done
This commit is contained in:
		
							
								
								
									
										563
									
								
								lib/python3.11/site-packages/pandas/tests/plotting/common.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										563
									
								
								lib/python3.11/site-packages/pandas/tests/plotting/common.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,563 @@ | ||||
| """ | ||||
| Module consolidating common testing functions for checking plotting. | ||||
| """ | ||||
|  | ||||
| from __future__ import annotations | ||||
|  | ||||
| from typing import TYPE_CHECKING | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
| from pandas.core.dtypes.api import is_list_like | ||||
|  | ||||
| import pandas as pd | ||||
| from pandas import Series | ||||
| import pandas._testing as tm | ||||
|  | ||||
| if TYPE_CHECKING: | ||||
|     from collections.abc import Sequence | ||||
|  | ||||
|     from matplotlib.axes import Axes | ||||
|  | ||||
|  | ||||
| def _check_legend_labels(axes, labels=None, visible=True): | ||||
|     """ | ||||
|     Check each axes has expected legend labels | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     axes : matplotlib Axes object, or its list-like | ||||
|     labels : list-like | ||||
|         expected legend labels | ||||
|     visible : bool | ||||
|         expected legend visibility. labels are checked only when visible is | ||||
|         True | ||||
|     """ | ||||
|     if visible and (labels is None): | ||||
|         raise ValueError("labels must be specified when visible is True") | ||||
|     axes = _flatten_visible(axes) | ||||
|     for ax in axes: | ||||
|         if visible: | ||||
|             assert ax.get_legend() is not None | ||||
|             _check_text_labels(ax.get_legend().get_texts(), labels) | ||||
|         else: | ||||
|             assert ax.get_legend() is None | ||||
|  | ||||
|  | ||||
| def _check_legend_marker(ax, expected_markers=None, visible=True): | ||||
|     """ | ||||
|     Check ax has expected legend markers | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     ax : matplotlib Axes object | ||||
|     expected_markers : list-like | ||||
|         expected legend markers | ||||
|     visible : bool | ||||
|         expected legend visibility. labels are checked only when visible is | ||||
|         True | ||||
|     """ | ||||
|     if visible and (expected_markers is None): | ||||
|         raise ValueError("Markers must be specified when visible is True") | ||||
|     if visible: | ||||
|         handles, _ = ax.get_legend_handles_labels() | ||||
|         markers = [handle.get_marker() for handle in handles] | ||||
|         assert markers == expected_markers | ||||
|     else: | ||||
|         assert ax.get_legend() is None | ||||
|  | ||||
|  | ||||
| def _check_data(xp, rs): | ||||
|     """ | ||||
|     Check each axes has identical lines | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     xp : matplotlib Axes object | ||||
|     rs : matplotlib Axes object | ||||
|     """ | ||||
|     import matplotlib.pyplot as plt | ||||
|  | ||||
|     xp_lines = xp.get_lines() | ||||
|     rs_lines = rs.get_lines() | ||||
|  | ||||
|     assert len(xp_lines) == len(rs_lines) | ||||
|     for xpl, rsl in zip(xp_lines, rs_lines): | ||||
|         xpdata = xpl.get_xydata() | ||||
|         rsdata = rsl.get_xydata() | ||||
|         tm.assert_almost_equal(xpdata, rsdata) | ||||
|  | ||||
|     plt.close("all") | ||||
|  | ||||
|  | ||||
| def _check_visible(collections, visible=True): | ||||
|     """ | ||||
|     Check each artist is visible or not | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     collections : matplotlib Artist or its list-like | ||||
|         target Artist or its list or collection | ||||
|     visible : bool | ||||
|         expected visibility | ||||
|     """ | ||||
|     from matplotlib.collections import Collection | ||||
|  | ||||
|     if not isinstance(collections, Collection) and not is_list_like(collections): | ||||
|         collections = [collections] | ||||
|  | ||||
|     for patch in collections: | ||||
|         assert patch.get_visible() == visible | ||||
|  | ||||
|  | ||||
| def _check_patches_all_filled(axes: Axes | Sequence[Axes], filled: bool = True) -> None: | ||||
|     """ | ||||
|     Check for each artist whether it is filled or not | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     axes : matplotlib Axes object, or its list-like | ||||
|     filled : bool | ||||
|         expected filling | ||||
|     """ | ||||
|  | ||||
|     axes = _flatten_visible(axes) | ||||
|     for ax in axes: | ||||
|         for patch in ax.patches: | ||||
|             assert patch.fill == filled | ||||
|  | ||||
|  | ||||
| def _get_colors_mapped(series, colors): | ||||
|     unique = series.unique() | ||||
|     # unique and colors length can be differed | ||||
|     # depending on slice value | ||||
|     mapped = dict(zip(unique, colors)) | ||||
|     return [mapped[v] for v in series.values] | ||||
|  | ||||
|  | ||||
| def _check_colors(collections, linecolors=None, facecolors=None, mapping=None): | ||||
|     """ | ||||
|     Check each artist has expected line colors and face colors | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     collections : list-like | ||||
|         list or collection of target artist | ||||
|     linecolors : list-like which has the same length as collections | ||||
|         list of expected line colors | ||||
|     facecolors : list-like which has the same length as collections | ||||
|         list of expected face colors | ||||
|     mapping : Series | ||||
|         Series used for color grouping key | ||||
|         used for andrew_curves, parallel_coordinates, radviz test | ||||
|     """ | ||||
|     from matplotlib import colors | ||||
|     from matplotlib.collections import ( | ||||
|         Collection, | ||||
|         LineCollection, | ||||
|         PolyCollection, | ||||
|     ) | ||||
|     from matplotlib.lines import Line2D | ||||
|  | ||||
|     conv = colors.ColorConverter | ||||
|     if linecolors is not None: | ||||
|         if mapping is not None: | ||||
|             linecolors = _get_colors_mapped(mapping, linecolors) | ||||
|             linecolors = linecolors[: len(collections)] | ||||
|  | ||||
|         assert len(collections) == len(linecolors) | ||||
|         for patch, color in zip(collections, linecolors): | ||||
|             if isinstance(patch, Line2D): | ||||
|                 result = patch.get_color() | ||||
|                 # Line2D may contains string color expression | ||||
|                 result = conv.to_rgba(result) | ||||
|             elif isinstance(patch, (PolyCollection, LineCollection)): | ||||
|                 result = tuple(patch.get_edgecolor()[0]) | ||||
|             else: | ||||
|                 result = patch.get_edgecolor() | ||||
|  | ||||
|             expected = conv.to_rgba(color) | ||||
|             assert result == expected | ||||
|  | ||||
|     if facecolors is not None: | ||||
|         if mapping is not None: | ||||
|             facecolors = _get_colors_mapped(mapping, facecolors) | ||||
|             facecolors = facecolors[: len(collections)] | ||||
|  | ||||
|         assert len(collections) == len(facecolors) | ||||
|         for patch, color in zip(collections, facecolors): | ||||
|             if isinstance(patch, Collection): | ||||
|                 # returned as list of np.array | ||||
|                 result = patch.get_facecolor()[0] | ||||
|             else: | ||||
|                 result = patch.get_facecolor() | ||||
|  | ||||
|             if isinstance(result, np.ndarray): | ||||
|                 result = tuple(result) | ||||
|  | ||||
|             expected = conv.to_rgba(color) | ||||
|             assert result == expected | ||||
|  | ||||
|  | ||||
| def _check_text_labels(texts, expected): | ||||
|     """ | ||||
|     Check each text has expected labels | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     texts : matplotlib Text object, or its list-like | ||||
|         target text, or its list | ||||
|     expected : str or list-like which has the same length as texts | ||||
|         expected text label, or its list | ||||
|     """ | ||||
|     if not is_list_like(texts): | ||||
|         assert texts.get_text() == expected | ||||
|     else: | ||||
|         labels = [t.get_text() for t in texts] | ||||
|         assert len(labels) == len(expected) | ||||
|         for label, e in zip(labels, expected): | ||||
|             assert label == e | ||||
|  | ||||
|  | ||||
| def _check_ticks_props(axes, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None): | ||||
|     """ | ||||
|     Check each axes has expected tick properties | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     axes : matplotlib Axes object, or its list-like | ||||
|     xlabelsize : number | ||||
|         expected xticks font size | ||||
|     xrot : number | ||||
|         expected xticks rotation | ||||
|     ylabelsize : number | ||||
|         expected yticks font size | ||||
|     yrot : number | ||||
|         expected yticks rotation | ||||
|     """ | ||||
|     from matplotlib.ticker import NullFormatter | ||||
|  | ||||
|     axes = _flatten_visible(axes) | ||||
|     for ax in axes: | ||||
|         if xlabelsize is not None or xrot is not None: | ||||
|             if isinstance(ax.xaxis.get_minor_formatter(), NullFormatter): | ||||
|                 # If minor ticks has NullFormatter, rot / fontsize are not | ||||
|                 # retained | ||||
|                 labels = ax.get_xticklabels() | ||||
|             else: | ||||
|                 labels = ax.get_xticklabels() + ax.get_xticklabels(minor=True) | ||||
|  | ||||
|             for label in labels: | ||||
|                 if xlabelsize is not None: | ||||
|                     tm.assert_almost_equal(label.get_fontsize(), xlabelsize) | ||||
|                 if xrot is not None: | ||||
|                     tm.assert_almost_equal(label.get_rotation(), xrot) | ||||
|  | ||||
|         if ylabelsize is not None or yrot is not None: | ||||
|             if isinstance(ax.yaxis.get_minor_formatter(), NullFormatter): | ||||
|                 labels = ax.get_yticklabels() | ||||
|             else: | ||||
|                 labels = ax.get_yticklabels() + ax.get_yticklabels(minor=True) | ||||
|  | ||||
|             for label in labels: | ||||
|                 if ylabelsize is not None: | ||||
|                     tm.assert_almost_equal(label.get_fontsize(), ylabelsize) | ||||
|                 if yrot is not None: | ||||
|                     tm.assert_almost_equal(label.get_rotation(), yrot) | ||||
|  | ||||
|  | ||||
| def _check_ax_scales(axes, xaxis="linear", yaxis="linear"): | ||||
|     """ | ||||
|     Check each axes has expected scales | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     axes : matplotlib Axes object, or its list-like | ||||
|     xaxis : {'linear', 'log'} | ||||
|         expected xaxis scale | ||||
|     yaxis : {'linear', 'log'} | ||||
|         expected yaxis scale | ||||
|     """ | ||||
|     axes = _flatten_visible(axes) | ||||
|     for ax in axes: | ||||
|         assert ax.xaxis.get_scale() == xaxis | ||||
|         assert ax.yaxis.get_scale() == yaxis | ||||
|  | ||||
|  | ||||
| def _check_axes_shape(axes, axes_num=None, layout=None, figsize=None): | ||||
|     """ | ||||
|     Check expected number of axes is drawn in expected layout | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     axes : matplotlib Axes object, or its list-like | ||||
|     axes_num : number | ||||
|         expected number of axes. Unnecessary axes should be set to | ||||
|         invisible. | ||||
|     layout : tuple | ||||
|         expected layout, (expected number of rows , columns) | ||||
|     figsize : tuple | ||||
|         expected figsize. default is matplotlib default | ||||
|     """ | ||||
|     from pandas.plotting._matplotlib.tools import flatten_axes | ||||
|  | ||||
|     if figsize is None: | ||||
|         figsize = (6.4, 4.8) | ||||
|     visible_axes = _flatten_visible(axes) | ||||
|  | ||||
|     if axes_num is not None: | ||||
|         assert len(visible_axes) == axes_num | ||||
|         for ax in visible_axes: | ||||
|             # check something drawn on visible axes | ||||
|             assert len(ax.get_children()) > 0 | ||||
|  | ||||
|     if layout is not None: | ||||
|         x_set = set() | ||||
|         y_set = set() | ||||
|         for ax in flatten_axes(axes): | ||||
|             # check axes coordinates to estimate layout | ||||
|             points = ax.get_position().get_points() | ||||
|             x_set.add(points[0][0]) | ||||
|             y_set.add(points[0][1]) | ||||
|         result = (len(y_set), len(x_set)) | ||||
|         assert result == layout | ||||
|  | ||||
|     tm.assert_numpy_array_equal( | ||||
|         visible_axes[0].figure.get_size_inches(), | ||||
|         np.array(figsize, dtype=np.float64), | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def _flatten_visible(axes: Axes | Sequence[Axes]) -> Sequence[Axes]: | ||||
|     """ | ||||
|     Flatten axes, and filter only visible | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     axes : matplotlib Axes object, or its list-like | ||||
|  | ||||
|     """ | ||||
|     from pandas.plotting._matplotlib.tools import flatten_axes | ||||
|  | ||||
|     axes_ndarray = flatten_axes(axes) | ||||
|     axes = [ax for ax in axes_ndarray if ax.get_visible()] | ||||
|     return axes | ||||
|  | ||||
|  | ||||
| def _check_has_errorbars(axes, xerr=0, yerr=0): | ||||
|     """ | ||||
|     Check axes has expected number of errorbars | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     axes : matplotlib Axes object, or its list-like | ||||
|     xerr : number | ||||
|         expected number of x errorbar | ||||
|     yerr : number | ||||
|         expected number of y errorbar | ||||
|     """ | ||||
|     axes = _flatten_visible(axes) | ||||
|     for ax in axes: | ||||
|         containers = ax.containers | ||||
|         xerr_count = 0 | ||||
|         yerr_count = 0 | ||||
|         for c in containers: | ||||
|             has_xerr = getattr(c, "has_xerr", False) | ||||
|             has_yerr = getattr(c, "has_yerr", False) | ||||
|             if has_xerr: | ||||
|                 xerr_count += 1 | ||||
|             if has_yerr: | ||||
|                 yerr_count += 1 | ||||
|         assert xerr == xerr_count | ||||
|         assert yerr == yerr_count | ||||
|  | ||||
|  | ||||
| def _check_box_return_type( | ||||
|     returned, return_type, expected_keys=None, check_ax_title=True | ||||
| ): | ||||
|     """ | ||||
|     Check box returned type is correct | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     returned : object to be tested, returned from boxplot | ||||
|     return_type : str | ||||
|         return_type passed to boxplot | ||||
|     expected_keys : list-like, optional | ||||
|         group labels in subplot case. If not passed, | ||||
|         the function checks assuming boxplot uses single ax | ||||
|     check_ax_title : bool | ||||
|         Whether to check the ax.title is the same as expected_key | ||||
|         Intended to be checked by calling from ``boxplot``. | ||||
|         Normal ``plot`` doesn't attach ``ax.title``, it must be disabled. | ||||
|     """ | ||||
|     from matplotlib.axes import Axes | ||||
|  | ||||
|     types = {"dict": dict, "axes": Axes, "both": tuple} | ||||
|     if expected_keys is None: | ||||
|         # should be fixed when the returning default is changed | ||||
|         if return_type is None: | ||||
|             return_type = "dict" | ||||
|  | ||||
|         assert isinstance(returned, types[return_type]) | ||||
|         if return_type == "both": | ||||
|             assert isinstance(returned.ax, Axes) | ||||
|             assert isinstance(returned.lines, dict) | ||||
|     else: | ||||
|         # should be fixed when the returning default is changed | ||||
|         if return_type is None: | ||||
|             for r in _flatten_visible(returned): | ||||
|                 assert isinstance(r, Axes) | ||||
|             return | ||||
|  | ||||
|         assert isinstance(returned, Series) | ||||
|  | ||||
|         assert sorted(returned.keys()) == sorted(expected_keys) | ||||
|         for key, value in returned.items(): | ||||
|             assert isinstance(value, types[return_type]) | ||||
|             # check returned dict has correct mapping | ||||
|             if return_type == "axes": | ||||
|                 if check_ax_title: | ||||
|                     assert value.get_title() == key | ||||
|             elif return_type == "both": | ||||
|                 if check_ax_title: | ||||
|                     assert value.ax.get_title() == key | ||||
|                 assert isinstance(value.ax, Axes) | ||||
|                 assert isinstance(value.lines, dict) | ||||
|             elif return_type == "dict": | ||||
|                 line = value["medians"][0] | ||||
|                 axes = line.axes | ||||
|                 if check_ax_title: | ||||
|                     assert axes.get_title() == key | ||||
|             else: | ||||
|                 raise AssertionError | ||||
|  | ||||
|  | ||||
| def _check_grid_settings(obj, kinds, kws={}): | ||||
|     # Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792 | ||||
|  | ||||
|     import matplotlib as mpl | ||||
|  | ||||
|     def is_grid_on(): | ||||
|         xticks = mpl.pyplot.gca().xaxis.get_major_ticks() | ||||
|         yticks = mpl.pyplot.gca().yaxis.get_major_ticks() | ||||
|         xoff = all(not g.gridline.get_visible() for g in xticks) | ||||
|         yoff = all(not g.gridline.get_visible() for g in yticks) | ||||
|  | ||||
|         return not (xoff and yoff) | ||||
|  | ||||
|     spndx = 1 | ||||
|     for kind in kinds: | ||||
|         mpl.pyplot.subplot(1, 4 * len(kinds), spndx) | ||||
|         spndx += 1 | ||||
|         mpl.rc("axes", grid=False) | ||||
|         obj.plot(kind=kind, **kws) | ||||
|         assert not is_grid_on() | ||||
|         mpl.pyplot.clf() | ||||
|  | ||||
|         mpl.pyplot.subplot(1, 4 * len(kinds), spndx) | ||||
|         spndx += 1 | ||||
|         mpl.rc("axes", grid=True) | ||||
|         obj.plot(kind=kind, grid=False, **kws) | ||||
|         assert not is_grid_on() | ||||
|         mpl.pyplot.clf() | ||||
|  | ||||
|         if kind not in ["pie", "hexbin", "scatter"]: | ||||
|             mpl.pyplot.subplot(1, 4 * len(kinds), spndx) | ||||
|             spndx += 1 | ||||
|             mpl.rc("axes", grid=True) | ||||
|             obj.plot(kind=kind, **kws) | ||||
|             assert is_grid_on() | ||||
|             mpl.pyplot.clf() | ||||
|  | ||||
|             mpl.pyplot.subplot(1, 4 * len(kinds), spndx) | ||||
|             spndx += 1 | ||||
|             mpl.rc("axes", grid=False) | ||||
|             obj.plot(kind=kind, grid=True, **kws) | ||||
|             assert is_grid_on() | ||||
|             mpl.pyplot.clf() | ||||
|  | ||||
|  | ||||
| def _unpack_cycler(rcParams, field="color"): | ||||
|     """ | ||||
|     Auxiliary function for correctly unpacking cycler after MPL >= 1.5 | ||||
|     """ | ||||
|     return [v[field] for v in rcParams["axes.prop_cycle"]] | ||||
|  | ||||
|  | ||||
| def get_x_axis(ax): | ||||
|     return ax._shared_axes["x"] | ||||
|  | ||||
|  | ||||
| def get_y_axis(ax): | ||||
|     return ax._shared_axes["y"] | ||||
|  | ||||
|  | ||||
| def _check_plot_works(f, default_axes=False, **kwargs): | ||||
|     """ | ||||
|     Create plot and ensure that plot return object is valid. | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     f : func | ||||
|         Plotting function. | ||||
|     default_axes : bool, optional | ||||
|         If False (default): | ||||
