done
This commit is contained in:
		| @ -0,0 +1,15 @@ | ||||
| from pandas.core.arrays.base import ( | ||||
|     ExtensionArray as ExtensionArray, | ||||
|     ExtensionOpsMixin as ExtensionOpsMixin, | ||||
|     ExtensionScalarOpsMixin as ExtensionScalarOpsMixin, | ||||
| ) | ||||
| from pandas.core.arrays.boolean import BooleanArray as BooleanArray | ||||
| from pandas.core.arrays.categorical import Categorical as Categorical | ||||
| from pandas.core.arrays.datetimes import DatetimeArray as DatetimeArray | ||||
| from pandas.core.arrays.integer import IntegerArray as IntegerArray | ||||
| from pandas.core.arrays.interval import IntervalArray as IntervalArray | ||||
| from pandas.core.arrays.numpy_ import PandasArray as PandasArray | ||||
| from pandas.core.arrays.period import PeriodArray as PeriodArray | ||||
| from pandas.core.arrays.sparse import SparseArray as SparseArray | ||||
| from pandas.core.arrays.string_ import StringArray as StringArray | ||||
| from pandas.core.arrays.timedeltas import TimedeltaArray as TimedeltaArray | ||||
| @ -0,0 +1,11 @@ | ||||
| import pyarrow as pa | ||||
|  | ||||
| from pandas._libs.missing import NAType | ||||
|  | ||||
| from pandas.core.dtypes.base import StorageExtensionDtype | ||||
|  | ||||
| class ArrowDtype(StorageExtensionDtype): | ||||
|     pyarrow_dtype: pa.DataType | ||||
|     def __init__(self, pyarrow_dtype: pa.DataType) -> None: ... | ||||
|     @property | ||||
|     def na_value(self) -> NAType: ... | ||||
| @ -0,0 +1,81 @@ | ||||
| from collections.abc import Iterator | ||||
| from typing import ( | ||||
|     Any, | ||||
|     overload, | ||||
| ) | ||||
|  | ||||
| import numpy as np | ||||
| from typing_extensions import Self | ||||
|  | ||||
| from pandas._typing import ( | ||||
|     ArrayLike, | ||||
|     Scalar, | ||||
|     ScalarIndexer, | ||||
|     SequenceIndexer, | ||||
|     TakeIndexer, | ||||
|     np_1darray, | ||||
|     npt, | ||||
| ) | ||||
|  | ||||
| from pandas.core.dtypes.dtypes import ExtensionDtype as ExtensionDtype | ||||
|  | ||||
| class ExtensionArray: | ||||
|     @overload | ||||
|     def __getitem__(self, item: ScalarIndexer) -> Any: ... | ||||
|     @overload | ||||
|     def __getitem__(self, item: SequenceIndexer) -> Self: ... | ||||
|     def __setitem__(self, key: int | slice | np.ndarray, value: Any) -> None: ... | ||||
|     def __len__(self) -> int: ... | ||||
|     def __iter__(self) -> Iterator[Any]: ... | ||||
|     def __contains__(self, item: object) -> bool | np.bool_: ... | ||||
|     def to_numpy( | ||||
|         self, | ||||
|         dtype: npt.DTypeLike | None = ..., | ||||
|         copy: bool = False, | ||||
|         na_value: Scalar = ..., | ||||
|     ) -> np_1darray[Any]: ... | ||||
|     @property | ||||
|     def dtype(self) -> ExtensionDtype: ... | ||||
|     @property | ||||
|     def shape(self) -> tuple[int, ...]: ... | ||||
|     @property | ||||
|     def ndim(self) -> int: ... | ||||
|     @property | ||||
|     def nbytes(self) -> int: ... | ||||
|     def astype(self, dtype, copy: bool = True): ... | ||||
|     def isna(self) -> ArrayLike: ... | ||||
|     def argsort( | ||||
|         self, *, ascending: bool = ..., kind: str = ..., **kwargs | ||||
|     ) -> np_1darray: ... | ||||
|     def fillna(self, value=..., method=None, limit=None): ... | ||||
|     def dropna(self): ... | ||||
|     def shift(self, periods: int = 1, fill_value: object = ...) -> Self: ... | ||||
|     def unique(self): ... | ||||
|     def searchsorted(self, value, side: str = ..., sorter=...): ... | ||||
|     def factorize(self, use_na_sentinel: bool = True) -> tuple[np_1darray, Self]: ... | ||||
|     def repeat(self, repeats, axis=...): ... | ||||
|     def take( | ||||
|         self, | ||||
|         indexer: TakeIndexer, | ||||
|         *, | ||||
|         allow_fill: bool = ..., | ||||
|         fill_value=..., | ||||
|     ) -> Self: ... | ||||
|     def copy(self) -> Self: ... | ||||
|     def view(self, dtype=...) -> Self | np_1darray: ... | ||||
|     def ravel(self, order="C") -> Self: ... | ||||
|     def tolist(self) -> list: ... | ||||
|     def _reduce( | ||||
|         self, name: str, *, skipna: bool = ..., keepdims: bool = ..., **kwargs | ||||
|     ) -> object: ... | ||||
|     def _accumulate(self, name: str, *, skipna: bool = ..., **kwargs) -> Self: ... | ||||
|  | ||||
| class ExtensionOpsMixin: | ||||
|     @classmethod | ||||
|     def _add_arithmetic_ops(cls) -> None: ... | ||||
|     @classmethod | ||||
|     def _add_comparison_ops(cls) -> None: ... | ||||
|     @classmethod | ||||
|     def _add_logical_ops(cls) -> None: ... | ||||
|  | ||||
