|     x: Index | npt.NDArray | Sequence[int] | Sequence[float], | ||||
|     bins: int | Series | Index[int] | Index[float] | Sequence[int] | Sequence[float], | ||||
|     right: bool = ..., | ||||
|     *, | ||||
|     labels: Literal[False], | ||||
|     retbins: Literal[True], | ||||
|     precision: int = ..., | ||||
|     include_lowest: bool = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
|     ordered: bool = ..., | ||||
| ) -> tuple[npt.NDArray[np.intp], npt.NDArray]: ... | ||||
| @overload | ||||
| def cut( | ||||
|     x: Index | npt.NDArray | Sequence[int] | Sequence[float], | ||||
|     bins: IntervalIndex[IntervalT], | ||||
|     right: bool = ..., | ||||
|     *, | ||||
|     labels: Literal[False], | ||||
|     retbins: Literal[True], | ||||
|     precision: int = ..., | ||||
|     include_lowest: bool = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
|     ordered: bool = ..., | ||||
| ) -> tuple[npt.NDArray[np.intp], IntervalIndex[IntervalT]]: ... | ||||
| @overload | ||||
| def cut(  # pyright: ignore[reportOverlappingOverload] | ||||
|     x: TimestampSeries, | ||||
|     bins: ( | ||||
|         int | ||||
|         | TimestampSeries | ||||
|         | DatetimeIndex | ||||
|         | Sequence[Timestamp] | ||||
|         | Sequence[np.datetime64] | ||||
|     ), | ||||
|     right: bool = ..., | ||||
|     labels: Literal[False] | Sequence[Label] | None = ..., | ||||
|     *, | ||||
|     retbins: Literal[True], | ||||
|     precision: int = ..., | ||||
|     include_lowest: bool = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
|     ordered: bool = ..., | ||||
| ) -> tuple[Series, DatetimeIndex]: ... | ||||
| @overload | ||||
| def cut( | ||||
|     x: TimestampSeries, | ||||
|     bins: IntervalIndex[Interval[Timestamp]], | ||||
|     right: bool = ..., | ||||
|     labels: Sequence[Label] | None = ..., | ||||
|     *, | ||||
|     retbins: Literal[True], | ||||
|     precision: int = ..., | ||||
|     include_lowest: bool = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
|     ordered: bool = ..., | ||||
| ) -> tuple[Series, DatetimeIndex]: ... | ||||
| @overload | ||||
| def cut( | ||||
|     x: Series, | ||||
|     bins: int | Series | Index[int] | Index[float] | Sequence[int] | Sequence[float], | ||||
|     right: bool = ..., | ||||
|     labels: Literal[False] | Sequence[Label] | None = ..., | ||||
|     *, | ||||
|     retbins: Literal[True], | ||||
|     precision: int = ..., | ||||
|     include_lowest: bool = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
|     ordered: bool = ..., | ||||
| ) -> tuple[Series, npt.NDArray]: ... | ||||
| @overload | ||||
| def cut( | ||||
|     x: Series, | ||||
|     bins: IntervalIndex[Interval[int]] | IntervalIndex[Interval[float]], | ||||
|     right: bool = ..., | ||||
|     labels: Sequence[Label] | None = ..., | ||||
|     *, | ||||
|     retbins: Literal[True], | ||||
|     precision: int = ..., | ||||
|     include_lowest: bool = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
|     ordered: bool = ..., | ||||
| ) -> tuple[Series, IntervalIndex]: ... | ||||
| @overload | ||||
| def cut( | ||||
|     x: Index | npt.NDArray | Sequence[int] | Sequence[float], | ||||
|     bins: int | Series | Index[int] | Index[float] | Sequence[int] | Sequence[float], | ||||
|     right: bool = ..., | ||||
|     labels: Sequence[Label] | None = ..., | ||||
|     *, | ||||
|     retbins: Literal[True], | ||||
|     precision: int = ..., | ||||
|     include_lowest: bool = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
|     ordered: bool = ..., | ||||
| ) -> tuple[Categorical, npt.NDArray]: ... | ||||
| @overload | ||||
| def cut( | ||||
|     x: Index | npt.NDArray | Sequence[int] | Sequence[float], | ||||
|     bins: IntervalIndex[IntervalT], | ||||
|     right: bool = ..., | ||||
|     labels: Sequence[Label] | None = ..., | ||||
|     *, | ||||
|     retbins: Literal[True], | ||||
|     precision: int = ..., | ||||
|     include_lowest: bool = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
|     ordered: bool = ..., | ||||
| ) -> tuple[Categorical, IntervalIndex[IntervalT]]: ... | ||||
| @overload | ||||
| def cut( | ||||
|     x: Index | npt.NDArray | Sequence[int] | Sequence[float], | ||||
|     bins: ( | ||||
|         int | ||||
|         | Series | ||||
|         | Index[int] | ||||
|         | Index[float] | ||||
|         | Sequence[int] | ||||
|         | Sequence[float] | ||||
|         | IntervalIndex | ||||
|     ), | ||||
|     right: bool = ..., | ||||
|     *, | ||||
|     labels: Literal[False], | ||||
|     retbins: Literal[False] = ..., | ||||
|     precision: int = ..., | ||||