|             - If `ax` not in `kwargs`, then create subplot(211) and plot there | ||||
|             - Create new subplot(212) and plot there as well | ||||
|             - Mind special corner case for bootstrap_plot (see `_gen_two_subplots`) | ||||
|         If True: | ||||
|             - Simply run plotting function with kwargs provided | ||||
|             - All required axes instances will be created automatically | ||||
|             - It is recommended to use it when the plotting function | ||||
|             creates multiple axes itself. It helps avoid warnings like | ||||
|             'UserWarning: To output multiple subplots, | ||||
|             the figure containing the passed axes is being cleared' | ||||
|     **kwargs | ||||
|         Keyword arguments passed to the plotting function. | ||||
|  | ||||
|     Returns | ||||
|     ------- | ||||
|     Plot object returned by the last plotting. | ||||
|     """ | ||||
|     import matplotlib.pyplot as plt | ||||
|  | ||||
|     if default_axes: | ||||
|         gen_plots = _gen_default_plot | ||||
|     else: | ||||
|         gen_plots = _gen_two_subplots | ||||
|  | ||||
|     ret = None | ||||
|     try: | ||||
|         fig = kwargs.get("figure", plt.gcf()) | ||||
|         plt.clf() | ||||
|  | ||||
|         for ret in gen_plots(f, fig, **kwargs): | ||||
|             tm.assert_is_valid_plot_return_object(ret) | ||||
|  | ||||
|     finally: | ||||
|         plt.close(fig) | ||||
|  | ||||
|     return ret | ||||
|  | ||||
|  | ||||
| def _gen_default_plot(f, fig, **kwargs): | ||||
|     """ | ||||
|     Create plot in a default way. | ||||
|     """ | ||||
|     yield f(**kwargs) | ||||
|  | ||||
|  | ||||
| def _gen_two_subplots(f, fig, **kwargs): | ||||
|     """ | ||||
|     Create plot on two subplots forcefully created. | ||||
|     """ | ||||
|     if "ax" not in kwargs: | ||||
|         fig.add_subplot(211) | ||||
|     yield f(**kwargs) | ||||
|  | ||||
|     if f is pd.plotting.bootstrap_plot: | ||||
|         assert "ax" not in kwargs | ||||
|     else: | ||||
|         kwargs["ax"] = fig.add_subplot(212) | ||||
|     yield f(**kwargs) | ||||
| @ -0,0 +1,56 @@ | ||||
| import gc | ||||
|  | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     to_datetime, | ||||
| ) | ||||
|  | ||||
|  | ||||
| @pytest.fixture(autouse=True) | ||||
| def mpl_cleanup(): | ||||
|     # matplotlib/testing/decorators.py#L24 | ||||
|     # 1) Resets units registry | ||||
|     # 2) Resets rc_context | ||||
|     # 3) Closes all figures | ||||
|     mpl = pytest.importorskip("matplotlib") | ||||
|     mpl_units = pytest.importorskip("matplotlib.units") | ||||
|     plt = pytest.importorskip("matplotlib.pyplot") | ||||
|     orig_units_registry = mpl_units.registry.copy() | ||||
|     with mpl.rc_context(): | ||||
|         mpl.use("template") | ||||
|         yield | ||||
|     mpl_units.registry.clear() | ||||
|     mpl_units.registry.update(orig_units_registry) | ||||
|     plt.close("all") | ||||
|     # https://matplotlib.org/stable/users/prev_whats_new/whats_new_3.6.0.html#garbage-collection-is-no-longer-run-on-figure-close  # noqa: E501 | ||||
|     gc.collect(1) | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def hist_df(): | ||||
|     n = 50 | ||||
|     rng = np.random.default_rng(10) | ||||
|     gender = rng.choice(["Male", "Female"], size=n) | ||||
|     classroom = rng.choice(["A", "B", "C"], size=n) | ||||
|  | ||||
|     hist_df = DataFrame( | ||||
|         { | ||||
|             "gender": gender, | ||||
|             "classroom": classroom, | ||||
|             "height": rng.normal(66, 4, size=n), | ||||
|             "weight": rng.normal(161, 32, size=n), | ||||
|             "category": rng.integers(4, size=n), | ||||
|             "datetime": to_datetime( | ||||
|                 rng.integers( | ||||
|                     812419200000000000, | ||||
|                     819331200000000000, | ||||
|                     size=n, | ||||
|                     dtype=np.int64, | ||||
|                 ) | ||||
|             ), | ||||
|         } | ||||
|     ) | ||||
|     return hist_df | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @ -0,0 +1,670 @@ | ||||
| """ Test cases for DataFrame.plot """ | ||||
| import re | ||||
|  | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| import pandas as pd | ||||
| from pandas import DataFrame | ||||
| import pandas._testing as tm | ||||
| from pandas.tests.plotting.common import ( | ||||
|     _check_colors, | ||||
|     _check_plot_works, | ||||
|     _unpack_cycler, | ||||
| ) | ||||
| from pandas.util.version import Version | ||||
|  | ||||
| mpl = pytest.importorskip("matplotlib") | ||||
| plt = pytest.importorskip("matplotlib.pyplot") | ||||
| cm = pytest.importorskip("matplotlib.cm") | ||||
|  | ||||
|  | ||||
| def _check_colors_box(bp, box_c, whiskers_c, medians_c, caps_c="k", fliers_c=None): | ||||
|     if fliers_c is None: | ||||
|         fliers_c = "k" | ||||
|     _check_colors(bp["boxes"], linecolors=[box_c] * len(bp["boxes"])) | ||||
|     _check_colors(bp["whiskers"], linecolors=[whiskers_c] * len(bp["whiskers"])) | ||||
|     _check_colors(bp["medians"], linecolors=[medians_c] * len(bp["medians"])) | ||||
|     _check_colors(bp["fliers"], linecolors=[fliers_c] * len(bp["fliers"])) | ||||
|     _check_colors(bp["caps"], linecolors=[caps_c] * len(bp["caps"])) | ||||
|  | ||||
|  | ||||
| class TestDataFrameColor: | ||||
|     @pytest.mark.parametrize( | ||||
|         "color", ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9"] | ||||
|     ) | ||||
|     def test_mpl2_color_cycle_str(self, color): | ||||
|         # GH 15516 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((10, 3)), columns=["a", "b", "c"] | ||||
|         ) | ||||
|         _check_plot_works(df.plot, color=color) | ||||
|  | ||||
|     def test_color_single_series_list(self): | ||||
|         # GH 3486 | ||||
|         df = DataFrame({"A": [1, 2, 3]}) | ||||
|         _check_plot_works(df.plot, color=["red"]) | ||||
|  | ||||
|     @pytest.mark.parametrize("color", [(1, 0, 0), (1, 0, 0, 0.5)]) | ||||
|     def test_rgb_tuple_color(self, color): | ||||
|         # GH 16695 | ||||
|         df = DataFrame({"x": [1, 2], "y": [3, 4]}) | ||||
|         _check_plot_works(df.plot, x="x", y="y", color=color) | ||||
|  | ||||
|     def test_color_empty_string(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((10, 2))) | ||||
|         with pytest.raises(ValueError, match="Invalid color argument:"): | ||||
|             df.plot(color="") | ||||
|  | ||||
|     def test_color_and_style_arguments(self): | ||||
|         df = DataFrame({"x": [1, 2], "y": [3, 4]}) | ||||
|         # passing both 'color' and 'style' arguments should be allowed | ||||
|         # if there is no color symbol in the style strings: | ||||
|         ax = df.plot(color=["red", "black"], style=["-", "--"]) | ||||
|         # check that the linestyles are correctly set: | ||||
|         linestyle = [line.get_linestyle() for line in ax.lines] | ||||
|         assert linestyle == ["-", "--"] | ||||
|         # check that the colors are correctly set: | ||||
|         color = [line.get_color() for line in ax.lines] | ||||
|         assert color == ["red", "black"] | ||||
|         # passing both 'color' and 'style' arguments should not be allowed | ||||
|         # if there is a color symbol in the style strings: | ||||
|         msg = ( | ||||
|             "Cannot pass 'style' string with a color symbol and 'color' keyword " | ||||
|             "argument. Please use one or the other or pass 'style' without a color " | ||||
|             "symbol" | ||||
|         ) | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.plot(color=["red", "black"], style=["k-", "r--"]) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "color, expected", | ||||
|         [ | ||||
|             ("green", ["green"] * 4), | ||||
|             (["yellow", "red", "green", "blue"], ["yellow", "red", "green", "blue"]), | ||||
|         ], | ||||
|     ) | ||||
|     def test_color_and_marker(self, color, expected): | ||||
|         # GH 21003 | ||||
|         df = DataFrame(np.random.default_rng(2).random((7, 4))) | ||||
|         ax = df.plot(color=color, style="d--") | ||||
|         # check colors | ||||
|         result = [i.get_color() for i in ax.lines] | ||||
|         assert result == expected | ||||
|         # check markers and linestyles | ||||
|         assert all(i.get_linestyle() == "--" for i in ax.lines) | ||||
|         assert all(i.get_marker() == "d" for i in ax.lines) | ||||
|  | ||||
|     def test_bar_colors(self): | ||||
|         default_colors = _unpack_cycler(plt.rcParams) | ||||
|  | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         ax = df.plot.bar() | ||||
|         _check_colors(ax.patches[::5], facecolors=default_colors[:5]) | ||||
|  | ||||
|     def test_bar_colors_custom(self): | ||||
|         custom_colors = "rgcby" | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         ax = df.plot.bar(color=custom_colors) | ||||
|         _check_colors(ax.patches[::5], facecolors=custom_colors) | ||||
|  | ||||
|     @pytest.mark.parametrize("colormap", ["jet", cm.jet]) | ||||
|     def test_bar_colors_cmap(self, colormap): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|  | ||||
|         ax = df.plot.bar(colormap=colormap) | ||||
|         rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)] | ||||
|         _check_colors(ax.patches[::5], facecolors=rgba_colors) | ||||
|  | ||||
|     def test_bar_colors_single_col(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         ax = df.loc[:, [0]].plot.bar(color="DodgerBlue") | ||||
|         _check_colors([ax.patches[0]], facecolors=["DodgerBlue"]) | ||||
|  | ||||
|     def test_bar_colors_green(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         ax = df.plot(kind="bar", color="green") | ||||
|         _check_colors(ax.patches[::5], facecolors=["green"] * 5) | ||||
|  | ||||
|     def test_bar_user_colors(self): | ||||
|         df = DataFrame( | ||||
|             {"A": range(4), "B": range(1, 5), "color": ["red", "blue", "blue", "red"]} | ||||
|         ) | ||||
|         # This should *only* work when `y` is specified, else | ||||
|         # we use one color per column | ||||
|         ax = df.plot.bar(y="A", color=df["color"]) | ||||
|         result = [p.get_facecolor() for p in ax.patches] | ||||
|         expected = [ | ||||
|             (1.0, 0.0, 0.0, 1.0), | ||||
|             (0.0, 0.0, 1.0, 1.0), | ||||
|             (0.0, 0.0, 1.0, 1.0), | ||||
|             (1.0, 0.0, 0.0, 1.0), | ||||
|         ] | ||||
|         assert result == expected | ||||
|  | ||||
|     def test_if_scatterplot_colorbar_affects_xaxis_visibility(self): | ||||
|         # addressing issue #10611, to ensure colobar does not | ||||
|         # interfere with x-axis label and ticklabels with | ||||
|         # ipython inline backend. | ||||
|         random_array = np.random.default_rng(2).random((10, 3)) | ||||
|         df = DataFrame(random_array, columns=["A label", "B label", "C label"]) | ||||
|  | ||||
|         ax1 = df.plot.scatter(x="A label", y="B label") | ||||
|         ax2 = df.plot.scatter(x="A label", y="B label", c="C label") | ||||
|  | ||||
|         vis1 = [vis.get_visible() for vis in ax1.xaxis.get_minorticklabels()] | ||||
|         vis2 = [vis.get_visible() for vis in ax2.xaxis.get_minorticklabels()] | ||||
|         assert vis1 == vis2 | ||||
|  | ||||
|         vis1 = [vis.get_visible() for vis in ax1.xaxis.get_majorticklabels()] | ||||
|         vis2 = [vis.get_visible() for vis in ax2.xaxis.get_majorticklabels()] | ||||
|         assert vis1 == vis2 | ||||
|  | ||||
|         assert ( | ||||
|             ax1.xaxis.get_label().get_visible() == ax2.xaxis.get_label().get_visible() | ||||
|         ) | ||||
|  | ||||
|     def test_if_hexbin_xaxis_label_is_visible(self): | ||||
|         # addressing issue #10678, to ensure colobar does not | ||||
|         # interfere with x-axis label and ticklabels with | ||||
|         # ipython inline backend. | ||||
|         random_array = np.random.default_rng(2).random((10, 3)) | ||||
|         df = DataFrame(random_array, columns=["A label", "B label", "C label"]) | ||||
|  | ||||
|         ax = df.plot.hexbin("A label", "B label", gridsize=12) | ||||
|         assert all(vis.get_visible() for vis in ax.xaxis.get_minorticklabels()) | ||||
|         assert all(vis.get_visible() for vis in ax.xaxis.get_majorticklabels()) | ||||
|         assert ax.xaxis.get_label().get_visible() | ||||
|  | ||||
|     def test_if_scatterplot_colorbars_are_next_to_parent_axes(self): | ||||
|         random_array = np.random.default_rng(2).random((10, 3)) | ||||
|         df = DataFrame(random_array, columns=["A label", "B label", "C label"]) | ||||
|  | ||||
|         fig, axes = plt.subplots(1, 2) | ||||
|         df.plot.scatter("A label", "B label", c="C label", ax=axes[0]) | ||||
|         df.plot.scatter("A label", "B label", c="C label", ax=axes[1]) | ||||
|         plt.tight_layout() | ||||
|  | ||||
|         points = np.array([ax.get_position().get_points() for ax in fig.axes]) | ||||
|         axes_x_coords = points[:, :, 0] | ||||
|         parent_distance = axes_x_coords[1, :] - axes_x_coords[0, :] | ||||
|         colorbar_distance = axes_x_coords[3, :] - axes_x_coords[2, :] | ||||
|         assert np.isclose(parent_distance, colorbar_distance, atol=1e-7).all() | ||||
|  | ||||
|     @pytest.mark.parametrize("cmap", [None, "Greys"]) | ||||
|     def test_scatter_with_c_column_name_with_colors(self, cmap): | ||||
|         # https://github.com/pandas-dev/pandas/issues/34316 | ||||
|  | ||||
|         df = DataFrame( | ||||
|             [[5.1, 3.5], [4.9, 3.0], [7.0, 3.2], [6.4, 3.2], [5.9, 3.0]], | ||||
|             columns=["length", "width"], | ||||
|         ) | ||||
|         df["species"] = ["r", "r", "g", "g", "b"] | ||||
|         if cmap is not None: | ||||
|             with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|                 ax = df.plot.scatter(x=0, y=1, cmap=cmap, c="species") | ||||
|         else: | ||||
|             ax = df.plot.scatter(x=0, y=1, c="species", cmap=cmap) | ||||
|         assert ax.collections[0].colorbar is None | ||||
|  | ||||
|     def test_scatter_colors(self): | ||||
|         df = DataFrame({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]}) | ||||
|         with pytest.raises(TypeError, match="Specify exactly one of `c` and `color`"): | ||||
|             df.plot.scatter(x="a", y="b", c="c", color="green") | ||||
|  | ||||
|     def test_scatter_colors_not_raising_warnings(self): | ||||
|         # GH-53908. Do not raise UserWarning: No data for colormapping | ||||
|         # provided via 'c'. Parameters 'cmap' will be ignored | ||||
|         df = DataFrame({"x": [1, 2, 3], "y": [1, 2, 3]}) | ||||
|         with tm.assert_produces_warning(None): | ||||
|             df.plot.scatter(x="x", y="y", c="b") | ||||
|  | ||||
|     def test_scatter_colors_default(self): | ||||
|         df = DataFrame({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]}) | ||||
|         default_colors = _unpack_cycler(mpl.pyplot.rcParams) | ||||
|  | ||||
|         ax = df.plot.scatter(x="a", y="b", c="c") | ||||
|         tm.assert_numpy_array_equal( | ||||
|             ax.collections[0].get_facecolor()[0], | ||||
|             np.array(mpl.colors.ColorConverter.to_rgba(default_colors[0])), | ||||
|         ) | ||||
|  | ||||
|     def test_scatter_colors_white(self): | ||||
|         df = DataFrame({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]}) | ||||
|         ax = df.plot.scatter(x="a", y="b", color="white") | ||||
|         tm.assert_numpy_array_equal( | ||||
|             ax.collections[0].get_facecolor()[0], | ||||
|             np.array([1, 1, 1, 1], dtype=np.float64), | ||||
|         ) | ||||
|  | ||||
|     def test_scatter_colorbar_different_cmap(self): | ||||
|         # GH 33389 | ||||
|         df = DataFrame({"x": [1, 2, 3], "y": [1, 3, 2], "c": [1, 2, 3]}) | ||||
|         df["x2"] = df["x"] + 1 | ||||
|  | ||||
|         _, ax = plt.subplots() | ||||
|         df.plot("x", "y", c="c", kind="scatter", cmap="cividis", ax=ax) | ||||
|         df.plot("x2", "y", c="c", kind="scatter", cmap="magma", ax=ax) | ||||
|  | ||||
|         assert ax.collections[0].cmap.name == "cividis" | ||||
|         assert ax.collections[1].cmap.name == "magma" | ||||
|  | ||||
|     def test_line_colors(self): | ||||
|         custom_colors = "rgcby" | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|  | ||||
|         ax = df.plot(color=custom_colors) | ||||
|         _check_colors(ax.get_lines(), linecolors=custom_colors) | ||||
|  | ||||
|         plt.close("all") | ||||
|  | ||||
|         ax2 = df.plot(color=custom_colors) | ||||
|         lines2 = ax2.get_lines() | ||||
|  | ||||
|         for l1, l2 in zip(ax.get_lines(), lines2): | ||||
|             assert l1.get_color() == l2.get_color() | ||||
|  | ||||
|     @pytest.mark.parametrize("colormap", ["jet", cm.jet]) | ||||
|     def test_line_colors_cmap(self, colormap): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         ax = df.plot(colormap=colormap) | ||||
|         rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] | ||||
|         _check_colors(ax.get_lines(), linecolors=rgba_colors) | ||||
|  | ||||
|     def test_line_colors_single_col(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         # make color a list if plotting one column frame | ||||
|         # handles cases like df.plot(color='DodgerBlue') | ||||
|         ax = df.loc[:, [0]].plot(color="DodgerBlue") | ||||
|         _check_colors(ax.lines, linecolors=["DodgerBlue"]) | ||||
|  | ||||
|     def test_line_colors_single_color(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         ax = df.plot(color="red") | ||||
|         _check_colors(ax.get_lines(), linecolors=["red"] * 5) | ||||
|  | ||||
|     def test_line_colors_hex(self): | ||||
|         # GH 10299 | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         custom_colors = ["#FF0000", "#0000FF", "#FFFF00", "#000000", "#FFFFFF"] | ||||
|         ax = df.plot(color=custom_colors) | ||||
|         _check_colors(ax.get_lines(), linecolors=custom_colors) | ||||
|  | ||||
|     def test_dont_modify_colors(self): | ||||
|         colors = ["r", "g", "b"] | ||||
|         DataFrame(np.random.default_rng(2).random((10, 2))).plot(color=colors) | ||||
|         assert len(colors) == 3 | ||||
|  | ||||
|     def test_line_colors_and_styles_subplots(self): | ||||
|         # GH 9894 | ||||
|         default_colors = _unpack_cycler(mpl.pyplot.rcParams) | ||||
|  | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|  | ||||
|         axes = df.plot(subplots=True) | ||||
|         for ax, c in zip(axes, list(default_colors)): | ||||
|             _check_colors(ax.get_lines(), linecolors=[c]) | ||||
|  | ||||
|     @pytest.mark.parametrize("color", ["k", "green"]) | ||||
|     def test_line_colors_and_styles_subplots_single_color_str(self, color): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         axes = df.plot(subplots=True, color=color) | ||||
|         for ax in axes: | ||||
|             _check_colors(ax.get_lines(), linecolors=[color]) | ||||
|  | ||||
|     @pytest.mark.parametrize("color", ["rgcby", list("rgcby")]) | ||||
|     def test_line_colors_and_styles_subplots_custom_colors(self, color): | ||||
|         # GH 9894 | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         axes = df.plot(color=color, subplots=True) | ||||
|         for ax, c in zip(axes, list(color)): | ||||
|             _check_colors(ax.get_lines(), linecolors=[c]) | ||||
|  | ||||
|     def test_line_colors_and_styles_subplots_colormap_hex(self): | ||||
|         # GH 9894 | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         # GH 10299 | ||||