| class ExtensionScalarOpsMixin(ExtensionOpsMixin): ... | ||||
| @ -0,0 +1,25 @@ | ||||
| import numpy as np | ||||
| from pandas.core.arrays.masked import BaseMaskedArray as BaseMaskedArray | ||||
|  | ||||
| from pandas._libs.missing import NAType | ||||
| from pandas._typing import type_t | ||||
|  | ||||
| from pandas.core.dtypes.base import ExtensionDtype as ExtensionDtype | ||||
|  | ||||
| class BooleanDtype(ExtensionDtype): | ||||
|     @property | ||||
|     def na_value(self) -> NAType: ... | ||||
|     @classmethod | ||||
|     def construct_array_type(cls) -> type_t[BooleanArray]: ... | ||||
|  | ||||
| class BooleanArray(BaseMaskedArray): | ||||
|     def __init__( | ||||
|         self, values: np.ndarray, mask: np.ndarray, copy: bool = ... | ||||
|     ) -> None: ... | ||||
|     @property | ||||
|     def dtype(self): ... | ||||
|     def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): ... | ||||
|     def __setitem__(self, key, value) -> None: ... | ||||
|     def astype(self, dtype, copy: bool = True): ... | ||||
|     def any(self, *, skipna: bool = ..., **kwargs): ... | ||||
|     def all(self, *, skipna: bool = ..., **kwargs): ... | ||||
| @ -0,0 +1,161 @@ | ||||
| from collections.abc import ( | ||||
|     Callable, | ||||
|     Sequence, | ||||
| ) | ||||
| from typing import ( | ||||
|     Any, | ||||
|     overload, | ||||
| ) | ||||
|  | ||||
| import numpy as np | ||||
| from pandas import Series | ||||
| from pandas.core.accessor import PandasDelegate as PandasDelegate | ||||
| from pandas.core.arrays.base import ExtensionArray as ExtensionArray | ||||
| from pandas.core.base import NoNewAttributesMixin as NoNewAttributesMixin | ||||
| from pandas.core.indexes.base import Index | ||||
| from typing_extensions import Self | ||||
|  | ||||
| from pandas._typing import ( | ||||
|     ArrayLike, | ||||
|     Dtype, | ||||
|     ListLike, | ||||
|     Ordered, | ||||
|     PositionalIndexerTuple, | ||||
|     Scalar, | ||||
|     ScalarIndexer, | ||||
|     SequenceIndexer, | ||||
|     TakeIndexer, | ||||
|     np_1darray, | ||||
| ) | ||||
|  | ||||
| from pandas.core.dtypes.dtypes import CategoricalDtype as CategoricalDtype | ||||
|  | ||||
| def contains(cat, key, container): ... | ||||
|  | ||||
| class Categorical(ExtensionArray): | ||||
|     __array_priority__: int = ... | ||||
|     def __init__( | ||||
|         self, | ||||
|         values: ListLike, | ||||
|         categories=..., | ||||
|         ordered: bool | None = ..., | ||||
|         dtype: CategoricalDtype | None = ..., | ||||
|         fastpath: bool = ..., | ||||
|     ) -> None: ... | ||||
|     @property | ||||
|     def categories(self): ... | ||||
|     @property | ||||
|     def ordered(self) -> Ordered: ... | ||||
|     @property | ||||
|     def dtype(self) -> CategoricalDtype: ... | ||||
|     def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: ... | ||||
|     def size(self) -> int: ... | ||||
|     def tolist(self) -> list[Scalar]: ... | ||||
|     to_list = ... | ||||
|     @classmethod | ||||
|     def from_codes( | ||||
|         cls, | ||||
|         codes: Sequence[int], | ||||
|         categories: Index | None = ..., | ||||
|         ordered: bool | None = ..., | ||||
|         dtype: CategoricalDtype | None = ..., | ||||
|         fastpath: bool = ..., | ||||
|     ) -> Categorical: ... | ||||
|     @property | ||||
|     def codes(self) -> np_1darray[np.signedinteger]: ... | ||||
|     def set_ordered(self, value) -> Categorical: ... | ||||
|     def as_ordered(self) -> Categorical: ... | ||||
|     def as_unordered(self) -> Categorical: ... | ||||
|     def set_categories( | ||||
|         self, | ||||
|         new_categories, | ||||
|         ordered: bool | None = False, | ||||
|         rename: bool = False, | ||||
|     ) -> Categorical: ... | ||||
|     def rename_categories(self, new_categories) -> Categorical: ... | ||||
|     def reorder_categories( | ||||
|         self, new_categories, ordered: bool | None = ... | ||||
|     ) -> Categorical: ... | ||||
|     def add_categories(self, new_categories) -> Categorical: ... | ||||
|     def remove_categories(self, removals) -> Categorical: ... | ||||
|     def remove_unused_categories(self) -> Categorical: ... | ||||
|     def map(self, mapper): ... | ||||
|     def __eq__(self, other) -> bool: ... | ||||
|     def __ne__(self, other) -> bool: ... | ||||
|     def __lt__(self, other) -> bool: ... | ||||
|     def __gt__(self, other) -> bool: ... | ||||
|     def __le__(self, other) -> bool: ... | ||||
|     def __ge__(self, other) -> bool: ... | ||||
|     @property | ||||
|     def shape(self): ... | ||||