|     include_lowest: bool = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
|     ordered: bool = ..., | ||||
| ) -> npt.NDArray[np.intp]: ... | ||||
| @overload | ||||
| def cut( | ||||
|     x: TimestampSeries, | ||||
|     bins: ( | ||||
|         int | ||||
|         | TimestampSeries | ||||
|         | DatetimeIndex | ||||
|         | Sequence[Timestamp] | ||||
|         | Sequence[np.datetime64] | ||||
|         | IntervalIndex[Interval[Timestamp]] | ||||
|     ), | ||||
|     right: bool = ..., | ||||
|     labels: Literal[False] | Sequence[Label] | None = ..., | ||||
|     retbins: Literal[False] = ..., | ||||
|     precision: int = ..., | ||||
|     include_lowest: bool = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
|     ordered: bool = ..., | ||||
| ) -> Series[CategoricalDtype]: ... | ||||
| @overload | ||||
| def cut( | ||||
|     x: Series, | ||||
|     bins: ( | ||||
|         int | ||||
|         | Series | ||||
|         | Index[int] | ||||
|         | Index[float] | ||||
|         | Sequence[int] | ||||
|         | Sequence[float] | ||||
|         | IntervalIndex | ||||
|     ), | ||||
|     right: bool = ..., | ||||
|     labels: Literal[False] | Sequence[Label] | None = ..., | ||||
|     retbins: Literal[False] = ..., | ||||
|     precision: int = ..., | ||||
|     include_lowest: bool = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
|     ordered: bool = ..., | ||||
| ) -> Series: ... | ||||
| @overload | ||||
| def cut( | ||||
|     x: Index | npt.NDArray | Sequence[int] | Sequence[float], | ||||
|     bins: ( | ||||
|         int | ||||
|         | Series | ||||
|         | Index[int] | ||||
|         | Index[float] | ||||
|         | Sequence[int] | ||||
|         | Sequence[float] | ||||
|         | IntervalIndex | ||||
|     ), | ||||
|     right: bool = ..., | ||||
|     labels: Sequence[Label] | None = ..., | ||||
|     retbins: Literal[False] = ..., | ||||
|     precision: int = ..., | ||||
|     include_lowest: bool = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
|     ordered: bool = ..., | ||||
| ) -> Categorical: ... | ||||
| @overload | ||||
| def qcut( | ||||
|     x: Index | npt.NDArray | Sequence[int] | Sequence[float], | ||||
|     q: int | Sequence[float] | Series[float] | Index[float] | npt.NDArray, | ||||
|     *, | ||||
|     labels: Literal[False], | ||||
|     retbins: Literal[False] = ..., | ||||
|     precision: int = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
| ) -> npt.NDArray[np.intp]: ... | ||||
| @overload | ||||
| def qcut( | ||||
|     x: Index | npt.NDArray | Sequence[int] | Sequence[float], | ||||
|     q: int | Sequence[float] | Series[float] | Index[float] | npt.NDArray, | ||||
|     labels: Sequence[Label] | None = ..., | ||||
|     retbins: Literal[False] = ..., | ||||
|     precision: int = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
| ) -> Categorical: ... | ||||
| @overload | ||||
| def qcut( | ||||
|     x: Series, | ||||
|     q: int | Sequence[float] | Series[float] | Index[float] | npt.NDArray, | ||||
|     labels: Literal[False] | Sequence[Label] | None = ..., | ||||
|     retbins: Literal[False] = ..., | ||||
|     precision: int = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
| ) -> Series: ... | ||||
| @overload | ||||
| def qcut( | ||||
|     x: Index | npt.NDArray | Sequence[int] | Sequence[float], | ||||
|     q: int | Sequence[float] | Series[float] | Index[float] | npt.NDArray, | ||||
|     *, | ||||
|     labels: Literal[False], | ||||
|     retbins: Literal[True], | ||||
|     precision: int = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
| ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.double]]: ... | ||||
| @overload | ||||
| def qcut( | ||||
|     x: Series, | ||||
|     q: int | Sequence[float] | Series[float] | Index[float] | npt.NDArray, | ||||
|     labels: Literal[False] | Sequence[Label] | None = ..., | ||||
|     *, | ||||
|     retbins: Literal[True], | ||||
|     precision: int = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
| ) -> tuple[Series, npt.NDArray[np.double]]: ... | ||||
| @overload | ||||
| def qcut( | ||||
|     x: Index | npt.NDArray | Sequence[int] | Sequence[float], | ||||
|     q: int | Sequence[float] | Series[float] | Index[float] | npt.NDArray, | ||||
|     labels: Sequence[Label] | None = ..., | ||||
|     *, | ||||
|     retbins: Literal[True], | ||||
|     precision: int = ..., | ||||
|     duplicates: Literal["raise", "drop"] = ..., | ||||
| ) -> tuple[Categorical, npt.NDArray[np.double]]: ... | ||||
| @ -0,0 +1 @@ | ||||
| def cartesian_product(X): ... | ||||
		Reference in New Issue
	
	Block a user