|         custom_colors = ["#FF0000", "#0000FF", "#FFFF00", "#000000", "#FFFFFF"] | ||||
|         axes = df.plot(color=custom_colors, subplots=True) | ||||
|         for ax, c in zip(axes, list(custom_colors)): | ||||
|             _check_colors(ax.get_lines(), linecolors=[c]) | ||||
|  | ||||
|     @pytest.mark.parametrize("cmap", ["jet", cm.jet]) | ||||
|     def test_line_colors_and_styles_subplots_colormap_subplot(self, cmap): | ||||
|         # GH 9894 | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] | ||||
|         axes = df.plot(colormap=cmap, subplots=True) | ||||
|         for ax, c in zip(axes, rgba_colors): | ||||
|             _check_colors(ax.get_lines(), linecolors=[c]) | ||||
|  | ||||
|     def test_line_colors_and_styles_subplots_single_col(self): | ||||
|         # GH 9894 | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         # make color a list if plotting one column frame | ||||
|         # handles cases like df.plot(color='DodgerBlue') | ||||
|         axes = df.loc[:, [0]].plot(color="DodgerBlue", subplots=True) | ||||
|         _check_colors(axes[0].lines, linecolors=["DodgerBlue"]) | ||||
|  | ||||
|     def test_line_colors_and_styles_subplots_single_char(self): | ||||
|         # GH 9894 | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         # single character style | ||||
|         axes = df.plot(style="r", subplots=True) | ||||
|         for ax in axes: | ||||
|             _check_colors(ax.get_lines(), linecolors=["r"]) | ||||
|  | ||||
|     def test_line_colors_and_styles_subplots_list_styles(self): | ||||
|         # GH 9894 | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         # list of styles | ||||
|         styles = list("rgcby") | ||||
|         axes = df.plot(style=styles, subplots=True) | ||||
|         for ax, c in zip(axes, styles): | ||||
|             _check_colors(ax.get_lines(), linecolors=[c]) | ||||
|  | ||||
|     def test_area_colors(self): | ||||
|         from matplotlib.collections import PolyCollection | ||||
|  | ||||
|         custom_colors = "rgcby" | ||||
|         df = DataFrame(np.random.default_rng(2).random((5, 5))) | ||||
|  | ||||
|         ax = df.plot.area(color=custom_colors) | ||||
|         _check_colors(ax.get_lines(), linecolors=custom_colors) | ||||
|         poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)] | ||||
|         _check_colors(poly, facecolors=custom_colors) | ||||
|  | ||||
|         handles, _ = ax.get_legend_handles_labels() | ||||
|         _check_colors(handles, facecolors=custom_colors) | ||||
|  | ||||
|         for h in handles: | ||||
|             assert h.get_alpha() is None | ||||
|  | ||||
|     def test_area_colors_poly(self): | ||||
|         from matplotlib import cm | ||||
|         from matplotlib.collections import PolyCollection | ||||
|  | ||||
|         df = DataFrame(np.random.default_rng(2).random((5, 5))) | ||||
|         ax = df.plot.area(colormap="jet") | ||||
|         jet_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] | ||||
|         _check_colors(ax.get_lines(), linecolors=jet_colors) | ||||
|         poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)] | ||||
|         _check_colors(poly, facecolors=jet_colors) | ||||
|  | ||||
|         handles, _ = ax.get_legend_handles_labels() | ||||
|         _check_colors(handles, facecolors=jet_colors) | ||||
|         for h in handles: | ||||
|             assert h.get_alpha() is None | ||||
|  | ||||
|     def test_area_colors_stacked_false(self): | ||||
|         from matplotlib import cm | ||||
|         from matplotlib.collections import PolyCollection | ||||
|  | ||||
|         df = DataFrame(np.random.default_rng(2).random((5, 5))) | ||||
|         jet_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] | ||||
|         # When stacked=False, alpha is set to 0.5 | ||||
|         ax = df.plot.area(colormap=cm.jet, stacked=False) | ||||
|         _check_colors(ax.get_lines(), linecolors=jet_colors) | ||||
|         poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)] | ||||
|         jet_with_alpha = [(c[0], c[1], c[2], 0.5) for c in jet_colors] | ||||
|         _check_colors(poly, facecolors=jet_with_alpha) | ||||
|  | ||||
|         handles, _ = ax.get_legend_handles_labels() | ||||
|         linecolors = jet_with_alpha | ||||
|         _check_colors(handles[: len(jet_colors)], linecolors=linecolors) | ||||
|         for h in handles: | ||||
|             assert h.get_alpha() == 0.5 | ||||
|  | ||||
|     def test_hist_colors(self): | ||||
|         default_colors = _unpack_cycler(mpl.pyplot.rcParams) | ||||
|  | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         ax = df.plot.hist() | ||||
|         _check_colors(ax.patches[::10], facecolors=default_colors[:5]) | ||||
|  | ||||
|     def test_hist_colors_single_custom(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         custom_colors = "rgcby" | ||||
|         ax = df.plot.hist(color=custom_colors) | ||||
|         _check_colors(ax.patches[::10], facecolors=custom_colors) | ||||
|  | ||||
|     @pytest.mark.parametrize("colormap", ["jet", cm.jet]) | ||||
|     def test_hist_colors_cmap(self, colormap): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         ax = df.plot.hist(colormap=colormap) | ||||
|         rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)] | ||||
|         _check_colors(ax.patches[::10], facecolors=rgba_colors) | ||||
|  | ||||
|     def test_hist_colors_single_col(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         ax = df.loc[:, [0]].plot.hist(color="DodgerBlue") | ||||
|         _check_colors([ax.patches[0]], facecolors=["DodgerBlue"]) | ||||
|  | ||||
|     def test_hist_colors_single_color(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         ax = df.plot(kind="hist", color="green") | ||||
|         _check_colors(ax.patches[::10], facecolors=["green"] * 5) | ||||
|  | ||||
|     def test_kde_colors(self): | ||||
|         pytest.importorskip("scipy") | ||||
|         custom_colors = "rgcby" | ||||
|         df = DataFrame(np.random.default_rng(2).random((5, 5))) | ||||
|  | ||||
|         ax = df.plot.kde(color=custom_colors) | ||||
|         _check_colors(ax.get_lines(), linecolors=custom_colors) | ||||
|  | ||||
|     @pytest.mark.parametrize("colormap", ["jet", cm.jet]) | ||||
|     def test_kde_colors_cmap(self, colormap): | ||||
|         pytest.importorskip("scipy") | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         ax = df.plot.kde(colormap=colormap) | ||||
|         rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] | ||||
|         _check_colors(ax.get_lines(), linecolors=rgba_colors) | ||||
|  | ||||
|     def test_kde_colors_and_styles_subplots(self): | ||||
|         pytest.importorskip("scipy") | ||||
|         default_colors = _unpack_cycler(mpl.pyplot.rcParams) | ||||
|  | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|  | ||||
|         axes = df.plot(kind="kde", subplots=True) | ||||
|         for ax, c in zip(axes, list(default_colors)): | ||||
|             _check_colors(ax.get_lines(), linecolors=[c]) | ||||
|  | ||||
|     @pytest.mark.parametrize("colormap", ["k", "red"]) | ||||
|     def test_kde_colors_and_styles_subplots_single_col_str(self, colormap): | ||||
|         pytest.importorskip("scipy") | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         axes = df.plot(kind="kde", color=colormap, subplots=True) | ||||
|         for ax in axes: | ||||
|             _check_colors(ax.get_lines(), linecolors=[colormap]) | ||||
|  | ||||
|     def test_kde_colors_and_styles_subplots_custom_color(self): | ||||
|         pytest.importorskip("scipy") | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         custom_colors = "rgcby" | ||||
|         axes = df.plot(kind="kde", color=custom_colors, subplots=True) | ||||
|         for ax, c in zip(axes, list(custom_colors)): | ||||
|             _check_colors(ax.get_lines(), linecolors=[c]) | ||||
|  | ||||
|     @pytest.mark.parametrize("colormap", ["jet", cm.jet]) | ||||
|     def test_kde_colors_and_styles_subplots_cmap(self, colormap): | ||||
|         pytest.importorskip("scipy") | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))] | ||||
|         axes = df.plot(kind="kde", colormap=colormap, subplots=True) | ||||
|         for ax, c in zip(axes, rgba_colors): | ||||
|             _check_colors(ax.get_lines(), linecolors=[c]) | ||||
|  | ||||
|     def test_kde_colors_and_styles_subplots_single_col(self): | ||||
|         pytest.importorskip("scipy") | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         # make color a list if plotting one column frame | ||||
|         # handles cases like df.plot(color='DodgerBlue') | ||||
|         axes = df.loc[:, [0]].plot(kind="kde", color="DodgerBlue", subplots=True) | ||||
|         _check_colors(axes[0].lines, linecolors=["DodgerBlue"]) | ||||
|  | ||||
|     def test_kde_colors_and_styles_subplots_single_char(self): | ||||
|         pytest.importorskip("scipy") | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         # list of styles | ||||
|         # single character style | ||||
|         axes = df.plot(kind="kde", style="r", subplots=True) | ||||
|         for ax in axes: | ||||
|             _check_colors(ax.get_lines(), linecolors=["r"]) | ||||
|  | ||||
|     def test_kde_colors_and_styles_subplots_list(self): | ||||
|         pytest.importorskip("scipy") | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         # list of styles | ||||
|         styles = list("rgcby") | ||||
|         axes = df.plot(kind="kde", style=styles, subplots=True) | ||||
|         for ax, c in zip(axes, styles): | ||||
|             _check_colors(ax.get_lines(), linecolors=[c]) | ||||
|  | ||||
|     def test_boxplot_colors(self): | ||||
|         default_colors = _unpack_cycler(mpl.pyplot.rcParams) | ||||
|  | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         bp = df.plot.box(return_type="dict") | ||||
|         _check_colors_box( | ||||
|             bp, | ||||
|             default_colors[0], | ||||
|             default_colors[0], | ||||
|             default_colors[2], | ||||
|             default_colors[0], | ||||
|         ) | ||||
|  | ||||
|     def test_boxplot_colors_dict_colors(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         dict_colors = { | ||||
|             "boxes": "#572923", | ||||
|             "whiskers": "#982042", | ||||
|             "medians": "#804823", | ||||
|             "caps": "#123456", | ||||
|         } | ||||
|         bp = df.plot.box(color=dict_colors, sym="r+", return_type="dict") | ||||
|         _check_colors_box( | ||||
|             bp, | ||||
|             dict_colors["boxes"], | ||||
|             dict_colors["whiskers"], | ||||
|             dict_colors["medians"], | ||||
|             dict_colors["caps"], | ||||
|             "r", | ||||
|         ) | ||||
|  | ||||
|     def test_boxplot_colors_default_color(self): | ||||
|         default_colors = _unpack_cycler(mpl.pyplot.rcParams) | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         # partial colors | ||||
|         dict_colors = {"whiskers": "c", "medians": "m"} | ||||
|         bp = df.plot.box(color=dict_colors, return_type="dict") | ||||
|         _check_colors_box(bp, default_colors[0], "c", "m", default_colors[0]) | ||||
|  | ||||
|     @pytest.mark.parametrize("colormap", ["jet", cm.jet]) | ||||
|     def test_boxplot_colors_cmap(self, colormap): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         bp = df.plot.box(colormap=colormap, return_type="dict") | ||||
|         jet_colors = [cm.jet(n) for n in np.linspace(0, 1, 3)] | ||||
|         _check_colors_box( | ||||
|             bp, jet_colors[0], jet_colors[0], jet_colors[2], jet_colors[0] | ||||
|         ) | ||||
|  | ||||
|     def test_boxplot_colors_single(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         # string color is applied to all artists except fliers | ||||
|         bp = df.plot.box(color="DodgerBlue", return_type="dict") | ||||
|         _check_colors_box(bp, "DodgerBlue", "DodgerBlue", "DodgerBlue", "DodgerBlue") | ||||
|  | ||||
|     def test_boxplot_colors_tuple(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         # tuple is also applied to all artists except fliers | ||||
|         bp = df.plot.box(color=(0, 1, 0), sym="#123456", return_type="dict") | ||||
|         _check_colors_box(bp, (0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0), "#123456") | ||||
|  | ||||
|     def test_boxplot_colors_invalid(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         msg = re.escape( | ||||
|             "color dict contains invalid key 'xxxx'. The key must be either " | ||||
|             "['boxes', 'whiskers', 'medians', 'caps']" | ||||
|         ) | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             # Color contains invalid key results in ValueError | ||||
|             df.plot.box(color={"boxes": "red", "xxxx": "blue"}) | ||||
|  | ||||
|     def test_default_color_cycle(self): | ||||
|         import cycler | ||||
|  | ||||
|         colors = list("rgbk") | ||||
|         plt.rcParams["axes.prop_cycle"] = cycler.cycler("color", colors) | ||||
|  | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) | ||||
|         ax = df.plot() | ||||
|  | ||||
|         expected = _unpack_cycler(plt.rcParams)[:3] | ||||
|         _check_colors(ax.get_lines(), linecolors=expected) | ||||
|  | ||||
|     def test_no_color_bar(self): | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "A": np.random.default_rng(2).uniform(size=20), | ||||
|                 "B": np.random.default_rng(2).uniform(size=20), | ||||
|                 "C": np.arange(20) + np.random.default_rng(2).uniform(size=20), | ||||
|             } | ||||
|         ) | ||||
|         ax = df.plot.hexbin(x="A", y="B", colorbar=None) | ||||
|         assert ax.collections[0].colorbar is None | ||||
|  | ||||
|     def test_mixing_cmap_and_colormap_raises(self): | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "A": np.random.default_rng(2).uniform(size=20), | ||||
|                 "B": np.random.default_rng(2).uniform(size=20), | ||||
|                 "C": np.arange(20) + np.random.default_rng(2).uniform(size=20), | ||||
|             } | ||||
|         ) | ||||
|         msg = "Only specify one of `cmap` and `colormap`" | ||||
|         with pytest.raises(TypeError, match=msg): | ||||
|             df.plot.hexbin(x="A", y="B", cmap="YlGn", colormap="BuGn") | ||||
|  | ||||
|     def test_passed_bar_colors(self): | ||||
|         color_tuples = [(0.9, 0, 0, 1), (0, 0.9, 0, 1), (0, 0, 0.9, 1)] | ||||
|         colormap = mpl.colors.ListedColormap(color_tuples) | ||||
|         barplot = DataFrame([[1, 2, 3]]).plot(kind="bar", cmap=colormap) | ||||
|         assert color_tuples == [c.get_facecolor() for c in barplot.patches] | ||||
|  | ||||
|     def test_rcParams_bar_colors(self): | ||||
|         color_tuples = [(0.9, 0, 0, 1), (0, 0.9, 0, 1), (0, 0, 0.9, 1)] | ||||
|         with mpl.rc_context(rc={"axes.prop_cycle": mpl.cycler("color", color_tuples)}): | ||||
|             barplot = DataFrame([[1, 2, 3]]).plot(kind="bar") | ||||
|         assert color_tuples == [c.get_facecolor() for c in barplot.patches] | ||||
|  | ||||
|     def test_colors_of_columns_with_same_name(self): | ||||
|         # ISSUE 11136 -> https://github.com/pandas-dev/pandas/issues/11136 | ||||
|         # Creating a DataFrame with duplicate column labels and testing colors of them. | ||||
|         df = DataFrame({"b": [0, 1, 0], "a": [1, 2, 3]}) | ||||
|         df1 = DataFrame({"a": [2, 4, 6]}) | ||||
|         df_concat = pd.concat([df, df1], axis=1) | ||||
|         result = df_concat.plot() | ||||
|         legend = result.get_legend() | ||||
|         if Version(mpl.__version__) < Version("3.7"): | ||||
|             handles = legend.legendHandles | ||||
|         else: | ||||
|             handles = legend.legend_handles | ||||
|         for legend, line in zip(handles, result.lines): | ||||
|             assert legend.get_color() == line.get_color() | ||||
|  | ||||
|     def test_invalid_colormap(self): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 2)), columns=["A", "B"] | ||||
|         ) | ||||
|         msg = "(is not a valid value)|(is not a known colormap)" | ||||
|         with pytest.raises((ValueError, KeyError), match=msg): | ||||
|             df.plot(colormap="invalid_colormap") | ||||
|  | ||||
|     def test_dataframe_none_color(self): | ||||
|         # GH51953 | ||||
|         df = DataFrame([[1, 2, 3]]) | ||||
|         ax = df.plot(color=None) | ||||
|         expected = _unpack_cycler(mpl.pyplot.rcParams)[:3] | ||||
|         _check_colors(ax.get_lines(), linecolors=expected) | ||||
| @ -0,0 +1,72 @@ | ||||
| """ Test cases for DataFrame.plot """ | ||||
|  | ||||
| import pytest | ||||
|  | ||||
| from pandas import DataFrame | ||||
| from pandas.tests.plotting.common import _check_visible | ||||
|  | ||||
| pytest.importorskip("matplotlib") | ||||
|  | ||||
|  | ||||
| class TestDataFramePlotsGroupby: | ||||
|     def _assert_ytickslabels_visibility(self, axes, expected): | ||||
|         for ax, exp in zip(axes, expected): | ||||
|             _check_visible(ax.get_yticklabels(), visible=exp) | ||||
|  | ||||
|     def _assert_xtickslabels_visibility(self, axes, expected): | ||||
|         for ax, exp in zip(axes, expected): | ||||
|             _check_visible(ax.get_xticklabels(), visible=exp) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "kwargs, expected", | ||||
|         [ | ||||
|             # behavior without keyword | ||||
|             ({}, [True, False, True, False]), | ||||
|             # set sharey=True should be identical | ||||
|             ({"sharey": True}, [True, False, True, False]), | ||||
|             # sharey=False, all yticklabels should be visible | ||||
|             ({"sharey": False}, [True, True, True, True]), | ||||
|         ], | ||||
|     ) | ||||
|     def test_groupby_boxplot_sharey(self, kwargs, expected): | ||||
|         # https://github.com/pandas-dev/pandas/issues/20968 | ||||
|         # sharey can now be switched check whether the right | ||||
|         # pair of axes is turned on or off | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "a": [-1.43, -0.15, -3.70, -1.43, -0.14], | ||||
|                 "b": [0.56, 0.84, 0.29, 0.56, 0.85], | ||||
|                 "c": [0, 1, 2, 3, 1], | ||||
|             }, | ||||
|             index=[0, 1, 2, 3, 4], | ||||
|         ) | ||||
|         axes = df.groupby("c").boxplot(**kwargs) | ||||
|         self._assert_ytickslabels_visibility(axes, expected) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "kwargs, expected", | ||||
|         [ | ||||
|             # behavior without keyword | ||||
|             ({}, [True, True, True, True]), | ||||
|             # set sharex=False should be identical | ||||
|             ({"sharex": False}, [True, True, True, True]), | ||||
|             # sharex=True, xticklabels should be visible | ||||
|             # only for bottom plots | ||||
|             ({"sharex": True}, [False, False, True, True]), | ||||
|         ], | ||||
|     ) | ||||
|     def test_groupby_boxplot_sharex(self, kwargs, expected): | ||||
|         # https://github.com/pandas-dev/pandas/issues/20968 | ||||
|         # sharex can now be switched check whether the right | ||||
|         # pair of axes is turned on or off | ||||
|  | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "a": [-1.43, -0.15, -3.70, -1.43, -0.14], | ||||
|                 "b": [0.56, 0.84, 0.29, 0.56, 0.85], | ||||
|                 "c": [0, 1, 2, 3, 1], | ||||
|             }, | ||||
|             index=[0, 1, 2, 3, 4], | ||||
|         ) | ||||
|         axes = df.groupby("c").boxplot(**kwargs) | ||||
|         self._assert_xtickslabels_visibility(axes, expected) | ||||