|     def shift(self, periods=1, fill_value=...): ... | ||||
|     def __array__(self, dtype=...) -> np_1darray: ... | ||||
|     def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): ... | ||||
|     @property | ||||
|     def T(self): ... | ||||
|     @property | ||||
|     def nbytes(self) -> int: ... | ||||
|     def memory_usage(self, deep: bool = ...): ... | ||||
|     def searchsorted(self, value, side: str = ..., sorter=...): ... | ||||
|     def isna(self) -> np_1darray[np.bool]: ... | ||||
|     def isnull(self) -> np_1darray[np.bool]: ... | ||||
|     def notna(self) -> np_1darray[np.bool]: ... | ||||
|     def notnull(self) -> np_1darray[np.bool]: ... | ||||
|     def dropna(self): ... | ||||
|     def value_counts(self, dropna: bool = True): ... | ||||
|     def check_for_ordered(self, op) -> None: ... | ||||
|     def argsort(self, *, ascending: bool = ..., kind: str = ..., **kwargs): ... | ||||
|     def sort_values( | ||||
|         self, *, inplace: bool = ..., ascending: bool = ..., na_position: str = ... | ||||
|     ): ... | ||||
|     def view(self, dtype=...): ... | ||||
|     def fillna(self, value=..., method=None, limit=None): ... | ||||
|     def take( | ||||
|         self, indexer: TakeIndexer, *, allow_fill: bool = ..., fill_value=... | ||||
|     ) -> Categorical: ... | ||||
|     def __len__(self) -> int: ... | ||||
|     def __iter__(self): ... | ||||
|     def __contains__(self, key) -> bool: ... | ||||
|     @overload | ||||
|     def __getitem__(self, key: ScalarIndexer) -> Any: ... | ||||
|     @overload | ||||
|     def __getitem__( | ||||
|         self, | ||||
|         key: SequenceIndexer | PositionalIndexerTuple, | ||||
|     ) -> Self: ... | ||||
|     def __setitem__(self, key, value) -> None: ... | ||||
|     def min(self, *, skipna: bool = ...): ... | ||||
|     def max(self, *, skipna: bool = ...): ... | ||||
|     def unique(self): ... | ||||
|     def equals(self, other): ... | ||||
|     def describe(self): ... | ||||
|     def repeat(self, repeats, axis=...): ... | ||||
|     def isin(self, values): ... | ||||
|  | ||||
| class CategoricalAccessor(PandasDelegate, NoNewAttributesMixin): | ||||
|     def __init__(self, data) -> None: ... | ||||
|     @property | ||||
|     def codes(self) -> Series[int]: ... | ||||
|     @property | ||||
|     def categories(self) -> Index: ... | ||||
|     @property | ||||
|     def ordered(self) -> bool | None: ... | ||||
|     def rename_categories( | ||||
|         self, new_categories: ListLike | dict[Any, Any] | Callable[[Any], Any] | ||||
|     ) -> Series: ... | ||||
|     def reorder_categories( | ||||
|         self, | ||||
|         new_categories: ListLike, | ||||
|         ordered: bool = ..., | ||||
|     ) -> Series: ... | ||||
|     def add_categories(self, new_categories: Scalar | ListLike) -> Series: ... | ||||
|     def remove_categories(self, removals: Scalar | ListLike) -> Series: ... | ||||
|     def remove_unused_categories(self) -> Series: ... | ||||
|     def set_categories( | ||||
|         self, | ||||
|         new_categories: ListLike, | ||||
|         ordered: bool | None = False, | ||||
|         rename: bool = False, | ||||
|     ) -> Series: ... | ||||
|     def as_ordered(self) -> Series: ... | ||||
|     def as_unordered(self) -> Series: ... | ||||
| @ -0,0 +1,114 @@ | ||||
| from collections.abc import Sequence | ||||
| from typing import overload | ||||
|  | ||||
| import numpy as np | ||||
| from pandas.core.arrays.base import ( | ||||
|     ExtensionArray, | ||||
|     ExtensionOpsMixin, | ||||
| ) | ||||
| from typing_extensions import ( | ||||
|     Self, | ||||
|     TypeAlias, | ||||
| ) | ||||
|  | ||||
| from pandas._libs import ( | ||||
|     NaT as NaT, | ||||
|     NaTType as NaTType, | ||||
| ) | ||||
| from pandas._typing import ( | ||||
|     DatetimeLikeScalar, | ||||
|     PositionalIndexerTuple, | ||||
|     ScalarIndexer, | ||||
|     SequenceIndexer, | ||||
|     TimeAmbiguous, | ||||
|     TimeNonexistent, | ||||
|     TimeUnit, | ||||
| ) | ||||
|  | ||||
| DTScalarOrNaT: TypeAlias = DatetimeLikeScalar | NaTType | ||||
|  | ||||
| class DatelikeOps: | ||||
|     def strftime(self, date_format): ... | ||||
|  | ||||
| class TimelikeOps: | ||||
|     @property | ||||
|     def unit(self) -> TimeUnit: ... | ||||
|     def as_unit(self, unit: TimeUnit) -> Self: ... | ||||
|     def round( | ||||
|         self, | ||||
|         freq, | ||||
|         ambiguous: TimeAmbiguous = "raise", | ||||
|         nonexistent: TimeNonexistent = "raise", | ||||
|     ): ... | ||||
|     def floor( | ||||
|         self, | ||||
|         freq, | ||||
|         ambiguous: TimeAmbiguous = "raise", | ||||