| @ -0,0 +1,272 @@ | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| import pandas.util._test_decorators as td | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     date_range, | ||||
| ) | ||||
| from pandas.tests.plotting.common import ( | ||||
|     _check_legend_labels, | ||||
|     _check_legend_marker, | ||||
|     _check_text_labels, | ||||
| ) | ||||
| from pandas.util.version import Version | ||||
|  | ||||
| mpl = pytest.importorskip("matplotlib") | ||||
|  | ||||
|  | ||||
| class TestFrameLegend: | ||||
|     @pytest.mark.xfail( | ||||
|         reason=( | ||||
|             "Open bug in matplotlib " | ||||
|             "https://github.com/matplotlib/matplotlib/issues/11357" | ||||
|         ) | ||||
|     ) | ||||
|     def test_mixed_yerr(self): | ||||
|         # https://github.com/pandas-dev/pandas/issues/39522 | ||||
|         from matplotlib.collections import LineCollection | ||||
|         from matplotlib.lines import Line2D | ||||
|  | ||||
|         df = DataFrame([{"x": 1, "a": 1, "b": 1}, {"x": 2, "a": 2, "b": 3}]) | ||||
|  | ||||
|         ax = df.plot("x", "a", c="orange", yerr=0.1, label="orange") | ||||
|         df.plot("x", "b", c="blue", yerr=None, ax=ax, label="blue") | ||||
|  | ||||
|         legend = ax.get_legend() | ||||
|         if Version(mpl.__version__) < Version("3.7"): | ||||
|             result_handles = legend.legendHandles | ||||
|         else: | ||||
|             result_handles = legend.legend_handles | ||||
|  | ||||
|         assert isinstance(result_handles[0], LineCollection) | ||||
|         assert isinstance(result_handles[1], Line2D) | ||||
|  | ||||
|     def test_legend_false(self): | ||||
|         # https://github.com/pandas-dev/pandas/issues/40044 | ||||
|         df = DataFrame({"a": [1, 1], "b": [2, 3]}) | ||||
|         df2 = DataFrame({"d": [2.5, 2.5]}) | ||||
|  | ||||
|         ax = df.plot(legend=True, color={"a": "blue", "b": "green"}, secondary_y="b") | ||||
|         df2.plot(legend=True, color={"d": "red"}, ax=ax) | ||||
|         legend = ax.get_legend() | ||||
|         if Version(mpl.__version__) < Version("3.7"): | ||||
|             handles = legend.legendHandles | ||||
|         else: | ||||
|             handles = legend.legend_handles | ||||
|         result = [handle.get_color() for handle in handles] | ||||
|         expected = ["blue", "green", "red"] | ||||
|         assert result == expected | ||||
|  | ||||
|     @pytest.mark.parametrize("kind", ["line", "bar", "barh", "kde", "area", "hist"]) | ||||
|     def test_df_legend_labels(self, kind): | ||||
|         pytest.importorskip("scipy") | ||||
|         df = DataFrame(np.random.default_rng(2).random((3, 3)), columns=["a", "b", "c"]) | ||||
|         df2 = DataFrame( | ||||
|             np.random.default_rng(2).random((3, 3)), columns=["d", "e", "f"] | ||||
|         ) | ||||
|         df3 = DataFrame( | ||||
|             np.random.default_rng(2).random((3, 3)), columns=["g", "h", "i"] | ||||
|         ) | ||||
|         df4 = DataFrame( | ||||
|             np.random.default_rng(2).random((3, 3)), columns=["j", "k", "l"] | ||||
|         ) | ||||
|  | ||||
|         ax = df.plot(kind=kind, legend=True) | ||||
|         _check_legend_labels(ax, labels=df.columns) | ||||
|  | ||||
|         ax = df2.plot(kind=kind, legend=False, ax=ax) | ||||
|         _check_legend_labels(ax, labels=df.columns) | ||||
|  | ||||
|         ax = df3.plot(kind=kind, legend=True, ax=ax) | ||||
|         _check_legend_labels(ax, labels=df.columns.union(df3.columns)) | ||||
|  | ||||
|         ax = df4.plot(kind=kind, legend="reverse", ax=ax) | ||||
|         expected = list(df.columns.union(df3.columns)) + list(reversed(df4.columns)) | ||||
|         _check_legend_labels(ax, labels=expected) | ||||
|  | ||||
|     def test_df_legend_labels_secondary_y(self): | ||||
|         pytest.importorskip("scipy") | ||||
|         df = DataFrame(np.random.default_rng(2).random((3, 3)), columns=["a", "b", "c"]) | ||||
|         df2 = DataFrame( | ||||
|             np.random.default_rng(2).random((3, 3)), columns=["d", "e", "f"] | ||||
|         ) | ||||
|         df3 = DataFrame( | ||||
|             np.random.default_rng(2).random((3, 3)), columns=["g", "h", "i"] | ||||
|         ) | ||||
|         # Secondary Y | ||||
|         ax = df.plot(legend=True, secondary_y="b") | ||||
|         _check_legend_labels(ax, labels=["a", "b (right)", "c"]) | ||||
|         ax = df2.plot(legend=False, ax=ax) | ||||
|         _check_legend_labels(ax, labels=["a", "b (right)", "c"]) | ||||
|         ax = df3.plot(kind="bar", legend=True, secondary_y="h", ax=ax) | ||||
|         _check_legend_labels(ax, labels=["a", "b (right)", "c", "g", "h (right)", "i"]) | ||||
|  | ||||
|     def test_df_legend_labels_time_series(self): | ||||
|         # Time Series | ||||
|         pytest.importorskip("scipy") | ||||
|         ind = date_range("1/1/2014", periods=3) | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 3)), | ||||
|             columns=["a", "b", "c"], | ||||
|             index=ind, | ||||
|         ) | ||||
|         df2 = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 3)), | ||||
|             columns=["d", "e", "f"], | ||||
|             index=ind, | ||||
|         ) | ||||
|         df3 = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 3)), | ||||
|             columns=["g", "h", "i"], | ||||
|             index=ind, | ||||
|         ) | ||||
|         ax = df.plot(legend=True, secondary_y="b") | ||||
|         _check_legend_labels(ax, labels=["a", "b (right)", "c"]) | ||||
|         ax = df2.plot(legend=False, ax=ax) | ||||
|         _check_legend_labels(ax, labels=["a", "b (right)", "c"]) | ||||
|         ax = df3.plot(legend=True, ax=ax) | ||||
|         _check_legend_labels(ax, labels=["a", "b (right)", "c", "g", "h", "i"]) | ||||
|  | ||||
|     def test_df_legend_labels_time_series_scatter(self): | ||||
|         # Time Series | ||||
|         pytest.importorskip("scipy") | ||||
|         ind = date_range("1/1/2014", periods=3) | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 3)), | ||||
|             columns=["a", "b", "c"], | ||||
|             index=ind, | ||||
|         ) | ||||
|         df2 = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 3)), | ||||
|             columns=["d", "e", "f"], | ||||
|             index=ind, | ||||
|         ) | ||||
|         df3 = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 3)), | ||||
|             columns=["g", "h", "i"], | ||||
|             index=ind, | ||||
|         ) | ||||
|         # scatter | ||||
|         ax = df.plot.scatter(x="a", y="b", label="data1") | ||||
|         _check_legend_labels(ax, labels=["data1"]) | ||||
|         ax = df2.plot.scatter(x="d", y="e", legend=False, label="data2", ax=ax) | ||||
|         _check_legend_labels(ax, labels=["data1"]) | ||||
|         ax = df3.plot.scatter(x="g", y="h", label="data3", ax=ax) | ||||
|         _check_legend_labels(ax, labels=["data1", "data3"]) | ||||
|  | ||||
|     def test_df_legend_labels_time_series_no_mutate(self): | ||||
|         pytest.importorskip("scipy") | ||||
|         ind = date_range("1/1/2014", periods=3) | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 3)), | ||||
|             columns=["a", "b", "c"], | ||||
|             index=ind, | ||||
|         ) | ||||
|         # ensure label args pass through and | ||||
|         # index name does not mutate | ||||
|         # column names don't mutate | ||||
|         df5 = df.set_index("a") | ||||
|         ax = df5.plot(y="b") | ||||
|         _check_legend_labels(ax, labels=["b"]) | ||||
|         ax = df5.plot(y="b", label="LABEL_b") | ||||
|         _check_legend_labels(ax, labels=["LABEL_b"]) | ||||
|         _check_text_labels(ax.xaxis.get_label(), "a") | ||||
|         ax = df5.plot(y="c", label="LABEL_c", ax=ax) | ||||
|         _check_legend_labels(ax, labels=["LABEL_b", "LABEL_c"]) | ||||
|         assert df5.columns.tolist() == ["b", "c"] | ||||
|  | ||||
|     def test_missing_marker_multi_plots_on_same_ax(self): | ||||
|         # GH 18222 | ||||
|         df = DataFrame(data=[[1, 1, 1, 1], [2, 2, 4, 8]], columns=["x", "r", "g", "b"]) | ||||
|         _, ax = mpl.pyplot.subplots(nrows=1, ncols=3) | ||||
|         # Left plot | ||||
|         df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[0]) | ||||
|         df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[0]) | ||||
|         df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[0]) | ||||
|         _check_legend_labels(ax[0], labels=["r", "g", "b"]) | ||||
|         _check_legend_marker(ax[0], expected_markers=["o", "x", "o"]) | ||||
|         # Center plot | ||||
|         df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[1]) | ||||
|         df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[1]) | ||||
|         df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[1]) | ||||
|         _check_legend_labels(ax[1], labels=["b", "r", "g"]) | ||||
|         _check_legend_marker(ax[1], expected_markers=["o", "o", "x"]) | ||||
|         # Right plot | ||||
|         df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[2]) | ||||
|         df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[2]) | ||||
|         df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[2]) | ||||
|         _check_legend_labels(ax[2], labels=["g", "b", "r"]) | ||||
|         _check_legend_marker(ax[2], expected_markers=["x", "o", "o"]) | ||||
|  | ||||
|     def test_legend_name(self): | ||||
|         multi = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((4, 4)), | ||||
|             columns=[np.array(["a", "a", "b", "b"]), np.array(["x", "y", "x", "y"])], | ||||
|         ) | ||||
|         multi.columns.names = ["group", "individual"] | ||||
|  | ||||
|         ax = multi.plot() | ||||
|         leg_title = ax.legend_.get_title() | ||||
|         _check_text_labels(leg_title, "group,individual") | ||||
|  | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         ax = df.plot(legend=True, ax=ax) | ||||
|         leg_title = ax.legend_.get_title() | ||||
|         _check_text_labels(leg_title, "group,individual") | ||||
|  | ||||
|         df.columns.name = "new" | ||||
|         ax = df.plot(legend=False, ax=ax) | ||||
|         leg_title = ax.legend_.get_title() | ||||
|         _check_text_labels(leg_title, "group,individual") | ||||
|  | ||||
|         ax = df.plot(legend=True, ax=ax) | ||||
|         leg_title = ax.legend_.get_title() | ||||
|         _check_text_labels(leg_title, "new") | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "kind", | ||||
|         [ | ||||
|             "line", | ||||
|             "bar", | ||||
|             "barh", | ||||
|             pytest.param("kde", marks=td.skip_if_no("scipy")), | ||||
|             "area", | ||||
|             "hist", | ||||
|         ], | ||||
|     ) | ||||
|     def test_no_legend(self, kind): | ||||
|         df = DataFrame(np.random.default_rng(2).random((3, 3)), columns=["a", "b", "c"]) | ||||
|         ax = df.plot(kind=kind, legend=False) | ||||
|         _check_legend_labels(ax, visible=False) | ||||
|  | ||||
|     def test_missing_markers_legend(self): | ||||
|         # 14958 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((8, 3)), columns=["A", "B", "C"] | ||||
|         ) | ||||
|         ax = df.plot(y=["A"], marker="x", linestyle="solid") | ||||
|         df.plot(y=["B"], marker="o", linestyle="dotted", ax=ax) | ||||
|         df.plot(y=["C"], marker="<", linestyle="dotted", ax=ax) | ||||
|  | ||||
|         _check_legend_labels(ax, labels=["A", "B", "C"]) | ||||
|         _check_legend_marker(ax, expected_markers=["x", "o", "<"]) | ||||
|  | ||||
|     def test_missing_markers_legend_using_style(self): | ||||
|         # 14563 | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "A": [1, 2, 3, 4, 5, 6], | ||||
|                 "B": [2, 4, 1, 3, 2, 4], | ||||
|                 "C": [3, 3, 2, 6, 4, 2], | ||||
|                 "X": [1, 2, 3, 4, 5, 6], | ||||
|             } | ||||
|         ) | ||||
|  | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         for kind in "ABC": | ||||
|             df.plot("X", kind, label=kind, ax=ax, style=".") | ||||
|  | ||||
|         _check_legend_labels(ax, labels=["A", "B", "C"]) | ||||
|         _check_legend_marker(ax, expected_markers=[".", ".", "."]) | ||||
| @ -0,0 +1,752 @@ | ||||
| """ Test cases for DataFrame.plot """ | ||||
|  | ||||
| import string | ||||
|  | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas.compat import is_platform_linux | ||||
| from pandas.compat.numpy import np_version_gte1p24 | ||||
|  | ||||
| import pandas as pd | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Series, | ||||
|     date_range, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
| from pandas.tests.plotting.common import ( | ||||
|     _check_axes_shape, | ||||
|     _check_box_return_type, | ||||
|     _check_legend_labels, | ||||
|     _check_ticks_props, | ||||
|     _check_visible, | ||||
|     _flatten_visible, | ||||
| ) | ||||
|  | ||||
| from pandas.io.formats.printing import pprint_thing | ||||
|  | ||||
| mpl = pytest.importorskip("matplotlib") | ||||
| plt = pytest.importorskip("matplotlib.pyplot") | ||||
|  | ||||
|  | ||||
| class TestDataFramePlotsSubplots: | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize("kind", ["bar", "barh", "line", "area"]) | ||||
|     def test_subplots(self, kind): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 3)), | ||||
|             index=list(string.ascii_letters[:10]), | ||||
|         ) | ||||
|  | ||||
|         axes = df.plot(kind=kind, subplots=True, sharex=True, legend=True) | ||||
|         _check_axes_shape(axes, axes_num=3, layout=(3, 1)) | ||||
|         assert axes.shape == (3,) | ||||
|  | ||||
|         for ax, column in zip(axes, df.columns): | ||||
|             _check_legend_labels(ax, labels=[pprint_thing(column)]) | ||||
|  | ||||
|         for ax in axes[:-2]: | ||||
|             _check_visible(ax.xaxis)  # xaxis must be visible for grid | ||||
|             _check_visible(ax.get_xticklabels(), visible=False) | ||||
|             if kind != "bar": | ||||
|                 # change https://github.com/pandas-dev/pandas/issues/26714 | ||||
|                 _check_visible(ax.get_xticklabels(minor=True), visible=False) | ||||
|             _check_visible(ax.xaxis.get_label(), visible=False) | ||||
|             _check_visible(ax.get_yticklabels()) | ||||
|  | ||||
|         _check_visible(axes[-1].xaxis) | ||||
|         _check_visible(axes[-1].get_xticklabels()) | ||||
|         _check_visible(axes[-1].get_xticklabels(minor=True)) | ||||
|         _check_visible(axes[-1].xaxis.get_label()) | ||||
|         _check_visible(axes[-1].get_yticklabels()) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize("kind", ["bar", "barh", "line", "area"]) | ||||
|     def test_subplots_no_share_x(self, kind): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 3)), | ||||
|             index=list(string.ascii_letters[:10]), | ||||
|         ) | ||||
|         axes = df.plot(kind=kind, subplots=True, sharex=False) | ||||
|         for ax in axes: | ||||
|             _check_visible(ax.xaxis) | ||||
|             _check_visible(ax.get_xticklabels()) | ||||
|             _check_visible(ax.get_xticklabels(minor=True)) | ||||
|             _check_visible(ax.xaxis.get_label()) | ||||
|             _check_visible(ax.get_yticklabels()) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize("kind", ["bar", "barh", "line", "area"]) | ||||
|     def test_subplots_no_legend(self, kind): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 3)), | ||||
|             index=list(string.ascii_letters[:10]), | ||||
|         ) | ||||
|         axes = df.plot(kind=kind, subplots=True, legend=False) | ||||
|         for ax in axes: | ||||
|             assert ax.get_legend() is None | ||||
|  | ||||
|     @pytest.mark.parametrize("kind", ["line", "area"]) | ||||
|     def test_subplots_timeseries(self, kind): | ||||
|         idx = date_range(start="2014-07-01", freq="ME", periods=10) | ||||
|         df = DataFrame(np.random.default_rng(2).random((10, 3)), index=idx) | ||||
|  | ||||
|         axes = df.plot(kind=kind, subplots=True, sharex=True) | ||||
|         _check_axes_shape(axes, axes_num=3, layout=(3, 1)) | ||||
|  | ||||
|         for ax in axes[:-2]: | ||||
|             # GH 7801 | ||||
|             _check_visible(ax.xaxis)  # xaxis must be visible for grid | ||||
|             _check_visible(ax.get_xticklabels(), visible=False) | ||||
|             _check_visible(ax.get_xticklabels(minor=True), visible=False) | ||||
|             _check_visible(ax.xaxis.get_label(), visible=False) | ||||
|             _check_visible(ax.get_yticklabels()) | ||||
|  | ||||
|         _check_visible(axes[-1].xaxis) | ||||
|         _check_visible(axes[-1].get_xticklabels()) | ||||
|         _check_visible(axes[-1].get_xticklabels(minor=True)) | ||||
|         _check_visible(axes[-1].xaxis.get_label()) | ||||
|         _check_visible(axes[-1].get_yticklabels()) | ||||
|         _check_ticks_props(axes, xrot=0) | ||||
|  | ||||
|     @pytest.mark.parametrize("kind", ["line", "area"]) | ||||
|     def test_subplots_timeseries_rot(self, kind): | ||||
|         idx = date_range(start="2014-07-01", freq="ME", periods=10) | ||||
|         df = DataFrame(np.random.default_rng(2).random((10, 3)), index=idx) | ||||
|         axes = df.plot(kind=kind, subplots=True, sharex=False, rot=45, fontsize=7) | ||||
|         for ax in axes: | ||||
|             _check_visible(ax.xaxis) | ||||
|             _check_visible(ax.get_xticklabels()) | ||||
|             _check_visible(ax.get_xticklabels(minor=True)) | ||||
|             _check_visible(ax.xaxis.get_label()) | ||||
|             _check_visible(ax.get_yticklabels()) | ||||
|             _check_ticks_props(ax, xlabelsize=7, xrot=45, ylabelsize=7) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "col", ["numeric", "timedelta", "datetime_no_tz", "datetime_all_tz"] | ||||
|     ) | ||||
|     def test_subplots_timeseries_y_axis(self, col): | ||||
|         # GH16953 | ||||
|         data = { | ||||
|             "numeric": np.array([1, 2, 5]), | ||||
|             "timedelta": [ | ||||
|                 pd.Timedelta(-10, unit="s"), | ||||
|                 pd.Timedelta(10, unit="m"), | ||||
|                 pd.Timedelta(10, unit="h"), | ||||
|             ], | ||||
|             "datetime_no_tz": [ | ||||
|                 pd.to_datetime("2017-08-01 00:00:00"), | ||||
|                 pd.to_datetime("2017-08-01 02:00:00"), | ||||
|                 pd.to_datetime("2017-08-02 00:00:00"), | ||||
|             ], | ||||
|             "datetime_all_tz": [ | ||||
|                 pd.to_datetime("2017-08-01 00:00:00", utc=True), | ||||
|                 pd.to_datetime("2017-08-01 02:00:00", utc=True), | ||||
|                 pd.to_datetime("2017-08-02 00:00:00", utc=True), | ||||
|             ], | ||||
|             "text": ["This", "should", "fail"], | ||||
|         } | ||||
|         testdata = DataFrame(data) | ||||
|  | ||||
|         ax = testdata.plot(y=col) | ||||
|         result = ax.get_lines()[0].get_data()[1] | ||||
|         expected = testdata[col].values | ||||
|         assert (result == expected).all() | ||||
|  | ||||
|     def test_subplots_timeseries_y_text_error(self): | ||||
|         # GH16953 | ||||
|         data = { | ||||
|             "numeric": np.array([1, 2, 5]), | ||||
|             "text": ["This", "should", "fail"], | ||||
|         } | ||||
|         testdata = DataFrame(data) | ||||
|         msg = "no numeric data to plot" | ||||
|         with pytest.raises(TypeError, match=msg): | ||||
|             testdata.plot(y="text") | ||||
|  | ||||
|     @pytest.mark.xfail(reason="not support for period, categorical, datetime_mixed_tz") | ||||