|         nonexistent: TimeNonexistent = "raise", | ||||
|     ): ... | ||||
|     def ceil( | ||||
|         self, | ||||
|         freq, | ||||
|         ambiguous: TimeAmbiguous = "raise", | ||||
|         nonexistent: TimeNonexistent = "raise", | ||||
|     ): ... | ||||
|  | ||||
| class DatetimeLikeArrayMixin(ExtensionOpsMixin, ExtensionArray): | ||||
|     @property | ||||
|     def ndim(self) -> int: ... | ||||
|     @property | ||||
|     def shape(self): ... | ||||
|     def reshape(self, *args, **kwargs): ... | ||||
|     def ravel(self, *args, **kwargs): ...  # pyrefly: ignore | ||||
|     def __iter__(self): ... | ||||
|     @property | ||||
|     def asi8(self) -> np.ndarray: ... | ||||
|     @property | ||||
|     def nbytes(self): ... | ||||
|     def __array__(self, dtype=...) -> np.ndarray: ... | ||||
|     @property | ||||
|     def size(self) -> int: ... | ||||
|     def __len__(self) -> int: ... | ||||
|     @overload | ||||
|     def __getitem__(self, key: ScalarIndexer) -> DTScalarOrNaT: ... | ||||
|     @overload | ||||
|     def __getitem__( | ||||
|         self, | ||||
|         key: SequenceIndexer | PositionalIndexerTuple, | ||||
|     ) -> Self: ... | ||||
|     def __setitem__(  # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] | ||||
|         self, key: int | Sequence[int] | Sequence[bool] | slice, value | ||||
|     ) -> None: ... | ||||
|     def astype(self, dtype, copy: bool = True): ... | ||||
|     def view(self, dtype=...): ... | ||||
|     def unique(self): ... | ||||
|     def copy(self): ... | ||||
|     def shift(self, periods: int = 1, fill_value=..., axis: int = ...): ... | ||||
|     def searchsorted(self, value, side: str = ..., sorter=...): ... | ||||
|     def repeat(self, repeats, *args, **kwargs): ...  # pyrefly: ignore | ||||
|     def value_counts(self, dropna: bool = True): ... | ||||
|     def map(self, mapper): ... | ||||
|     def isna(self): ... | ||||
|     def fillna(self, value=..., method=None, limit=None): ... | ||||
|     @property | ||||
|     def freq(self): ... | ||||
|     @freq.setter | ||||
|     def freq(self, value) -> None: ... | ||||
|     @property | ||||
|     def freqstr(self): ... | ||||
|     @property | ||||
|     def inferred_freq(self): ... | ||||
|     @property | ||||
|     def resolution(self): ... | ||||
|     __pow__ = ... | ||||
|     __rpow__ = ... | ||||
|     __rmul__ = ... | ||||
|     def __add__(self, other): ... | ||||
|     def __radd__(self, other): ... | ||||
|     def __sub__(self, other): ... | ||||
|     def __rsub__(self, other): ... | ||||
|     def __iadd__(self, other): ... | ||||
|     def __isub__(self, other): ... | ||||
|     def min(self, *, axis=..., skipna: bool = ..., **kwargs): ... | ||||
|     def max(self, *, axis=..., skipna: bool = ..., **kwargs): ... | ||||
|     def mean(self, *, skipna: bool = ...): ... | ||||
| @ -0,0 +1,85 @@ | ||||
| from datetime import tzinfo as _tzinfo | ||||
|  | ||||
| import numpy as np | ||||
| from pandas.core.arrays.datetimelike import ( | ||||
|     DatelikeOps, | ||||
|     DatetimeLikeArrayMixin, | ||||
|     TimelikeOps, | ||||
| ) | ||||
|  | ||||
| from pandas._typing import ( | ||||
|     TimeAmbiguous, | ||||
|     TimeNonexistent, | ||||
|     TimeZones, | ||||
| ) | ||||
|  | ||||
| from pandas.core.dtypes.dtypes import DatetimeTZDtype as DatetimeTZDtype | ||||
|  | ||||
| class DatetimeArray(DatetimeLikeArrayMixin, TimelikeOps, DatelikeOps): | ||||
|     __array_priority__: int = ... | ||||
|     def __init__(self, values, dtype=..., freq=..., copy: bool = ...) -> None: ... | ||||
|     # ignore in dtype() is from the pandas source | ||||
|     @property | ||||
|     def dtype(self) -> np.dtype | DatetimeTZDtype: ...  # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] | ||||
|     @property | ||||
|     def tz(self): ... | ||||
|     @tz.setter | ||||
|     def tz(self, value) -> None: ... | ||||
|     @property | ||||
|     def tzinfo(self) -> _tzinfo | None: ... | ||||
|     @property | ||||
|     def is_normalized(self): ... | ||||
|     def __array__(self, dtype=...) -> np.ndarray: ... | ||||
|     def __iter__(self): ... | ||||
|     def astype(self, dtype, copy: bool = True): ... | ||||
|     def tz_convert(self, tz: TimeZones): ... | ||||
|     def tz_localize( | ||||
|         self, | ||||
|         tz: TimeZones, | ||||
|         ambiguous: TimeAmbiguous = "raise", | ||||
|         nonexistent: TimeNonexistent = "raise", | ||||
|     ): ... | ||||
|     def to_pydatetime(self): ... | ||||
|     def normalize(self): ... | ||||
|     def to_period(self, freq=...): ... | ||||
|     def to_perioddelta(self, freq): ... | ||||
|     def month_name(self, locale=...): ... | ||||
|     def day_name(self, locale=...): ... | ||||
|     @property | ||||
|     def time(self): ... | ||||
|     @property | ||||
|     def timetz(self): ... | ||||
|     @property | ||||
|     def date(self): ... | ||||
|     year = ... | ||||
|     month = ... | ||||
|     day = ... | ||||
|     hour = ... | ||||
|     minute = ... | ||||
|     second = ... | ||||
|     microsecond = ... | ||||
|     nanosecond = ... | ||||
|     dayofweek = ... | ||||
|     weekday = ... | ||||
|     dayofyear = ... | ||||
|     quarter = ... | ||||
|     days_in_month = ... | ||||
|     daysinmonth = ... | ||||
|     is_month_start = ... | ||||
|     is_month_end = ... | ||||
|     is_quarter_start = ... | ||||
|     is_quarter_end = ... | ||||
|     is_year_start = ... | ||||
|     is_year_end = ... | ||||
|     is_leap_year = ... | ||||
|     def to_julian_date(self): ... | ||||
|  | ||||
| def objects_to_datetime64ns( | ||||
|     data, | ||||
|     dayfirst, | ||||
|     yearfirst, | ||||
|     utc: bool = ..., | ||||
|     errors: str = ..., | ||||
|     require_iso8601: bool = ..., | ||||
|     allow_object: bool = ..., | ||||
| ): ... | ||||
| @ -0,0 +1,4 @@ | ||||
| from pandas.core.arrays.numeric import NumericDtype | ||||
|  | ||||
| class Float32Dtype(NumericDtype): ... | ||||
| class Float64Dtype(NumericDtype): ... | ||||
| @ -0,0 +1,31 @@ | ||||
| from pandas.core.arrays.masked import BaseMaskedArray | ||||
|  | ||||
| from pandas._libs.missing import NAType | ||||
|  | ||||
| from pandas.core.dtypes.base import ExtensionDtype as ExtensionDtype | ||||
|  | ||||
| class _IntegerDtype(ExtensionDtype): | ||||
|     base: None | ||||
|     @property | ||||
|     def na_value(self) -> NAType: ... | ||||
|     @property | ||||
|     def itemsize(self) -> int: ... | ||||
|     @classmethod | ||||
|     def construct_array_type(cls) -> type[IntegerArray]: ... | ||||
|  | ||||
| class IntegerArray(BaseMaskedArray): | ||||
|     @property | ||||
|     def dtype(self) -> _IntegerDtype: ... | ||||
|     def __init__(self, values, mask, copy: bool = ...) -> None: ... | ||||
|     def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): ... | ||||
|     def __setitem__(self, key, value) -> None: ... | ||||
|     def astype(self, dtype, copy: bool = True): ... | ||||
|  | ||||
| class Int8Dtype(_IntegerDtype): ... | ||||
| class Int16Dtype(_IntegerDtype): ... | ||||
| class Int32Dtype(_IntegerDtype): ... | ||||
| class Int64Dtype(_IntegerDtype): ... | ||||
| class UInt8Dtype(_IntegerDtype): ... | ||||
| class UInt16Dtype(_IntegerDtype): ... | ||||
| class UInt32Dtype(_IntegerDtype): ... | ||||
| class UInt64Dtype(_IntegerDtype): ... | ||||
| @ -0,0 +1,112 @@ | ||||
| from typing import overload | ||||
|  | ||||
| import numpy as np | ||||
| from pandas import ( | ||||
|     Index, | ||||
|     Series, | ||||
| ) | ||||
| from pandas.core.arrays.base import ExtensionArray as ExtensionArray | ||||
| from typing_extensions import ( | ||||
|     Self, | ||||
|     TypeAlias, | ||||
| ) | ||||
|  | ||||
| from pandas._libs.interval import ( | ||||
|     Interval as Interval, | ||||
|     IntervalMixin as IntervalMixin, | ||||
| ) | ||||
| from pandas._typing import ( | ||||
|     Axis, | ||||
|     Scalar, | ||||
|     ScalarIndexer, | ||||
|     SequenceIndexer, | ||||
|     TakeIndexer, | ||||
|     np_1darray, | ||||
| ) | ||||
|  | ||||
| IntervalOrNA: TypeAlias = Interval | float | ||||
|  | ||||
| class IntervalArray(IntervalMixin, ExtensionArray): | ||||
|     can_hold_na: bool = ... | ||||
|     def __new__( | ||||
|         cls, data, closed=..., dtype=..., copy: bool = ..., verify_integrity: bool = ... | ||||
|     ): ... | ||||
|     @classmethod | ||||
|     def from_breaks( | ||||
|         cls, | ||||
|         breaks, | ||||
|         closed: str = "right", | ||||
|         copy: bool = False, | ||||
|         dtype=None, | ||||
|     ): ... | ||||
|     @classmethod | ||||
|     def from_arrays( | ||||
|         cls, | ||||
|         left, | ||||
|         right, | ||||
|         closed: str = "right", | ||||
|         copy: bool = False, | ||||
|         dtype=..., | ||||
|     ): ... | ||||
|     @classmethod | ||||
|     def from_tuples( | ||||
|         cls, | ||||
|         data, | ||||
|         closed: str = "right", | ||||
|         copy: bool = False, | ||||
|         dtype=None, | ||||
|     ): ... | ||||
|     def __iter__(self): ... | ||||
|     def __len__(self) -> int: ... | ||||
|     @overload | ||||
|     def __getitem__(self, key: ScalarIndexer) -> IntervalOrNA: ... | ||||
|     @overload | ||||