|     def test_subplots_timeseries_y_axis_not_supported(self): | ||||
|         """ | ||||
|         This test will fail for: | ||||
|             period: | ||||
|                 since period isn't yet implemented in ``select_dtypes`` | ||||
|                 and because it will need a custom value converter + | ||||
|                 tick formatter (as was done for x-axis plots) | ||||
|  | ||||
|             categorical: | ||||
|                  because it will need a custom value converter + | ||||
|                  tick formatter (also doesn't work for x-axis, as of now) | ||||
|  | ||||
|             datetime_mixed_tz: | ||||
|                 because of the way how pandas handles ``Series`` of | ||||
|                 ``datetime`` objects with different timezone, | ||||
|                 generally converting ``datetime`` objects in a tz-aware | ||||
|                 form could help with this problem | ||||
|         """ | ||||
|         data = { | ||||
|             "numeric": np.array([1, 2, 5]), | ||||
|             "period": [ | ||||
|                 pd.Period("2017-08-01 00:00:00", freq="H"), | ||||
|                 pd.Period("2017-08-01 02:00", freq="H"), | ||||
|                 pd.Period("2017-08-02 00:00:00", freq="H"), | ||||
|             ], | ||||
|             "categorical": pd.Categorical( | ||||
|                 ["c", "b", "a"], categories=["a", "b", "c"], ordered=False | ||||
|             ), | ||||
|             "datetime_mixed_tz": [ | ||||
|                 pd.to_datetime("2017-08-01 00:00:00", utc=True), | ||||
|                 pd.to_datetime("2017-08-01 02:00:00"), | ||||
|                 pd.to_datetime("2017-08-02 00:00:00"), | ||||
|             ], | ||||
|         } | ||||
|         testdata = DataFrame(data) | ||||
|         ax_period = testdata.plot(x="numeric", y="period") | ||||
|         assert ( | ||||
|             ax_period.get_lines()[0].get_data()[1] == testdata["period"].values | ||||
|         ).all() | ||||
|         ax_categorical = testdata.plot(x="numeric", y="categorical") | ||||
|         assert ( | ||||
|             ax_categorical.get_lines()[0].get_data()[1] | ||||
|             == testdata["categorical"].values | ||||
|         ).all() | ||||
|         ax_datetime_mixed_tz = testdata.plot(x="numeric", y="datetime_mixed_tz") | ||||
|         assert ( | ||||
|             ax_datetime_mixed_tz.get_lines()[0].get_data()[1] | ||||
|             == testdata["datetime_mixed_tz"].values | ||||
|         ).all() | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "layout, exp_layout", | ||||
|         [ | ||||
|             [(2, 2), (2, 2)], | ||||
|             [(-1, 2), (2, 2)], | ||||
|             [(2, -1), (2, 2)], | ||||
|             [(1, 4), (1, 4)], | ||||
|             [(-1, 4), (1, 4)], | ||||
|             [(4, -1), (4, 1)], | ||||
|         ], | ||||
|     ) | ||||
|     def test_subplots_layout_multi_column(self, layout, exp_layout): | ||||
|         # GH 6667 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 3)), | ||||
|             index=list(string.ascii_letters[:10]), | ||||
|         ) | ||||
|  | ||||
|         axes = df.plot(subplots=True, layout=layout) | ||||
|         _check_axes_shape(axes, axes_num=3, layout=exp_layout) | ||||
|         assert axes.shape == exp_layout | ||||
|  | ||||
|     def test_subplots_layout_multi_column_error(self): | ||||
|         # GH 6667 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 3)), | ||||
|             index=list(string.ascii_letters[:10]), | ||||
|         ) | ||||
|         msg = "Layout of 1x1 must be larger than required size 3" | ||||
|  | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.plot(subplots=True, layout=(1, 1)) | ||||
|  | ||||
|         msg = "At least one dimension of layout must be positive" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.plot(subplots=True, layout=(-1, -1)) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "kwargs, expected_axes_num, expected_layout, expected_shape", | ||||
|         [ | ||||
|             ({}, 1, (1, 1), (1,)), | ||||
|             ({"layout": (3, 3)}, 1, (3, 3), (3, 3)), | ||||
|         ], | ||||
|     ) | ||||
|     def test_subplots_layout_single_column( | ||||
|         self, kwargs, expected_axes_num, expected_layout, expected_shape | ||||
|     ): | ||||
|         # GH 6667 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 1)), | ||||
|             index=list(string.ascii_letters[:10]), | ||||
|         ) | ||||
|         axes = df.plot(subplots=True, **kwargs) | ||||
|         _check_axes_shape( | ||||
|             axes, | ||||
|             axes_num=expected_axes_num, | ||||
|             layout=expected_layout, | ||||
|         ) | ||||
|         assert axes.shape == expected_shape | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize("idx", [range(5), date_range("1/1/2000", periods=5)]) | ||||
|     def test_subplots_warnings(self, idx): | ||||
|         # GH 9464 | ||||
|         with tm.assert_produces_warning(None): | ||||
|             df = DataFrame(np.random.default_rng(2).standard_normal((5, 4)), index=idx) | ||||
|             df.plot(subplots=True, layout=(3, 2)) | ||||
|  | ||||
|     def test_subplots_multiple_axes(self): | ||||
|         # GH 5353, 6970, GH 7069 | ||||
|         fig, axes = mpl.pyplot.subplots(2, 3) | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 3)), | ||||
|             index=list(string.ascii_letters[:10]), | ||||
|         ) | ||||
|  | ||||
|         returned = df.plot(subplots=True, ax=axes[0], sharex=False, sharey=False) | ||||
|         _check_axes_shape(returned, axes_num=3, layout=(1, 3)) | ||||
|         assert returned.shape == (3,) | ||||
|         assert returned[0].figure is fig | ||||
|         # draw on second row | ||||
|         returned = df.plot(subplots=True, ax=axes[1], sharex=False, sharey=False) | ||||
|         _check_axes_shape(returned, axes_num=3, layout=(1, 3)) | ||||
|         assert returned.shape == (3,) | ||||
|         assert returned[0].figure is fig | ||||
|         _check_axes_shape(axes, axes_num=6, layout=(2, 3)) | ||||
|  | ||||
|     def test_subplots_multiple_axes_error(self): | ||||
|         # GH 5353, 6970, GH 7069 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 3)), | ||||
|             index=list(string.ascii_letters[:10]), | ||||
|         ) | ||||
|         msg = "The number of passed axes must be 3, the same as the output plot" | ||||
|         _, axes = mpl.pyplot.subplots(2, 3) | ||||
|  | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             # pass different number of axes from required | ||||
|             df.plot(subplots=True, ax=axes) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "layout, exp_layout", | ||||
|         [ | ||||
|             [(2, 1), (2, 2)], | ||||
|             [(2, -1), (2, 2)], | ||||
|             [(-1, 2), (2, 2)], | ||||
|         ], | ||||
|     ) | ||||
|     def test_subplots_multiple_axes_2_dim(self, layout, exp_layout): | ||||
|         # GH 5353, 6970, GH 7069 | ||||
|         # pass 2-dim axes and invalid layout | ||||
|         # invalid lauout should not affect to input and return value | ||||
|         # (show warning is tested in | ||||
|         # TestDataFrameGroupByPlots.test_grouped_box_multiple_axes | ||||
|         _, axes = mpl.pyplot.subplots(2, 2) | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 4)), | ||||
|             index=list(string.ascii_letters[:10]), | ||||
|         ) | ||||
|         with tm.assert_produces_warning(UserWarning): | ||||
|             returned = df.plot( | ||||
|                 subplots=True, ax=axes, layout=layout, sharex=False, sharey=False | ||||
|             ) | ||||
|             _check_axes_shape(returned, axes_num=4, layout=exp_layout) | ||||
|             assert returned.shape == (4,) | ||||
|  | ||||
|     def test_subplots_multiple_axes_single_col(self): | ||||
|         # GH 5353, 6970, GH 7069 | ||||
|         # single column | ||||
|         _, axes = mpl.pyplot.subplots(1, 1) | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 1)), | ||||
|             index=list(string.ascii_letters[:10]), | ||||
|         ) | ||||
|  | ||||
|         axes = df.plot(subplots=True, ax=[axes], sharex=False, sharey=False) | ||||
|         _check_axes_shape(axes, axes_num=1, layout=(1, 1)) | ||||
|         assert axes.shape == (1,) | ||||
|  | ||||
|     def test_subplots_ts_share_axes(self): | ||||
|         # GH 3964 | ||||
|         _, axes = mpl.pyplot.subplots(3, 3, sharex=True, sharey=True) | ||||
|         mpl.pyplot.subplots_adjust(left=0.05, right=0.95, hspace=0.3, wspace=0.3) | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((10, 9)), | ||||
|             index=date_range(start="2014-07-01", freq="ME", periods=10), | ||||
|         ) | ||||
|         for i, ax in enumerate(axes.ravel()): | ||||
|             df[i].plot(ax=ax, fontsize=5) | ||||
|  | ||||
|         # Rows other than bottom should not be visible | ||||
|         for ax in axes[0:-1].ravel(): | ||||
|             _check_visible(ax.get_xticklabels(), visible=False) | ||||
|  | ||||
|         # Bottom row should be visible | ||||
|         for ax in axes[-1].ravel(): | ||||
|             _check_visible(ax.get_xticklabels(), visible=True) | ||||
|  | ||||
|         # First column should be visible | ||||
|         for ax in axes[[0, 1, 2], [0]].ravel(): | ||||
|             _check_visible(ax.get_yticklabels(), visible=True) | ||||
|  | ||||
|         # Other columns should not be visible | ||||
|         for ax in axes[[0, 1, 2], [1]].ravel(): | ||||
|             _check_visible(ax.get_yticklabels(), visible=False) | ||||
|         for ax in axes[[0, 1, 2], [2]].ravel(): | ||||
|             _check_visible(ax.get_yticklabels(), visible=False) | ||||
|  | ||||
|     def test_subplots_sharex_axes_existing_axes(self): | ||||
|         # GH 9158 | ||||
|         d = {"A": [1.0, 2.0, 3.0, 4.0], "B": [4.0, 3.0, 2.0, 1.0], "C": [5, 1, 3, 4]} | ||||
|         df = DataFrame(d, index=date_range("2014 10 11", "2014 10 14")) | ||||
|  | ||||
|         axes = df[["A", "B"]].plot(subplots=True) | ||||
|         df["C"].plot(ax=axes[0], secondary_y=True) | ||||
|  | ||||
|         _check_visible(axes[0].get_xticklabels(), visible=False) | ||||
|         _check_visible(axes[1].get_xticklabels(), visible=True) | ||||
|         for ax in axes.ravel(): | ||||
|             _check_visible(ax.get_yticklabels(), visible=True) | ||||
|  | ||||
|     def test_subplots_dup_columns(self): | ||||
|         # GH 10962 | ||||
|         df = DataFrame(np.random.default_rng(2).random((5, 5)), columns=list("aaaaa")) | ||||
|         axes = df.plot(subplots=True) | ||||
|         for ax in axes: | ||||
|             _check_legend_labels(ax, labels=["a"]) | ||||
|             assert len(ax.lines) == 1 | ||||
|  | ||||
|     def test_subplots_dup_columns_secondary_y(self): | ||||
|         # GH 10962 | ||||
|         df = DataFrame(np.random.default_rng(2).random((5, 5)), columns=list("aaaaa")) | ||||
|         axes = df.plot(subplots=True, secondary_y="a") | ||||
|         for ax in axes: | ||||
|             # (right) is only attached when subplots=False | ||||
|             _check_legend_labels(ax, labels=["a"]) | ||||
|             assert len(ax.lines) == 1 | ||||
|  | ||||
|     def test_subplots_dup_columns_secondary_y_no_subplot(self): | ||||
|         # GH 10962 | ||||
|         df = DataFrame(np.random.default_rng(2).random((5, 5)), columns=list("aaaaa")) | ||||
|         ax = df.plot(secondary_y="a") | ||||
|         _check_legend_labels(ax, labels=["a (right)"] * 5) | ||||
|         assert len(ax.lines) == 0 | ||||
|         assert len(ax.right_ax.lines) == 5 | ||||
|  | ||||
|     @pytest.mark.xfail( | ||||
|         np_version_gte1p24 and is_platform_linux(), | ||||
|         reason="Weird rounding problems", | ||||
|         strict=False, | ||||
|     ) | ||||
|     def test_bar_log_no_subplots(self): | ||||
|         # GH3254, GH3298 matplotlib/matplotlib#1882, #1892 | ||||
|         # regressions in 1.2.1 | ||||
|         expected = np.array([0.1, 1.0, 10.0, 100]) | ||||
|  | ||||
|         # no subplots | ||||
|         df = DataFrame({"A": [3] * 5, "B": list(range(1, 6))}, index=range(5)) | ||||
|         ax = df.plot.bar(grid=True, log=True) | ||||
|         tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected) | ||||
|  | ||||
|     @pytest.mark.xfail( | ||||
|         np_version_gte1p24 and is_platform_linux(), | ||||
|         reason="Weird rounding problems", | ||||
|         strict=False, | ||||
|     ) | ||||
|     def test_bar_log_subplots(self): | ||||
|         expected = np.array([0.1, 1.0, 10.0, 100.0, 1000.0, 1e4]) | ||||
|  | ||||
|         ax = DataFrame([Series([200, 300]), Series([300, 500])]).plot.bar( | ||||
|             log=True, subplots=True | ||||
|         ) | ||||
|  | ||||
|         tm.assert_numpy_array_equal(ax[0].yaxis.get_ticklocs(), expected) | ||||
|         tm.assert_numpy_array_equal(ax[1].yaxis.get_ticklocs(), expected) | ||||
|  | ||||
|     def test_boxplot_subplots_return_type_default(self, hist_df): | ||||
|         df = hist_df | ||||
|  | ||||
|         # normal style: return_type=None | ||||
|         result = df.plot.box(subplots=True) | ||||
|         assert isinstance(result, Series) | ||||
|         _check_box_return_type( | ||||
|             result, None, expected_keys=["height", "weight", "category"] | ||||
|         ) | ||||
|  | ||||
|     @pytest.mark.parametrize("rt", ["dict", "axes", "both"]) | ||||
|     def test_boxplot_subplots_return_type(self, hist_df, rt): | ||||
|         df = hist_df | ||||
|         returned = df.plot.box(return_type=rt, subplots=True) | ||||
|         _check_box_return_type( | ||||
|             returned, | ||||
|             rt, | ||||
|             expected_keys=["height", "weight", "category"], | ||||
|             check_ax_title=False, | ||||
|         ) | ||||
|  | ||||
|     def test_df_subplots_patterns_minorticks(self): | ||||
|         # GH 10657 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((10, 2)), | ||||
|             index=date_range("1/1/2000", periods=10), | ||||
|             columns=list("AB"), | ||||
|         ) | ||||
|  | ||||
|         # shared subplots | ||||
|         _, axes = plt.subplots(2, 1, sharex=True) | ||||
|         axes = df.plot(subplots=True, ax=axes) | ||||
|         for ax in axes: | ||||
|             assert len(ax.lines) == 1 | ||||
|             _check_visible(ax.get_yticklabels(), visible=True) | ||||
|         # xaxis of 1st ax must be hidden | ||||
|         _check_visible(axes[0].get_xticklabels(), visible=False) | ||||
|         _check_visible(axes[0].get_xticklabels(minor=True), visible=False) | ||||
|         _check_visible(axes[1].get_xticklabels(), visible=True) | ||||
|         _check_visible(axes[1].get_xticklabels(minor=True), visible=True) | ||||
|  | ||||
|     def test_df_subplots_patterns_minorticks_1st_ax_hidden(self): | ||||
|         # GH 10657 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((10, 2)), | ||||
|             index=date_range("1/1/2000", periods=10), | ||||
|             columns=list("AB"), | ||||
|         ) | ||||
|         _, axes = plt.subplots(2, 1) | ||||
|         with tm.assert_produces_warning(UserWarning): | ||||
|             axes = df.plot(subplots=True, ax=axes, sharex=True) | ||||
|         for ax in axes: | ||||
|             assert len(ax.lines) == 1 | ||||
|             _check_visible(ax.get_yticklabels(), visible=True) | ||||
|         # xaxis of 1st ax must be hidden | ||||
|         _check_visible(axes[0].get_xticklabels(), visible=False) | ||||
|         _check_visible(axes[0].get_xticklabels(minor=True), visible=False) | ||||
|         _check_visible(axes[1].get_xticklabels(), visible=True) | ||||
|         _check_visible(axes[1].get_xticklabels(minor=True), visible=True) | ||||
|  | ||||
|     def test_df_subplots_patterns_minorticks_not_shared(self): | ||||
|         # GH 10657 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((10, 2)), | ||||
|             index=date_range("1/1/2000", periods=10), | ||||
|             columns=list("AB"), | ||||
|         ) | ||||
|         # not shared | ||||
|         _, axes = plt.subplots(2, 1) | ||||
|         axes = df.plot(subplots=True, ax=axes) | ||||
|         for ax in axes: | ||||
|             assert len(ax.lines) == 1 | ||||
|             _check_visible(ax.get_yticklabels(), visible=True) | ||||
|             _check_visible(ax.get_xticklabels(), visible=True) | ||||
|             _check_visible(ax.get_xticklabels(minor=True), visible=True) | ||||
|  | ||||
|     def test_subplots_sharex_false(self): | ||||
|         # test when sharex is set to False, two plots should have different | ||||
|         # labels, GH 25160 | ||||
|         df = DataFrame(np.random.default_rng(2).random((10, 2))) | ||||
|         df.iloc[5:, 1] = np.nan | ||||
|         df.iloc[:5, 0] = np.nan | ||||
|  | ||||
|         _, axs = mpl.pyplot.subplots(2, 1) | ||||
|         df.plot.line(ax=axs, subplots=True, sharex=False) | ||||
|  | ||||
|         expected_ax1 = np.arange(4.5, 10, 0.5) | ||||
|         expected_ax2 = np.arange(-0.5, 5, 0.5) | ||||
|  | ||||
|         tm.assert_numpy_array_equal(axs[0].get_xticks(), expected_ax1) | ||||
|         tm.assert_numpy_array_equal(axs[1].get_xticks(), expected_ax2) | ||||
|  | ||||
|     def test_subplots_constrained_layout(self): | ||||
|         # GH 25261 | ||||
|         idx = date_range(start="now", periods=10) | ||||
|         df = DataFrame(np.random.default_rng(2).random((10, 3)), index=idx) | ||||
|         kwargs = {} | ||||
|         if hasattr(mpl.pyplot.Figure, "get_constrained_layout"): | ||||
|             kwargs["constrained_layout"] = True | ||||
|         _, axes = mpl.pyplot.subplots(2, **kwargs) | ||||
|         with tm.assert_produces_warning(None): | ||||
|             df.plot(ax=axes[0]) | ||||
|             with tm.ensure_clean(return_filelike=True) as path: | ||||
|                 mpl.pyplot.savefig(path) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "index_name, old_label, new_label", | ||||
|         [ | ||||
|             (None, "", "new"), | ||||
|             ("old", "old", "new"), | ||||
|             (None, "", ""), | ||||
|             (None, "", 1), | ||||
|             (None, "", [1, 2]), | ||||
|         ], | ||||
|     ) | ||||
|     @pytest.mark.parametrize("kind", ["line", "area", "bar"]) | ||||
|     def test_xlabel_ylabel_dataframe_subplots( | ||||
|         self, kind, index_name, old_label, new_label | ||||
|     ): | ||||
|         # GH 9093 | ||||
|         df = DataFrame([[1, 2], [2, 5]], columns=["Type A", "Type B"]) | ||||
|         df.index.name = index_name | ||||
|  | ||||
|         # default is the ylabel is not shown and xlabel is index name | ||||
|         axes = df.plot(kind=kind, subplots=True) | ||||
|         assert all(ax.get_ylabel() == "" for ax in axes) | ||||
|         assert all(ax.get_xlabel() == old_label for ax in axes) | ||||
|  | ||||
|         # old xlabel will be overridden and assigned ylabel will be used as ylabel | ||||
|         axes = df.plot(kind=kind, ylabel=new_label, xlabel=new_label, subplots=True) | ||||
|         assert all(ax.get_ylabel() == str(new_label) for ax in axes) | ||||
|         assert all(ax.get_xlabel() == str(new_label) for ax in axes) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "kwargs", | ||||
|         [ | ||||
|             # stacked center | ||||
|             {"kind": "bar", "stacked": True}, | ||||
|             {"kind": "bar", "stacked": True, "width": 0.9}, | ||||
|             {"kind": "barh", "stacked": True}, | ||||
|             {"kind": "barh", "stacked": True, "width": 0.9}, | ||||
|             # center | ||||
|             {"kind": "bar", "stacked": False}, | ||||
|             {"kind": "bar", "stacked": False, "width": 0.9}, | ||||
|             {"kind": "barh", "stacked": False}, | ||||