|     def __getitem__(self, key: SequenceIndexer) -> Self: ... | ||||
|     def __setitem__(self, key, value) -> None: ... | ||||
|     def __eq__(self, other): ... | ||||
|     def __ne__(self, other): ... | ||||
|     def fillna(self, value=..., method=None, limit=None): ... | ||||
|     @property | ||||
|     def dtype(self): ... | ||||
|     def astype(self, dtype, copy: bool = True): ... | ||||
|     def copy(self): ... | ||||
|     def isna(self): ... | ||||
|     @property | ||||
|     def nbytes(self) -> int: ... | ||||
|     @property | ||||
|     def size(self) -> int: ... | ||||
|     def shift(self, periods: int = 1, fill_value: object = ...) -> IntervalArray: ... | ||||
|     def take(  # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] | ||||
|         self: Self, | ||||
|         indices: TakeIndexer, | ||||
|         *, | ||||
|         allow_fill: bool = ..., | ||||
|         fill_value=..., | ||||
|         axis=..., | ||||
|         **kwargs, | ||||
|     ) -> Self: ... | ||||
|     def value_counts(self, dropna: bool = True): ... | ||||
|     @property | ||||
|     def left(self) -> Index: ... | ||||
|     @property | ||||
|     def right(self) -> Index: ... | ||||
|     @property | ||||
|     def closed(self) -> bool: ... | ||||
|     def set_closed(self, closed): ... | ||||
|     @property | ||||
|     def length(self) -> Index: ... | ||||
|     @property | ||||
|     def mid(self) -> Index: ... | ||||
|     @property | ||||
|     def is_non_overlapping_monotonic(self) -> bool: ... | ||||
|     def __array__(self, dtype=...) -> np_1darray: ... | ||||
|     def __arrow_array__(self, type=...): ... | ||||
|     def to_tuples(self, na_tuple: bool = True): ... | ||||
|     def repeat(self, repeats, axis: Axis | None = ...): ... | ||||
|     @overload | ||||
|     def contains(self, other: Series) -> Series[bool]: ... | ||||
|     @overload | ||||
|     def contains( | ||||
|         self, other: Scalar | ExtensionArray | Index | np.ndarray | ||||
|     ) -> np_1darray[np.bool]: ... | ||||
|     def overlaps(self, other: Interval) -> bool: ... | ||||
| @ -0,0 +1,41 @@ | ||||
| from typing import ( | ||||
|     Any, | ||||
|     overload, | ||||
| ) | ||||
|  | ||||
| import numpy as np | ||||
| from pandas.core.arrays import ( | ||||
|     ExtensionArray as ExtensionArray, | ||||
|     ExtensionOpsMixin, | ||||
| ) | ||||
| from typing_extensions import Self | ||||
|  | ||||
| from pandas._typing import ( | ||||
|     Scalar, | ||||
|     ScalarIndexer, | ||||
|     SequenceIndexer, | ||||
|     npt, | ||||
| ) | ||||
|  | ||||
| class BaseMaskedArray(ExtensionArray, ExtensionOpsMixin): | ||||
|     @overload | ||||
|     def __getitem__(self, item: ScalarIndexer) -> Any: ... | ||||
|     @overload | ||||
|     def __getitem__(self, item: SequenceIndexer) -> Self: ... | ||||
|     def __iter__(self): ... | ||||
|     def __len__(self) -> int: ... | ||||
|     def __invert__(self): ... | ||||
|     def to_numpy( | ||||
|         self, | ||||
|         dtype: npt.DTypeLike | None = ..., | ||||
|         copy: bool = False, | ||||
|         na_value: Scalar = ..., | ||||
|     ) -> np.ndarray: ... | ||||
|     __array_priority__: int = ... | ||||
|     def __array__(self, dtype=...) -> np.ndarray: ... | ||||
|     def __arrow_array__(self, type=...): ... | ||||
|     def isna(self): ... | ||||
|     @property | ||||
|     def nbytes(self) -> int: ... | ||||
|     def copy(self): ... | ||||
|     def value_counts(self, dropna: bool = True): ... | ||||
| @ -0,0 +1,3 @@ | ||||
| from pandas.core.dtypes.dtypes import BaseMaskedDtype | ||||
|  | ||||
| class NumericDtype(BaseMaskedDtype): ... | ||||
| @ -0,0 +1,17 @@ | ||||
| import numpy as np | ||||
| from numpy.lib.mixins import NDArrayOperatorsMixin | ||||
| from pandas.core.arrays.base import ( | ||||
|     ExtensionArray, | ||||
|     ExtensionOpsMixin, | ||||
| ) | ||||
|  | ||||
| from pandas.core.dtypes.dtypes import ExtensionDtype | ||||
|  | ||||
| class PandasDtype(ExtensionDtype): | ||||
|     @property | ||||
|     def numpy_dtype(self) -> np.dtype: ... | ||||
|     @property | ||||
|     def itemsize(self) -> int: ... | ||||
|  | ||||
| class PandasArray(ExtensionArray, ExtensionOpsMixin, NDArrayOperatorsMixin): | ||||
|     def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): ... | ||||
| @ -0,0 +1,42 @@ | ||||
| import numpy as np | ||||
| from pandas import PeriodDtype | ||||
| from pandas.core.arrays.datetimelike import ( | ||||
|     DatelikeOps, | ||||
|     DatetimeLikeArrayMixin, | ||||
| ) | ||||
|  | ||||
| from pandas._libs.tslibs import Timestamp | ||||
| from pandas._libs.tslibs.period import Period | ||||