|             {"kind": "barh", "stacked": False, "width": 0.9}, | ||||
|             # subplots center | ||||
|             {"kind": "bar", "subplots": True}, | ||||
|             {"kind": "bar", "subplots": True, "width": 0.9}, | ||||
|             {"kind": "barh", "subplots": True}, | ||||
|             {"kind": "barh", "subplots": True, "width": 0.9}, | ||||
|             # align edge | ||||
|             {"kind": "bar", "stacked": True, "align": "edge"}, | ||||
|             {"kind": "bar", "stacked": True, "width": 0.9, "align": "edge"}, | ||||
|             {"kind": "barh", "stacked": True, "align": "edge"}, | ||||
|             {"kind": "barh", "stacked": True, "width": 0.9, "align": "edge"}, | ||||
|             {"kind": "bar", "stacked": False, "align": "edge"}, | ||||
|             {"kind": "bar", "stacked": False, "width": 0.9, "align": "edge"}, | ||||
|             {"kind": "barh", "stacked": False, "align": "edge"}, | ||||
|             {"kind": "barh", "stacked": False, "width": 0.9, "align": "edge"}, | ||||
|             {"kind": "bar", "subplots": True, "align": "edge"}, | ||||
|             {"kind": "bar", "subplots": True, "width": 0.9, "align": "edge"}, | ||||
|             {"kind": "barh", "subplots": True, "align": "edge"}, | ||||
|             {"kind": "barh", "subplots": True, "width": 0.9, "align": "edge"}, | ||||
|         ], | ||||
|     ) | ||||
|     def test_bar_align_multiple_columns(self, kwargs): | ||||
|         # GH2157 | ||||
|         df = DataFrame({"A": [3] * 5, "B": list(range(5))}, index=range(5)) | ||||
|         self._check_bar_alignment(df, **kwargs) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "kwargs", | ||||
|         [ | ||||
|             {"kind": "bar", "stacked": False}, | ||||
|             {"kind": "bar", "stacked": True}, | ||||
|             {"kind": "barh", "stacked": False}, | ||||
|             {"kind": "barh", "stacked": True}, | ||||
|             {"kind": "bar", "subplots": True}, | ||||
|             {"kind": "barh", "subplots": True}, | ||||
|         ], | ||||
|     ) | ||||
|     def test_bar_align_single_column(self, kwargs): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal(5)) | ||||
|         self._check_bar_alignment(df, **kwargs) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "kwargs", | ||||
|         [ | ||||
|             {"kind": "bar", "stacked": False}, | ||||
|             {"kind": "bar", "stacked": True}, | ||||
|             {"kind": "barh", "stacked": False}, | ||||
|             {"kind": "barh", "stacked": True}, | ||||
|             {"kind": "bar", "subplots": True}, | ||||
|             {"kind": "barh", "subplots": True}, | ||||
|         ], | ||||
|     ) | ||||
|     def test_bar_barwidth_position(self, kwargs): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         self._check_bar_alignment(df, width=0.9, position=0.2, **kwargs) | ||||
|  | ||||
|     @pytest.mark.parametrize("w", [1, 1.0]) | ||||
|     def test_bar_barwidth_position_int(self, w): | ||||
|         # GH 12979 | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         ax = df.plot.bar(stacked=True, width=w) | ||||
|         ticks = ax.xaxis.get_ticklocs() | ||||
|         tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4])) | ||||
|         assert ax.get_xlim() == (-0.75, 4.75) | ||||
|         # check left-edge of bars | ||||
|         assert ax.patches[0].get_x() == -0.5 | ||||
|         assert ax.patches[-1].get_x() == 3.5 | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "kind, kwargs", | ||||
|         [ | ||||
|             ["bar", {"stacked": True}], | ||||
|             ["barh", {"stacked": False}], | ||||
|             ["barh", {"stacked": True}], | ||||
|             ["bar", {"subplots": True}], | ||||
|             ["barh", {"subplots": True}], | ||||
|         ], | ||||
|     ) | ||||
|     def test_bar_barwidth_position_int_width_1(self, kind, kwargs): | ||||
|         # GH 12979 | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         self._check_bar_alignment(df, kind=kind, width=1, **kwargs) | ||||
|  | ||||
|     def _check_bar_alignment( | ||||
|         self, | ||||
|         df, | ||||
|         kind="bar", | ||||
|         stacked=False, | ||||
|         subplots=False, | ||||
|         align="center", | ||||
|         width=0.5, | ||||
|         position=0.5, | ||||
|     ): | ||||
|         axes = df.plot( | ||||
|             kind=kind, | ||||
|             stacked=stacked, | ||||
|             subplots=subplots, | ||||
|             align=align, | ||||
|             width=width, | ||||
|             position=position, | ||||
|             grid=True, | ||||
|         ) | ||||
|  | ||||
|         axes = _flatten_visible(axes) | ||||
|  | ||||
|         for ax in axes: | ||||
|             if kind == "bar": | ||||
|                 axis = ax.xaxis | ||||
|                 ax_min, ax_max = ax.get_xlim() | ||||
|                 min_edge = min(p.get_x() for p in ax.patches) | ||||
|                 max_edge = max(p.get_x() + p.get_width() for p in ax.patches) | ||||
|             elif kind == "barh": | ||||
|                 axis = ax.yaxis | ||||
|                 ax_min, ax_max = ax.get_ylim() | ||||
|                 min_edge = min(p.get_y() for p in ax.patches) | ||||
|                 max_edge = max(p.get_y() + p.get_height() for p in ax.patches) | ||||
|             else: | ||||
|                 raise ValueError | ||||
|  | ||||
|             # GH 7498 | ||||
|             # compare margins between lim and bar edges | ||||
|             tm.assert_almost_equal(ax_min, min_edge - 0.25) | ||||
|             tm.assert_almost_equal(ax_max, max_edge + 0.25) | ||||
|  | ||||
|             p = ax.patches[0] | ||||
|             if kind == "bar" and (stacked is True or subplots is True): | ||||
|                 edge = p.get_x() | ||||
|                 center = edge + p.get_width() * position | ||||
|             elif kind == "bar" and stacked is False: | ||||
|                 center = p.get_x() + p.get_width() * len(df.columns) * position | ||||
|                 edge = p.get_x() | ||||
|             elif kind == "barh" and (stacked is True or subplots is True): | ||||
|                 center = p.get_y() + p.get_height() * position | ||||
|                 edge = p.get_y() | ||||
|             elif kind == "barh" and stacked is False: | ||||
|                 center = p.get_y() + p.get_height() * len(df.columns) * position | ||||
|                 edge = p.get_y() | ||||
|             else: | ||||
|                 raise ValueError | ||||
|  | ||||
|             # Check the ticks locates on integer | ||||
|             assert (axis.get_ticklocs() == np.arange(len(df))).all() | ||||
|  | ||||
|             if align == "center": | ||||
|                 # Check whether the bar locates on center | ||||
|                 tm.assert_almost_equal(axis.get_ticklocs()[0], center) | ||||
|             elif align == "edge": | ||||
|                 # Check whether the bar's edge starts from the tick | ||||
|                 tm.assert_almost_equal(axis.get_ticklocs()[0], edge) | ||||
|             else: | ||||
|                 raise ValueError | ||||
|  | ||||
|         return axes | ||||
| @ -0,0 +1,342 @@ | ||||
| import re | ||||
|  | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas import DataFrame | ||||
| import pandas._testing as tm | ||||
| from pandas.tests.plotting.common import ( | ||||
|     _check_axes_shape, | ||||
|     _check_plot_works, | ||||
|     get_x_axis, | ||||
|     get_y_axis, | ||||
| ) | ||||
|  | ||||
| pytest.importorskip("matplotlib") | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def hist_df(): | ||||
|     df = DataFrame( | ||||
|         np.random.default_rng(2).standard_normal((30, 2)), columns=["A", "B"] | ||||
|     ) | ||||
|     df["C"] = np.random.default_rng(2).choice(["a", "b", "c"], 30) | ||||
|     df["D"] = np.random.default_rng(2).choice(["a", "b", "c"], 30) | ||||
|     return df | ||||
|  | ||||
|  | ||||
| class TestHistWithBy: | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "by, column, titles, legends", | ||||
|         [ | ||||
|             ("C", "A", ["a", "b", "c"], [["A"]] * 3), | ||||
|             ("C", ["A", "B"], ["a", "b", "c"], [["A", "B"]] * 3), | ||||
|             ("C", None, ["a", "b", "c"], [["A", "B"]] * 3), | ||||
|             ( | ||||
|                 ["C", "D"], | ||||
|                 "A", | ||||
|                 [ | ||||
|                     "(a, a)", | ||||
|                     "(b, b)", | ||||
|                     "(c, c)", | ||||
|                 ], | ||||
|                 [["A"]] * 3, | ||||
|             ), | ||||
|             ( | ||||
|                 ["C", "D"], | ||||
|                 ["A", "B"], | ||||
|                 [ | ||||
|                     "(a, a)", | ||||
|                     "(b, b)", | ||||
|                     "(c, c)", | ||||
|                 ], | ||||
|                 [["A", "B"]] * 3, | ||||
|             ), | ||||
|             ( | ||||
|                 ["C", "D"], | ||||
|                 None, | ||||
|                 [ | ||||
|                     "(a, a)", | ||||
|                     "(b, b)", | ||||
|                     "(c, c)", | ||||
|                 ], | ||||
|                 [["A", "B"]] * 3, | ||||
|             ), | ||||
|         ], | ||||
|     ) | ||||
|     def test_hist_plot_by_argument(self, by, column, titles, legends, hist_df): | ||||
|         # GH 15079 | ||||
|         axes = _check_plot_works( | ||||
|             hist_df.plot.hist, column=column, by=by, default_axes=True | ||||
|         ) | ||||
|         result_titles = [ax.get_title() for ax in axes] | ||||
|         result_legends = [ | ||||
|             [legend.get_text() for legend in ax.get_legend().texts] for ax in axes | ||||
|         ] | ||||
|  | ||||
|         assert result_legends == legends | ||||
|         assert result_titles == titles | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "by, column, titles, legends", | ||||
|         [ | ||||
|             (0, "A", ["a", "b", "c"], [["A"]] * 3), | ||||
|             (0, None, ["a", "b", "c"], [["A", "B"]] * 3), | ||||
|             ( | ||||
|                 [0, "D"], | ||||
|                 "A", | ||||
|                 [ | ||||
|                     "(a, a)", | ||||
|                     "(b, b)", | ||||
|                     "(c, c)", | ||||
|                 ], | ||||
|                 [["A"]] * 3, | ||||
|             ), | ||||
|         ], | ||||
|     ) | ||||
|     def test_hist_plot_by_0(self, by, column, titles, legends, hist_df): | ||||
|         # GH 15079 | ||||
|         df = hist_df.copy() | ||||
|         df = df.rename(columns={"C": 0}) | ||||
|  | ||||
|         axes = _check_plot_works(df.plot.hist, default_axes=True, column=column, by=by) | ||||
|         result_titles = [ax.get_title() for ax in axes] | ||||
|         result_legends = [ | ||||
|             [legend.get_text() for legend in ax.get_legend().texts] for ax in axes | ||||
|         ] | ||||
|  | ||||
|         assert result_legends == legends | ||||
|         assert result_titles == titles | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "by, column", | ||||
|         [ | ||||
|             ([], ["A"]), | ||||
|             ([], ["A", "B"]), | ||||
|             ((), None), | ||||
|             ((), ["A", "B"]), | ||||
|         ], | ||||
|     ) | ||||
|     def test_hist_plot_empty_list_string_tuple_by(self, by, column, hist_df): | ||||
|         # GH 15079 | ||||
|         msg = "No group keys passed" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             _check_plot_works( | ||||
|                 hist_df.plot.hist, default_axes=True, column=column, by=by | ||||
|             ) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "by, column, layout, axes_num", | ||||
|         [ | ||||
|             (["C"], "A", (2, 2), 3), | ||||
|             ("C", "A", (2, 2), 3), | ||||
|             (["C"], ["A"], (1, 3), 3), | ||||
|             ("C", None, (3, 1), 3), | ||||
|             ("C", ["A", "B"], (3, 1), 3), | ||||
|             (["C", "D"], "A", (9, 1), 3), | ||||
|             (["C", "D"], "A", (3, 3), 3), | ||||
|             (["C", "D"], ["A"], (5, 2), 3), | ||||
|             (["C", "D"], ["A", "B"], (9, 1), 3), | ||||
|             (["C", "D"], None, (9, 1), 3), | ||||
|             (["C", "D"], ["A", "B"], (5, 2), 3), | ||||
|         ], | ||||
|     ) | ||||
|     def test_hist_plot_layout_with_by(self, by, column, layout, axes_num, hist_df): | ||||
|         # GH 15079 | ||||
|         # _check_plot_works adds an ax so catch warning. see GH #13188 | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             axes = _check_plot_works( | ||||
|                 hist_df.plot.hist, column=column, by=by, layout=layout | ||||
|             ) | ||||
|         _check_axes_shape(axes, axes_num=axes_num, layout=layout) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "msg, by, layout", | ||||
|         [ | ||||
|             ("larger than required size", ["C", "D"], (1, 1)), | ||||
|             (re.escape("Layout must be a tuple of (rows, columns)"), "C", (1,)), | ||||
|             ("At least one dimension of layout must be positive", "C", (-1, -1)), | ||||
|         ], | ||||
|     ) | ||||
|     def test_hist_plot_invalid_layout_with_by_raises(self, msg, by, layout, hist_df): | ||||
|         # GH 15079, test if error is raised when invalid layout is given | ||||
|  | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             hist_df.plot.hist(column=["A", "B"], by=by, layout=layout) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_axis_share_x_with_by(self, hist_df): | ||||
|         # GH 15079 | ||||
|         ax1, ax2, ax3 = hist_df.plot.hist(column="A", by="C", sharex=True) | ||||
|  | ||||
|         # share x | ||||
|         assert get_x_axis(ax1).joined(ax1, ax2) | ||||
|         assert get_x_axis(ax2).joined(ax1, ax2) | ||||
|         assert get_x_axis(ax3).joined(ax1, ax3) | ||||
|         assert get_x_axis(ax3).joined(ax2, ax3) | ||||
|  | ||||
|         # don't share y | ||||
|         assert not get_y_axis(ax1).joined(ax1, ax2) | ||||
|         assert not get_y_axis(ax2).joined(ax1, ax2) | ||||
|         assert not get_y_axis(ax3).joined(ax1, ax3) | ||||
|         assert not get_y_axis(ax3).joined(ax2, ax3) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_axis_share_y_with_by(self, hist_df): | ||||
|         # GH 15079 | ||||
|         ax1, ax2, ax3 = hist_df.plot.hist(column="A", by="C", sharey=True) | ||||
|  | ||||
|         # share y | ||||
|         assert get_y_axis(ax1).joined(ax1, ax2) | ||||
|         assert get_y_axis(ax2).joined(ax1, ax2) | ||||
|         assert get_y_axis(ax3).joined(ax1, ax3) | ||||
|         assert get_y_axis(ax3).joined(ax2, ax3) | ||||
|  | ||||
|         # don't share x | ||||
|         assert not get_x_axis(ax1).joined(ax1, ax2) | ||||
|         assert not get_x_axis(ax2).joined(ax1, ax2) | ||||
|         assert not get_x_axis(ax3).joined(ax1, ax3) | ||||
|         assert not get_x_axis(ax3).joined(ax2, ax3) | ||||
|  | ||||
|     @pytest.mark.parametrize("figsize", [(12, 8), (20, 10)]) | ||||
|     def test_figure_shape_hist_with_by(self, figsize, hist_df): | ||||
|         # GH 15079 | ||||
|         axes = hist_df.plot.hist(column="A", by="C", figsize=figsize) | ||||
|         _check_axes_shape(axes, axes_num=3, figsize=figsize) | ||||
|  | ||||
|  | ||||
| class TestBoxWithBy: | ||||
|     @pytest.mark.parametrize( | ||||
|         "by, column, titles, xticklabels", | ||||
|         [ | ||||
|             ("C", "A", ["A"], [["a", "b", "c"]]), | ||||
|             ( | ||||
|                 ["C", "D"], | ||||
|                 "A", | ||||
|                 ["A"], | ||||
|                 [ | ||||
|                     [ | ||||
|                         "(a, a)", | ||||
|                         "(b, b)", | ||||
|                         "(c, c)", | ||||
|                     ] | ||||
|                 ], | ||||
|             ), | ||||
|             ("C", ["A", "B"], ["A", "B"], [["a", "b", "c"]] * 2), | ||||
|             ( | ||||
|                 ["C", "D"], | ||||
|                 ["A", "B"], | ||||
|                 ["A", "B"], | ||||
|                 [ | ||||
|                     [ | ||||
|                         "(a, a)", | ||||
|                         "(b, b)", | ||||
|                         "(c, c)", | ||||
|                     ] | ||||
|                 ] | ||||
|                 * 2, | ||||
|             ), | ||||
|             (["C"], None, ["A", "B"], [["a", "b", "c"]] * 2), | ||||
|         ], | ||||
|     ) | ||||
|     def test_box_plot_by_argument(self, by, column, titles, xticklabels, hist_df): | ||||
|         # GH 15079 | ||||
|         axes = _check_plot_works( | ||||
|             hist_df.plot.box, default_axes=True, column=column, by=by | ||||
|         ) | ||||
|         result_titles = [ax.get_title() for ax in axes] | ||||
|         result_xticklabels = [ | ||||
|             [label.get_text() for label in ax.get_xticklabels()] for ax in axes | ||||
|         ] | ||||
|  | ||||
|         assert result_xticklabels == xticklabels | ||||
|         assert result_titles == titles | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "by, column, titles, xticklabels", | ||||
|         [ | ||||
|             (0, "A", ["A"], [["a", "b", "c"]]), | ||||
|             ( | ||||
|                 [0, "D"], | ||||
|                 "A", | ||||
|                 ["A"], | ||||
|                 [ | ||||
|                     [ | ||||
|                         "(a, a)", | ||||
|                         "(b, b)", | ||||
|                         "(c, c)", | ||||
|                     ] | ||||
|                 ], | ||||
|             ), | ||||
|             (0, None, ["A", "B"], [["a", "b", "c"]] * 2), | ||||
|         ], | ||||
|     ) | ||||
|     def test_box_plot_by_0(self, by, column, titles, xticklabels, hist_df): | ||||
|         # GH 15079 | ||||
|         df = hist_df.copy() | ||||
|         df = df.rename(columns={"C": 0}) | ||||
|  | ||||
|         axes = _check_plot_works(df.plot.box, default_axes=True, column=column, by=by) | ||||
|         result_titles = [ax.get_title() for ax in axes] | ||||
|         result_xticklabels = [ | ||||
|             [label.get_text() for label in ax.get_xticklabels()] for ax in axes | ||||
|         ] | ||||
|  | ||||
|         assert result_xticklabels == xticklabels | ||||
|         assert result_titles == titles | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "by, column", | ||||
|         [ | ||||
|             ([], ["A"]), | ||||
|             ((), "A"), | ||||
|             ([], None), | ||||
|             ((), ["A", "B"]), | ||||
|         ], | ||||
|     ) | ||||
|     def test_box_plot_with_none_empty_list_by(self, by, column, hist_df): | ||||
|         # GH 15079 | ||||
|         msg = "No group keys passed" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             _check_plot_works(hist_df.plot.box, default_axes=True, column=column, by=by) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "by, column, layout, axes_num", | ||||
|         [ | ||||
|             (["C"], "A", (1, 1), 1), | ||||
|             ("C", "A", (1, 1), 1), | ||||
|             ("C", None, (2, 1), 2), | ||||
|             ("C", ["A", "B"], (1, 2), 2), | ||||
|             (["C", "D"], "A", (1, 1), 1), | ||||
|             (["C", "D"], None, (1, 2), 2), | ||||
|         ], | ||||
|     ) | ||||
|     def test_box_plot_layout_with_by(self, by, column, layout, axes_num, hist_df): | ||||
|         # GH 15079 | ||||
|         axes = _check_plot_works( | ||||
|             hist_df.plot.box, default_axes=True, column=column, by=by, layout=layout | ||||
|         ) | ||||
|         _check_axes_shape(axes, axes_num=axes_num, layout=layout) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "msg, by, layout", | ||||