|  | ||||
| class PeriodArray(DatetimeLikeArrayMixin, DatelikeOps): | ||||
|     __array_priority__: int = ... | ||||
|     def __init__(self, values, freq=..., dtype=..., copy: bool = ...) -> None: ... | ||||
|     @property | ||||
|     def dtype(self) -> PeriodDtype: ... | ||||
|     def __array__(self, dtype=...) -> np.ndarray: ... | ||||
|     def __arrow_array__(self, type=...): ... | ||||
|     year: int = ... | ||||
|     month: int = ... | ||||
|     day: int = ... | ||||
|     hour: int = ... | ||||
|     minute: int = ... | ||||
|     second: int = ... | ||||
|     weekofyear: int = ... | ||||
|     week: int = ... | ||||
|     dayofweek: int = ... | ||||
|     weekday: int = ... | ||||
|     dayofyear: int = ... | ||||
|     day_of_year = ... | ||||
|     quarter: int = ... | ||||
|     qyear: int = ... | ||||
|     days_in_month: int = ... | ||||
|     daysinmonth: int = ... | ||||
|     @property | ||||
|     def is_leap_year(self) -> bool: ... | ||||
|     @property | ||||
|     def start_time(self) -> Timestamp: ... | ||||
|     @property | ||||
|     def end_time(self) -> Timestamp: ... | ||||
|     def to_timestamp(self, freq: str | None = ..., how: str = ...) -> Timestamp: ... | ||||
|     def asfreq(self, freq: str | None = ..., how: str = "E") -> Period: ... | ||||
|     def astype(self, dtype, copy: bool = True): ... | ||||
| @ -0,0 +1,6 @@ | ||||
| from pandas.core.arrays.sparse.accessor import ( | ||||
|     SparseAccessor as SparseAccessor, | ||||
|     SparseFrameAccessor as SparseFrameAccessor, | ||||
| ) | ||||
| from pandas.core.arrays.sparse.array import SparseArray as SparseArray | ||||
| from pandas.core.arrays.sparse.dtype import SparseDtype as SparseDtype | ||||
| @ -0,0 +1,19 @@ | ||||
| from pandas import Series | ||||
| from pandas.core.accessor import PandasDelegate | ||||
|  | ||||
| class BaseAccessor: | ||||
|     def __init__(self, data=...) -> None: ... | ||||
|  | ||||
| class SparseAccessor(BaseAccessor, PandasDelegate): | ||||
|     @classmethod | ||||
|     def from_coo(cls, A, dense_index: bool = False) -> Series: ... | ||||
|     def to_coo(self, row_levels=..., column_levels=..., sort_labels: bool = False): ... | ||||
|     def to_dense(self): ... | ||||
|  | ||||
| class SparseFrameAccessor(BaseAccessor, PandasDelegate): | ||||
|     @classmethod | ||||
|     def from_spmatrix(cls, data, index=..., columns=...): ... | ||||
|     def to_dense(self): ... | ||||
|     def to_coo(self): ... | ||||
|     @property | ||||
|     def density(self) -> float: ... | ||||
| @ -0,0 +1,82 @@ | ||||
| from enum import Enum | ||||
| from typing import ( | ||||
|     Any, | ||||
|     final, | ||||
|     overload, | ||||
| ) | ||||
|  | ||||
| import numpy as np | ||||
| from pandas.core.arrays import ( | ||||
|     ExtensionArray, | ||||
|     ExtensionOpsMixin, | ||||
| ) | ||||
| from typing_extensions import Self | ||||
|  | ||||
| from pandas._typing import ( | ||||
|     ScalarIndexer, | ||||
|     SequenceIndexer, | ||||
| ) | ||||
|  | ||||
| @final | ||||
| class ellipsis(Enum): | ||||
|     Ellipsis = "..." | ||||
|  | ||||
| class SparseArray(ExtensionArray, ExtensionOpsMixin): | ||||
|     def __init__( | ||||
|         self, | ||||
|         data, | ||||
|         sparse_index=..., | ||||
|         fill_value=..., | ||||
|         kind: str = ..., | ||||
|         dtype=..., | ||||
|         copy: bool = ..., | ||||
|     ) -> None: ... | ||||
|     @classmethod | ||||
|     def from_spmatrix(cls, data): ... | ||||
|     def __array__(self, dtype=..., copy=...) -> np.ndarray: ... | ||||
|     def __setitem__(self, key, value) -> None: ... | ||||
|     @property | ||||
|     def sp_index(self): ... | ||||
|     @property | ||||
|     def sp_values(self): ... | ||||
|     @property | ||||
|     def dtype(self): ... | ||||
|     @property | ||||
|     def fill_value(self): ... | ||||
|     @fill_value.setter | ||||
|     def fill_value(self, value) -> None: ... | ||||
|     @property | ||||
|     def kind(self) -> str: ... | ||||
|     def __len__(self) -> int: ... | ||||
|     @property | ||||
|     def nbytes(self) -> int: ... | ||||
|     @property | ||||
|     def density(self): ... | ||||
|     @property | ||||
|     def npoints(self) -> int: ... | ||||
|     def isna(self): ... | ||||
|     def fillna(self, value=..., method=..., limit=...): ... | ||||
|     def shift(self, periods: int = 1, fill_value=...): ... | ||||
|     def unique(self): ... | ||||
|     def value_counts(self, dropna: bool = True): ... | ||||
|     @overload | ||||
|     def __getitem__(self, key: ScalarIndexer) -> Any: ... | ||||
|     @overload | ||||
|     def __getitem__( | ||||