|         [ | ||||
|             ("larger than required size", ["C", "D"], (1, 1)), | ||||
|             (re.escape("Layout must be a tuple of (rows, columns)"), "C", (1,)), | ||||
|             ("At least one dimension of layout must be positive", "C", (-1, -1)), | ||||
|         ], | ||||
|     ) | ||||
|     def test_box_plot_invalid_layout_with_by_raises(self, msg, by, layout, hist_df): | ||||
|         # GH 15079, test if error is raised when invalid layout is given | ||||
|  | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             hist_df.plot.box(column=["A", "B"], by=by, layout=layout) | ||||
|  | ||||
|     @pytest.mark.parametrize("figsize", [(12, 8), (20, 10)]) | ||||
|     def test_figure_shape_hist_with_by(self, figsize, hist_df): | ||||
|         # GH 15079 | ||||
|         axes = hist_df.plot.box(column="A", by="C", figsize=figsize) | ||||
|         _check_axes_shape(axes, axes_num=1, figsize=figsize) | ||||
| @ -0,0 +1,98 @@ | ||||
| import sys | ||||
| import types | ||||
|  | ||||
| import pytest | ||||
|  | ||||
| import pandas.util._test_decorators as td | ||||
|  | ||||
| import pandas | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def dummy_backend(): | ||||
|     db = types.ModuleType("pandas_dummy_backend") | ||||
|     setattr(db, "plot", lambda *args, **kwargs: "used_dummy") | ||||
|     return db | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def restore_backend(): | ||||
|     """Restore the plotting backend to matplotlib""" | ||||
|     with pandas.option_context("plotting.backend", "matplotlib"): | ||||
|         yield | ||||
|  | ||||
|  | ||||
| def test_backend_is_not_module(): | ||||
|     msg = "Could not find plotting backend 'not_an_existing_module'." | ||||
|     with pytest.raises(ValueError, match=msg): | ||||
|         pandas.set_option("plotting.backend", "not_an_existing_module") | ||||
|  | ||||
|     assert pandas.options.plotting.backend == "matplotlib" | ||||
|  | ||||
|  | ||||
| def test_backend_is_correct(monkeypatch, restore_backend, dummy_backend): | ||||
|     monkeypatch.setitem(sys.modules, "pandas_dummy_backend", dummy_backend) | ||||
|  | ||||
|     pandas.set_option("plotting.backend", "pandas_dummy_backend") | ||||
|     assert pandas.get_option("plotting.backend") == "pandas_dummy_backend" | ||||
|     assert ( | ||||
|         pandas.plotting._core._get_plot_backend("pandas_dummy_backend") is dummy_backend | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def test_backend_can_be_set_in_plot_call(monkeypatch, restore_backend, dummy_backend): | ||||
|     monkeypatch.setitem(sys.modules, "pandas_dummy_backend", dummy_backend) | ||||
|     df = pandas.DataFrame([1, 2, 3]) | ||||
|  | ||||
|     assert pandas.get_option("plotting.backend") == "matplotlib" | ||||
|     assert df.plot(backend="pandas_dummy_backend") == "used_dummy" | ||||
|  | ||||
|  | ||||
| def test_register_entrypoint(restore_backend, tmp_path, monkeypatch, dummy_backend): | ||||
|     monkeypatch.syspath_prepend(tmp_path) | ||||
|     monkeypatch.setitem(sys.modules, "pandas_dummy_backend", dummy_backend) | ||||
|  | ||||
|     dist_info = tmp_path / "my_backend-0.0.0.dist-info" | ||||
|     dist_info.mkdir() | ||||
|     # entry_point name should not match module name - otherwise pandas will | ||||
|     # fall back to backend lookup by module name | ||||
|     (dist_info / "entry_points.txt").write_bytes( | ||||
|         b"[pandas_plotting_backends]\nmy_ep_backend = pandas_dummy_backend\n" | ||||
|     ) | ||||
|  | ||||
|     assert pandas.plotting._core._get_plot_backend("my_ep_backend") is dummy_backend | ||||
|  | ||||
|     with pandas.option_context("plotting.backend", "my_ep_backend"): | ||||
|         assert pandas.plotting._core._get_plot_backend() is dummy_backend | ||||
|  | ||||
|  | ||||
| def test_setting_backend_without_plot_raises(monkeypatch): | ||||
|     # GH-28163 | ||||
|     module = types.ModuleType("pandas_plot_backend") | ||||
|     monkeypatch.setitem(sys.modules, "pandas_plot_backend", module) | ||||
|  | ||||
|     assert pandas.options.plotting.backend == "matplotlib" | ||||
|     with pytest.raises( | ||||
|         ValueError, match="Could not find plotting backend 'pandas_plot_backend'." | ||||
|     ): | ||||
|         pandas.set_option("plotting.backend", "pandas_plot_backend") | ||||
|  | ||||
|     assert pandas.options.plotting.backend == "matplotlib" | ||||
|  | ||||
|  | ||||
| @td.skip_if_installed("matplotlib") | ||||
| def test_no_matplotlib_ok(): | ||||
|     msg = ( | ||||
|         'matplotlib is required for plotting when the default backend "matplotlib" is ' | ||||
|         "selected." | ||||
|     ) | ||||
|     with pytest.raises(ImportError, match=msg): | ||||
|         pandas.plotting._core._get_plot_backend("matplotlib") | ||||
|  | ||||
|  | ||||
| def test_extra_kinds_ok(monkeypatch, restore_backend, dummy_backend): | ||||
|     # https://github.com/pandas-dev/pandas/pull/28647 | ||||
|     monkeypatch.setitem(sys.modules, "pandas_dummy_backend", dummy_backend) | ||||
|     pandas.set_option("plotting.backend", "pandas_dummy_backend") | ||||
|     df = pandas.DataFrame({"A": [1, 2, 3]}) | ||||
|     df.plot(kind="not a real kind") | ||||
| @ -0,0 +1,786 @@ | ||||
| """ Test cases for .boxplot method """ | ||||
|  | ||||
| from __future__ import annotations | ||||
|  | ||||
| import itertools | ||||
| import string | ||||
|  | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     MultiIndex, | ||||
|     Series, | ||||
|     date_range, | ||||
|     plotting, | ||||
|     timedelta_range, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
| from pandas.tests.plotting.common import ( | ||||
|     _check_axes_shape, | ||||
|     _check_box_return_type, | ||||
|     _check_plot_works, | ||||
|     _check_ticks_props, | ||||
|     _check_visible, | ||||
| ) | ||||
| from pandas.util.version import Version | ||||
|  | ||||
| from pandas.io.formats.printing import pprint_thing | ||||
|  | ||||
| mpl = pytest.importorskip("matplotlib") | ||||
| plt = pytest.importorskip("matplotlib.pyplot") | ||||
|  | ||||
|  | ||||
| def _check_ax_limits(col, ax): | ||||
|     y_min, y_max = ax.get_ylim() | ||||
|     assert y_min <= col.min() | ||||
|     assert y_max >= col.max() | ||||
|  | ||||
|  | ||||
| if Version(mpl.__version__) < Version("3.10"): | ||||
|     verts: list[dict[str, bool | str]] = [{"vert": False}, {"vert": True}] | ||||
| else: | ||||
|     verts = [{"orientation": "horizontal"}, {"orientation": "vertical"}] | ||||
|  | ||||
|  | ||||
| @pytest.fixture(params=verts) | ||||
| def vert(request): | ||||
|     return request.param | ||||
|  | ||||
|  | ||||
| class TestDataFramePlots: | ||||
|     def test_stacked_boxplot_set_axis(self): | ||||
|         # GH2980 | ||||
|         import matplotlib.pyplot as plt | ||||
|  | ||||
|         n = 80 | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "Clinical": np.random.default_rng(2).choice([0, 1, 2, 3], n), | ||||
|                 "Confirmed": np.random.default_rng(2).choice([0, 1, 2, 3], n), | ||||
|                 "Discarded": np.random.default_rng(2).choice([0, 1, 2, 3], n), | ||||
|             }, | ||||
|             index=np.arange(0, n), | ||||
|         ) | ||||
|         ax = df.plot(kind="bar", stacked=True) | ||||
|         assert [int(x.get_text()) for x in ax.get_xticklabels()] == df.index.to_list() | ||||
|         ax.set_xticks(np.arange(0, 80, 10)) | ||||
|         plt.draw()  # Update changes | ||||
|         assert [int(x.get_text()) for x in ax.get_xticklabels()] == list( | ||||
|             np.arange(0, 80, 10) | ||||
|         ) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "kwargs, warn", | ||||
|         [ | ||||
|             [{"return_type": "dict"}, None], | ||||
|             [{"column": ["one", "two"]}, None], | ||||
|             [{"column": ["one", "two"], "by": "indic"}, UserWarning], | ||||
|             [{"column": ["one"], "by": ["indic", "indic2"]}, None], | ||||
|             [{"by": "indic"}, UserWarning], | ||||
|             [{"by": ["indic", "indic2"]}, UserWarning], | ||||
|             [{"notch": 1}, None], | ||||
|             [{"by": "indic", "notch": 1}, UserWarning], | ||||
|         ], | ||||
|     ) | ||||
|     def test_boxplot_legacy1(self, kwargs, warn): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((6, 4)), | ||||
|             index=list(string.ascii_letters[:6]), | ||||
|             columns=["one", "two", "three", "four"], | ||||
|         ) | ||||
|         df["indic"] = ["foo", "bar"] * 3 | ||||
|         df["indic2"] = ["foo", "bar", "foo"] * 2 | ||||
|  | ||||
|         # _check_plot_works can add an ax so catch warning. see GH #13188 | ||||
|         with tm.assert_produces_warning(warn, check_stacklevel=False): | ||||
|             _check_plot_works(df.boxplot, **kwargs) | ||||
|  | ||||
|     def test_boxplot_legacy1_series(self): | ||||
|         ser = Series(np.random.default_rng(2).standard_normal(6)) | ||||
|         _check_plot_works(plotting._core.boxplot, data=ser, return_type="dict") | ||||
|  | ||||
|     def test_boxplot_legacy2(self): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"] | ||||
|         ) | ||||
|         df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"]) | ||||
|         df["Y"] = Series(["A"] * 10) | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             _check_plot_works(df.boxplot, by="X") | ||||
|  | ||||
|     def test_boxplot_legacy2_with_ax(self): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"] | ||||
|         ) | ||||
|         df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"]) | ||||
|         df["Y"] = Series(["A"] * 10) | ||||
|         # When ax is supplied and required number of axes is 1, | ||||
|         # passed ax should be used: | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         axes = df.boxplot("Col1", by="X", ax=ax) | ||||
|         ax_axes = ax.axes | ||||
|         assert ax_axes is axes | ||||
|  | ||||
|     def test_boxplot_legacy2_with_ax_return_type(self): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"] | ||||
|         ) | ||||
|         df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"]) | ||||
|         df["Y"] = Series(["A"] * 10) | ||||
|         fig, ax = mpl.pyplot.subplots() | ||||
|         axes = df.groupby("Y").boxplot(ax=ax, return_type="axes") | ||||
|         ax_axes = ax.axes | ||||
|         assert ax_axes is axes["A"] | ||||
|  | ||||
|     def test_boxplot_legacy2_with_multi_col(self): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"] | ||||
|         ) | ||||
|         df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"]) | ||||
|         df["Y"] = Series(["A"] * 10) | ||||
|         # Multiple columns with an ax argument should use same figure | ||||
|         fig, ax = mpl.pyplot.subplots() | ||||
|         with tm.assert_produces_warning(UserWarning): | ||||
|             axes = df.boxplot( | ||||
|                 column=["Col1", "Col2"], by="X", ax=ax, return_type="axes" | ||||
|             ) | ||||
|         assert axes["Col1"].get_figure() is fig | ||||
|  | ||||
|     def test_boxplot_legacy2_by_none(self): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 2)), columns=["Col1", "Col2"] | ||||
|         ) | ||||
|         df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"]) | ||||
|         df["Y"] = Series(["A"] * 10) | ||||
|         # When by is None, check that all relevant lines are present in the | ||||
|         # dict | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         d = df.boxplot(ax=ax, return_type="dict") | ||||
|         lines = list(itertools.chain.from_iterable(d.values())) | ||||
|         assert len(ax.get_lines()) == len(lines) | ||||
|  | ||||
|     def test_boxplot_return_type_none(self, hist_df): | ||||
|         # GH 12216; return_type=None & by=None -> axes | ||||
|         result = hist_df.boxplot() | ||||
|         assert isinstance(result, mpl.pyplot.Axes) | ||||
|  | ||||
|     def test_boxplot_return_type_legacy(self): | ||||
|         # API change in https://github.com/pandas-dev/pandas/pull/7096 | ||||
|  | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((6, 4)), | ||||
|             index=list(string.ascii_letters[:6]), | ||||
|             columns=["one", "two", "three", "four"], | ||||
|         ) | ||||
|         msg = "return_type must be {'axes', 'dict', 'both'}" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.boxplot(return_type="NOT_A_TYPE") | ||||
|  | ||||
|         result = df.boxplot() | ||||
|         _check_box_return_type(result, "axes") | ||||
|  | ||||
|     @pytest.mark.parametrize("return_type", ["dict", "axes", "both"]) | ||||
|     def test_boxplot_return_type_legacy_return_type(self, return_type): | ||||
|         # API change in https://github.com/pandas-dev/pandas/pull/7096 | ||||
|  | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((6, 4)), | ||||
|             index=list(string.ascii_letters[:6]), | ||||
|             columns=["one", "two", "three", "four"], | ||||
|         ) | ||||
|         with tm.assert_produces_warning(False): | ||||
|             result = df.boxplot(return_type=return_type) | ||||
|         _check_box_return_type(result, return_type) | ||||
|  | ||||
|     def test_boxplot_axis_limits(self, hist_df): | ||||
|         df = hist_df.copy() | ||||
|         df["age"] = np.random.default_rng(2).integers(1, 20, df.shape[0]) | ||||
|         # One full row | ||||
|         height_ax, weight_ax = df.boxplot(["height", "weight"], by="category") | ||||
|         _check_ax_limits(df["height"], height_ax) | ||||
|         _check_ax_limits(df["weight"], weight_ax) | ||||
|         assert weight_ax._sharey == height_ax | ||||
|  | ||||
|     def test_boxplot_axis_limits_two_rows(self, hist_df): | ||||
|         df = hist_df.copy() | ||||
|         df["age"] = np.random.default_rng(2).integers(1, 20, df.shape[0]) | ||||
|         # Two rows, one partial | ||||
|         p = df.boxplot(["height", "weight", "age"], by="category") | ||||
|         height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0] | ||||
|         dummy_ax = p[1, 1] | ||||
|  | ||||
|         _check_ax_limits(df["height"], height_ax) | ||||
|         _check_ax_limits(df["weight"], weight_ax) | ||||
|         _check_ax_limits(df["age"], age_ax) | ||||
|         assert weight_ax._sharey == height_ax | ||||
|         assert age_ax._sharey == height_ax | ||||
|         assert dummy_ax._sharey is None | ||||
|  | ||||
|     def test_boxplot_empty_column(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((20, 4))) | ||||
|         df.loc[:, 0] = np.nan | ||||
|         _check_plot_works(df.boxplot, return_type="axes") | ||||
|  | ||||
|     def test_figsize(self): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 5)), columns=["A", "B", "C", "D", "E"] | ||||
|         ) | ||||
|         result = df.boxplot(return_type="axes", figsize=(12, 8)) | ||||
|         assert result.figure.bbox_inches.width == 12 | ||||
|         assert result.figure.bbox_inches.height == 8 | ||||
|  | ||||
|     def test_fontsize(self): | ||||
|         df = DataFrame({"a": [1, 2, 3, 4, 5, 6]}) | ||||
|         _check_ticks_props(df.boxplot("a", fontsize=16), xlabelsize=16, ylabelsize=16) | ||||
|  | ||||
|     def test_boxplot_numeric_data(self): | ||||
|         # GH 22799 | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "a": date_range("2012-01-01", periods=100), | ||||
|                 "b": np.random.default_rng(2).standard_normal(100), | ||||
|                 "c": np.random.default_rng(2).standard_normal(100) + 2, | ||||
|                 "d": date_range("2012-01-01", periods=100).astype(str), | ||||
|                 "e": date_range("2012-01-01", periods=100, tz="UTC"), | ||||
|                 "f": timedelta_range("1 days", periods=100), | ||||
|             } | ||||
|         ) | ||||
|         ax = df.plot(kind="box") | ||||
|         assert [x.get_text() for x in ax.get_xticklabels()] == ["b", "c"] | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "colors_kwd, expected", | ||||
|         [ | ||||
|             ( | ||||
|                 {"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"}, | ||||
|                 {"boxes": "r", "whiskers": "b", "medians": "g", "caps": "c"}, | ||||
|             ), | ||||
|             ({"boxes": "r"}, {"boxes": "r"}), | ||||
|             ("r", {"boxes": "r", "whiskers": "r", "medians": "r", "caps": "r"}), | ||||
|         ], | ||||
|     ) | ||||
|     def test_color_kwd(self, colors_kwd, expected): | ||||
|         # GH: 26214 | ||||
|         df = DataFrame(np.random.default_rng(2).random((10, 2))) | ||||
|         result = df.boxplot(color=colors_kwd, return_type="dict") | ||||
|         for k, v in expected.items(): | ||||
|             assert result[k][0].get_color() == v | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "scheme,expected", | ||||
|         [ | ||||
|             ( | ||||
|                 "dark_background", | ||||
|                 { | ||||
|                     "boxes": "#8dd3c7", | ||||
|                     "whiskers": "#8dd3c7", | ||||
|                     "medians": "#bfbbd9", | ||||
|                     "caps": "#8dd3c7", | ||||
|                 }, | ||||
|             ), | ||||
|             ( | ||||
|                 "default", | ||||
|                 { | ||||
|                     "boxes": "#1f77b4", | ||||
|                     "whiskers": "#1f77b4", | ||||
|                     "medians": "#2ca02c", | ||||
|                     "caps": "#1f77b4", | ||||
|                 }, | ||||
|             ), | ||||
|         ], | ||||
|     ) | ||||
|     def test_colors_in_theme(self, scheme, expected): | ||||
|         # GH: 40769 | ||||
|         df = DataFrame(np.random.default_rng(2).random((10, 2))) | ||||
|         import matplotlib.pyplot as plt | ||||
|  | ||||
|         plt.style.use(scheme) | ||||
|         result = df.plot.box(return_type="dict") | ||||
|         for k, v in expected.items(): | ||||
|             assert result[k][0].get_color() == v | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "dict_colors, msg", | ||||
|         [({"boxes": "r", "invalid_key": "r"}, "invalid key 'invalid_key'")], | ||||
|     ) | ||||
|     def test_color_kwd_errors(self, dict_colors, msg): | ||||
|         # GH: 26214 | ||||
|         df = DataFrame(np.random.default_rng(2).random((10, 2))) | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.boxplot(color=dict_colors, return_type="dict") | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "props, expected", | ||||
|         [ | ||||
|             ("boxprops", "boxes"), | ||||
|             ("whiskerprops", "whiskers"), | ||||
|             ("capprops", "caps"), | ||||
|             ("medianprops", "medians"), | ||||
|         ], | ||||
|     ) | ||||
|     def test_specified_props_kwd(self, props, expected): | ||||
|         # GH 30346 | ||||
|         df = DataFrame({k: np.random.default_rng(2).random(10) for k in "ABC"}) | ||||
|         kwd = {props: {"color": "C1"}} | ||||
|         result = df.boxplot(return_type="dict", **kwd) | ||||
|  | ||||
|         assert result[expected][0].get_color() == "C1" | ||||
|  | ||||
|     @pytest.mark.filterwarnings("ignore:set_ticklabels:UserWarning") | ||||
|     def test_plot_xlabel_ylabel(self, vert): | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "a": np.random.default_rng(2).standard_normal(10), | ||||
|                 "b": np.random.default_rng(2).standard_normal(10), | ||||
|                 "group": np.random.default_rng(2).choice(["group1", "group2"], 10), | ||||
|             } | ||||
|         ) | ||||
|         xlabel, ylabel = "x", "y" | ||||
|         ax = df.plot(kind="box", xlabel=xlabel, ylabel=ylabel, **vert) | ||||
|         assert ax.get_xlabel() == xlabel | ||||
|         assert ax.get_ylabel() == ylabel | ||||
|  | ||||