|         self, | ||||
|         key: SequenceIndexer | tuple[int | ellipsis, ...], | ||||
|     ) -> Self: ... | ||||
|     def copy(self): ... | ||||
|     def astype(self, dtype=..., copy: bool = True): ... | ||||
|     def map(self, mapper): ... | ||||
|     def to_dense(self): ... | ||||
|     def nonzero(self): ... | ||||
|     def all(self, axis=..., *args, **kwargs): ... | ||||
|     def any(self, axis: int = ..., *args, **kwargs): ... | ||||
|     def sum(self, axis: int = 0, *args, **kwargs): ... | ||||
|     def cumsum(self, axis: int = ..., *args, **kwargs): ... | ||||
|     def mean(self, axis: int = ..., *args, **kwargs): ... | ||||
|     @property | ||||
|     def T(self): ... | ||||
|     def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): ... | ||||
|     def __abs__(self): ... | ||||
| @ -0,0 +1,17 @@ | ||||
| from pandas._typing import ( | ||||
|     Dtype, | ||||
|     Scalar, | ||||
|     npt, | ||||
| ) | ||||
|  | ||||
| from pandas.core.dtypes.base import ExtensionDtype | ||||
| from pandas.core.dtypes.dtypes import ( | ||||
|     register_extension_dtype as register_extension_dtype, | ||||
| ) | ||||
|  | ||||
| class SparseDtype(ExtensionDtype): | ||||
|     def __init__( | ||||
|         self, dtype: Dtype | npt.DTypeLike = ..., fill_value: Scalar | None = ... | ||||
|     ) -> None: ... | ||||
|     @property | ||||
|     def fill_value(self) -> Scalar | None: ... | ||||
| @ -0,0 +1,20 @@ | ||||
| from typing import Literal | ||||
|  | ||||
| from pandas.core.arrays import PandasArray | ||||
|  | ||||
| from pandas._libs.missing import NAType | ||||
|  | ||||
| from pandas.core.dtypes.base import ExtensionDtype | ||||
|  | ||||
| class StringDtype(ExtensionDtype): | ||||
|     def __init__(self, storage: Literal["python", "pyarrow"] | None = None) -> None: ... | ||||
|     @property | ||||
|     def na_value(self) -> NAType: ... | ||||
|  | ||||
| class StringArray(PandasArray): | ||||
|     def __init__(self, values, copy: bool = ...) -> None: ... | ||||
|     def __arrow_array__(self, type=...): ... | ||||
|     def __setitem__(self, key, value) -> None: ... | ||||
|     def fillna(self, value=..., method=None, limit=None): ... | ||||
|     def astype(self, dtype, copy: bool = True): ... | ||||
|     def value_counts(self, dropna: bool = True): ... | ||||
| @ -0,0 +1,65 @@ | ||||
| from collections.abc import Sequence | ||||
| from datetime import timedelta | ||||
|  | ||||
| from pandas.core.arrays.datetimelike import ( | ||||
|     DatetimeLikeArrayMixin, | ||||
|     TimelikeOps, | ||||
| ) | ||||
|  | ||||
| class TimedeltaArray(DatetimeLikeArrayMixin, TimelikeOps): | ||||
|     __array_priority__: int = ... | ||||
|     @property | ||||
|     def dtype(self): ... | ||||
|     def __init__(self, values, dtype=..., freq=..., copy: bool = ...) -> None: ... | ||||
|     def astype(self, dtype, copy: bool = True): ... | ||||
|     def sum( | ||||
|         self, | ||||
|         *, | ||||
|         axis=..., | ||||
|         dtype=..., | ||||
|         out=..., | ||||
|         keepdims: bool = ..., | ||||
|         initial=..., | ||||
|         skipna: bool = ..., | ||||
|         min_count: int = ..., | ||||
|     ): ... | ||||
|     def std( | ||||
|         self, | ||||
|         *, | ||||
|         axis=..., | ||||
|         dtype=..., | ||||
|         out=..., | ||||
|         ddof: int = ..., | ||||
|         keepdims: bool = ..., | ||||
|         skipna: bool = ..., | ||||
|     ): ... | ||||
|     def median( | ||||
|         self, | ||||
|         *, | ||||
|         axis=..., | ||||
|         out=..., | ||||
|         overwrite_input: bool = ..., | ||||
|         keepdims: bool = ..., | ||||
|         skipna: bool = ..., | ||||
|     ): ... | ||||
|     def __mul__(self, other): ... | ||||
|     __rmul__ = ... | ||||
|     def __truediv__(self, other): ... | ||||
|     def __rtruediv__(self, other): ... | ||||
|     def __floordiv__(self, other): ... | ||||
|     def __rfloordiv__(self, other): ... | ||||
|     def __mod__(self, other): ... | ||||
|     def __rmod__(self, other): ... | ||||
|     def __divmod__(self, other): ... | ||||
|     def __rdivmod__(self, other): ... | ||||
|     def __neg__(self): ... | ||||
|     def __pos__(self): ... | ||||
|     def __abs__(self): ... | ||||
|     def total_seconds(self) -> int: ... | ||||
|     def to_pytimedelta(self) -> Sequence[timedelta]: ... | ||||
|     days: int = ... | ||||
|     seconds: int = ... | ||||
|     microseconds: int = ... | ||||
|     nanoseconds: int = ... | ||||
|     @property | ||||
|     def components(self) -> int: ... | ||||
		Reference in New Issue
	
	Block a user