|     @pytest.mark.filterwarnings("ignore:set_ticklabels:UserWarning") | ||||
|     def test_plot_box(self, vert): | ||||
|         # GH 54941 | ||||
|         rng = np.random.default_rng(2) | ||||
|         df1 = DataFrame(rng.integers(0, 100, size=(100, 4)), columns=list("ABCD")) | ||||
|         df2 = DataFrame(rng.integers(0, 100, size=(100, 4)), columns=list("ABCD")) | ||||
|  | ||||
|         xlabel, ylabel = "x", "y" | ||||
|         _, axs = plt.subplots(ncols=2, figsize=(10, 7), sharey=True) | ||||
|         df1.plot.box(ax=axs[0], xlabel=xlabel, ylabel=ylabel, **vert) | ||||
|         df2.plot.box(ax=axs[1], xlabel=xlabel, ylabel=ylabel, **vert) | ||||
|         for ax in axs: | ||||
|             assert ax.get_xlabel() == xlabel | ||||
|             assert ax.get_ylabel() == ylabel | ||||
|         mpl.pyplot.close() | ||||
|  | ||||
|     @pytest.mark.filterwarnings("ignore:set_ticklabels:UserWarning") | ||||
|     def test_boxplot_xlabel_ylabel(self, vert): | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "a": np.random.default_rng(2).standard_normal(10), | ||||
|                 "b": np.random.default_rng(2).standard_normal(10), | ||||
|                 "group": np.random.default_rng(2).choice(["group1", "group2"], 10), | ||||
|             } | ||||
|         ) | ||||
|         xlabel, ylabel = "x", "y" | ||||
|         ax = df.boxplot(xlabel=xlabel, ylabel=ylabel, **vert) | ||||
|         assert ax.get_xlabel() == xlabel | ||||
|         assert ax.get_ylabel() == ylabel | ||||
|  | ||||
|     @pytest.mark.filterwarnings("ignore:set_ticklabels:UserWarning") | ||||
|     def test_boxplot_group_xlabel_ylabel(self, vert): | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "a": np.random.default_rng(2).standard_normal(10), | ||||
|                 "b": np.random.default_rng(2).standard_normal(10), | ||||
|                 "group": np.random.default_rng(2).choice(["group1", "group2"], 10), | ||||
|             } | ||||
|         ) | ||||
|         xlabel, ylabel = "x", "y" | ||||
|         ax = df.boxplot(by="group", xlabel=xlabel, ylabel=ylabel, **vert) | ||||
|         for subplot in ax: | ||||
|             assert subplot.get_xlabel() == xlabel | ||||
|             assert subplot.get_ylabel() == ylabel | ||||
|         mpl.pyplot.close() | ||||
|  | ||||
|     @pytest.mark.filterwarnings("ignore:set_ticklabels:UserWarning") | ||||
|     def test_boxplot_group_no_xlabel_ylabel(self, vert, request): | ||||
|         if Version(mpl.__version__) >= Version("3.10") and vert == { | ||||
|             "orientation": "horizontal" | ||||
|         }: | ||||
|             request.applymarker( | ||||
|                 pytest.mark.xfail(reason=f"{vert} fails starting with matplotlib 3.10") | ||||
|             ) | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "a": np.random.default_rng(2).standard_normal(10), | ||||
|                 "b": np.random.default_rng(2).standard_normal(10), | ||||
|                 "group": np.random.default_rng(2).choice(["group1", "group2"], 10), | ||||
|             } | ||||
|         ) | ||||
|         ax = df.boxplot(by="group", **vert) | ||||
|         for subplot in ax: | ||||
|             target_label = ( | ||||
|                 subplot.get_xlabel() | ||||
|                 if vert == {"vert": True}  # noqa: PLR1714 | ||||
|                 or vert == {"orientation": "vertical"} | ||||
|                 else subplot.get_ylabel() | ||||
|             ) | ||||
|             assert target_label == pprint_thing(["group"]) | ||||
|         mpl.pyplot.close() | ||||
|  | ||||
|  | ||||
| class TestDataFrameGroupByPlots: | ||||
|     def test_boxplot_legacy1(self, hist_df): | ||||
|         grouped = hist_df.groupby(by="gender") | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             axes = _check_plot_works(grouped.boxplot, return_type="axes") | ||||
|         _check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2)) | ||||
|  | ||||
|     def test_boxplot_legacy1_return_type(self, hist_df): | ||||
|         grouped = hist_df.groupby(by="gender") | ||||
|         axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes") | ||||
|         _check_axes_shape(axes, axes_num=1, layout=(1, 1)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_boxplot_legacy2(self): | ||||
|         tuples = zip(string.ascii_letters[:10], range(10)) | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 3)), | ||||
|             index=MultiIndex.from_tuples(tuples), | ||||
|         ) | ||||
|         grouped = df.groupby(level=1) | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             axes = _check_plot_works(grouped.boxplot, return_type="axes") | ||||
|         _check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_boxplot_legacy2_return_type(self): | ||||
|         tuples = zip(string.ascii_letters[:10], range(10)) | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 3)), | ||||
|             index=MultiIndex.from_tuples(tuples), | ||||
|         ) | ||||
|         grouped = df.groupby(level=1) | ||||
|         axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes") | ||||
|         _check_axes_shape(axes, axes_num=1, layout=(1, 1)) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "subplots, warn, axes_num, layout", | ||||
|         [[True, UserWarning, 3, (2, 2)], [False, None, 1, (1, 1)]], | ||||
|     ) | ||||
|     def test_boxplot_legacy3(self, subplots, warn, axes_num, layout): | ||||
|         tuples = zip(string.ascii_letters[:10], range(10)) | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((10, 3)), | ||||
|             index=MultiIndex.from_tuples(tuples), | ||||
|         ) | ||||
|         msg = "DataFrame.groupby with axis=1 is deprecated" | ||||
|         with tm.assert_produces_warning(FutureWarning, match=msg): | ||||
|             grouped = df.unstack(level=1).groupby(level=0, axis=1) | ||||
|         with tm.assert_produces_warning(warn, check_stacklevel=False): | ||||
|             axes = _check_plot_works( | ||||
|                 grouped.boxplot, subplots=subplots, return_type="axes" | ||||
|             ) | ||||
|         _check_axes_shape(axes, axes_num=axes_num, layout=layout) | ||||
|  | ||||
|     def test_grouped_plot_fignums(self): | ||||
|         n = 10 | ||||
|         weight = Series(np.random.default_rng(2).normal(166, 20, size=n)) | ||||
|         height = Series(np.random.default_rng(2).normal(60, 10, size=n)) | ||||
|         gender = np.random.default_rng(2).choice(["male", "female"], size=n) | ||||
|         df = DataFrame({"height": height, "weight": weight, "gender": gender}) | ||||
|         gb = df.groupby("gender") | ||||
|  | ||||
|         res = gb.plot() | ||||
|         assert len(mpl.pyplot.get_fignums()) == 2 | ||||
|         assert len(res) == 2 | ||||
|         plt.close("all") | ||||
|  | ||||
|         res = gb.boxplot(return_type="axes") | ||||
|         assert len(mpl.pyplot.get_fignums()) == 1 | ||||
|         assert len(res) == 2 | ||||
|  | ||||
|     def test_grouped_plot_fignums_excluded_col(self): | ||||
|         n = 10 | ||||
|         weight = Series(np.random.default_rng(2).normal(166, 20, size=n)) | ||||
|         height = Series(np.random.default_rng(2).normal(60, 10, size=n)) | ||||
|         gender = np.random.default_rng(2).choice(["male", "female"], size=n) | ||||
|         df = DataFrame({"height": height, "weight": weight, "gender": gender}) | ||||
|         # now works with GH 5610 as gender is excluded | ||||
|         df.groupby("gender").hist() | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_grouped_box_return_type(self, hist_df): | ||||
|         df = hist_df | ||||
|  | ||||
|         # old style: return_type=None | ||||
|         result = df.boxplot(by="gender") | ||||
|         assert isinstance(result, np.ndarray) | ||||
|         _check_box_return_type( | ||||
|             result, None, expected_keys=["height", "weight", "category"] | ||||
|         ) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_grouped_box_return_type_groupby(self, hist_df): | ||||
|         df = hist_df | ||||
|         # now for groupby | ||||
|         result = df.groupby("gender").boxplot(return_type="dict") | ||||
|         _check_box_return_type(result, "dict", expected_keys=["Male", "Female"]) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize("return_type", ["dict", "axes", "both"]) | ||||
|     def test_grouped_box_return_type_arg(self, hist_df, return_type): | ||||
|         df = hist_df | ||||
|  | ||||
|         returned = df.groupby("classroom").boxplot(return_type=return_type) | ||||
|         _check_box_return_type(returned, return_type, expected_keys=["A", "B", "C"]) | ||||
|  | ||||
|         returned = df.boxplot(by="classroom", return_type=return_type) | ||||
|         _check_box_return_type( | ||||
|             returned, return_type, expected_keys=["height", "weight", "category"] | ||||
|         ) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize("return_type", ["dict", "axes", "both"]) | ||||
|     def test_grouped_box_return_type_arg_duplcate_cats(self, return_type): | ||||
|         columns2 = "X B C D A".split() | ||||
|         df2 = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((6, 5)), columns=columns2 | ||||
|         ) | ||||
|         categories2 = "A B".split() | ||||
|         df2["category"] = categories2 * 3 | ||||
|  | ||||
|         returned = df2.groupby("category").boxplot(return_type=return_type) | ||||
|         _check_box_return_type(returned, return_type, expected_keys=categories2) | ||||
|  | ||||
|         returned = df2.boxplot(by="category", return_type=return_type) | ||||
|         _check_box_return_type(returned, return_type, expected_keys=columns2) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_grouped_box_layout_too_small(self, hist_df): | ||||
|         df = hist_df | ||||
|  | ||||
|         msg = "Layout of 1x1 must be larger than required size 2" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.boxplot(column=["weight", "height"], by=df.gender, layout=(1, 1)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_grouped_box_layout_needs_by(self, hist_df): | ||||
|         df = hist_df | ||||
|         msg = "The 'layout' keyword is not supported when 'by' is None" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.boxplot( | ||||
|                 column=["height", "weight", "category"], | ||||
|                 layout=(2, 1), | ||||
|                 return_type="dict", | ||||
|             ) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_grouped_box_layout_positive_layout(self, hist_df): | ||||
|         df = hist_df | ||||
|         msg = "At least one dimension of layout must be positive" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.boxplot(column=["weight", "height"], by=df.gender, layout=(-1, -1)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "gb_key, axes_num, rows", | ||||
|         [["gender", 2, 1], ["category", 4, 2], ["classroom", 3, 2]], | ||||
|     ) | ||||
|     def test_grouped_box_layout_positive_layout_axes( | ||||
|         self, hist_df, gb_key, axes_num, rows | ||||
|     ): | ||||
|         df = hist_df | ||||
|         # _check_plot_works adds an ax so catch warning. see GH #13188 GH 6769 | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             _check_plot_works( | ||||
|                 df.groupby(gb_key).boxplot, column="height", return_type="dict" | ||||
|             ) | ||||
|         _check_axes_shape(mpl.pyplot.gcf().axes, axes_num=axes_num, layout=(rows, 2)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "col, visible", [["height", False], ["weight", True], ["category", True]] | ||||
|     ) | ||||
|     def test_grouped_box_layout_visible(self, hist_df, col, visible): | ||||
|         df = hist_df | ||||
|         # GH 5897 | ||||
|         axes = df.boxplot( | ||||
|             column=["height", "weight", "category"], by="gender", return_type="axes" | ||||
|         ) | ||||
|         _check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(2, 2)) | ||||
|         ax = axes[col] | ||||
|         _check_visible(ax.get_xticklabels(), visible=visible) | ||||
|         _check_visible([ax.xaxis.get_label()], visible=visible) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_grouped_box_layout_shape(self, hist_df): | ||||
|         df = hist_df | ||||
|         df.groupby("classroom").boxplot( | ||||
|             column=["height", "weight", "category"], return_type="dict" | ||||
|         ) | ||||
|         _check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(2, 2)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize("cols", [2, -1]) | ||||
|     def test_grouped_box_layout_works(self, hist_df, cols): | ||||
|         df = hist_df | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             _check_plot_works( | ||||
|                 df.groupby("category").boxplot, | ||||
|                 column="height", | ||||
|                 layout=(3, cols), | ||||
|                 return_type="dict", | ||||
|             ) | ||||
|         _check_axes_shape(mpl.pyplot.gcf().axes, axes_num=4, layout=(3, 2)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize("rows, res", [[4, 4], [-1, 3]]) | ||||
|     def test_grouped_box_layout_axes_shape_rows(self, hist_df, rows, res): | ||||
|         df = hist_df | ||||
|         df.boxplot( | ||||
|             column=["height", "weight", "category"], by="gender", layout=(rows, 1) | ||||
|         ) | ||||
|         _check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(res, 1)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize("cols, res", [[4, 4], [-1, 3]]) | ||||
|     def test_grouped_box_layout_axes_shape_cols_groupby(self, hist_df, cols, res): | ||||
|         df = hist_df | ||||
|         df.groupby("classroom").boxplot( | ||||
|             column=["height", "weight", "category"], | ||||
|             layout=(1, cols), | ||||
|             return_type="dict", | ||||
|         ) | ||||
|         _check_axes_shape(mpl.pyplot.gcf().axes, axes_num=3, layout=(1, res)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_grouped_box_multiple_axes(self, hist_df): | ||||
|         # GH 6970, GH 7069 | ||||
|         df = hist_df | ||||
|  | ||||
|         # check warning to ignore sharex / sharey | ||||
|         # this check should be done in the first function which | ||||
|         # passes multiple axes to plot, hist or boxplot | ||||
|         # location should be changed if other test is added | ||||
|         # which has earlier alphabetical order | ||||
|         with tm.assert_produces_warning(UserWarning): | ||||
|             _, axes = mpl.pyplot.subplots(2, 2) | ||||
|             df.groupby("category").boxplot(column="height", return_type="axes", ax=axes) | ||||
|             _check_axes_shape(mpl.pyplot.gcf().axes, axes_num=4, layout=(2, 2)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_grouped_box_multiple_axes_on_fig(self, hist_df): | ||||
|         # GH 6970, GH 7069 | ||||
|         df = hist_df | ||||
|         fig, axes = mpl.pyplot.subplots(2, 3) | ||||
|         with tm.assert_produces_warning(UserWarning): | ||||
|             returned = df.boxplot( | ||||
|                 column=["height", "weight", "category"], | ||||
|                 by="gender", | ||||
|                 return_type="axes", | ||||
|                 ax=axes[0], | ||||
|             ) | ||||
|         returned = np.array(list(returned.values)) | ||||
|         _check_axes_shape(returned, axes_num=3, layout=(1, 3)) | ||||
|         tm.assert_numpy_array_equal(returned, axes[0]) | ||||
|         assert returned[0].figure is fig | ||||
|  | ||||
|         # draw on second row | ||||
|         with tm.assert_produces_warning(UserWarning): | ||||
|             returned = df.groupby("classroom").boxplot( | ||||
|                 column=["height", "weight", "category"], return_type="axes", ax=axes[1] | ||||
|             ) | ||||
|         returned = np.array(list(returned.values)) | ||||
|         _check_axes_shape(returned, axes_num=3, layout=(1, 3)) | ||||
|         tm.assert_numpy_array_equal(returned, axes[1]) | ||||
|         assert returned[0].figure is fig | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_grouped_box_multiple_axes_ax_error(self, hist_df): | ||||
|         # GH 6970, GH 7069 | ||||
|         df = hist_df | ||||
|         msg = "The number of passed axes must be 3, the same as the output plot" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             fig, axes = mpl.pyplot.subplots(2, 3) | ||||
|             # pass different number of axes from required | ||||
|             with tm.assert_produces_warning(UserWarning): | ||||
|                 axes = df.groupby("classroom").boxplot(ax=axes) | ||||
|  | ||||
|     def test_fontsize(self): | ||||
|         df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [0, 0, 0, 1, 1, 1]}) | ||||
|         _check_ticks_props( | ||||
|             df.boxplot("a", by="b", fontsize=16), xlabelsize=16, ylabelsize=16 | ||||
|         ) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "col, expected_xticklabel", | ||||
|         [ | ||||
|             ("v", ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]), | ||||
|             (["v"], ["(a, v)", "(b, v)", "(c, v)", "(d, v)", "(e, v)"]), | ||||
|             ("v1", ["(a, v1)", "(b, v1)", "(c, v1)", "(d, v1)", "(e, v1)"]), | ||||
|             ( | ||||
|                 ["v", "v1"], | ||||
|                 [ | ||||
|                     "(a, v)", | ||||
|                     "(a, v1)", | ||||
|                     "(b, v)", | ||||
|                     "(b, v1)", | ||||
|                     "(c, v)", | ||||
|                     "(c, v1)", | ||||
|                     "(d, v)", | ||||
|                     "(d, v1)", | ||||
|                     "(e, v)", | ||||
|                     "(e, v1)", | ||||
|                 ], | ||||
|             ), | ||||
|             ( | ||||
|                 None, | ||||
|                 [ | ||||
|                     "(a, v)", | ||||
|                     "(a, v1)", | ||||
|                     "(b, v)", | ||||
|                     "(b, v1)", | ||||
|                     "(c, v)", | ||||
|                     "(c, v1)", | ||||
|                     "(d, v)", | ||||
|                     "(d, v1)", | ||||
|                     "(e, v)", | ||||
|                     "(e, v1)", | ||||
|                 ], | ||||
|             ), | ||||
|         ], | ||||
|     ) | ||||
|     def test_groupby_boxplot_subplots_false(self, col, expected_xticklabel): | ||||
|         # GH 16748 | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "cat": np.random.default_rng(2).choice(list("abcde"), 100), | ||||
|                 "v": np.random.default_rng(2).random(100), | ||||
|                 "v1": np.random.default_rng(2).random(100), | ||||
|             } | ||||
|         ) | ||||
|         grouped = df.groupby("cat") | ||||
|  | ||||
|         axes = _check_plot_works( | ||||
|             grouped.boxplot, subplots=False, column=col, return_type="axes" | ||||
|         ) | ||||
|  | ||||
|         result_xticklabel = [x.get_text() for x in axes.get_xticklabels()] | ||||
|         assert expected_xticklabel == result_xticklabel | ||||
|  | ||||
|     def test_groupby_boxplot_object(self, hist_df): | ||||
|         # GH 43480 | ||||
|         df = hist_df.astype("object") | ||||
|         grouped = df.groupby("gender") | ||||
|         msg = "boxplot method requires numerical columns, nothing to plot" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             _check_plot_works(grouped.boxplot, subplots=False) | ||||
|  | ||||
|     def test_boxplot_multiindex_column(self): | ||||
|         # GH 16748 | ||||
|         arrays = [ | ||||
|             ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], | ||||
|             ["one", "two", "one", "two", "one", "two", "one", "two"], | ||||
|         ] | ||||
|         tuples = list(zip(*arrays)) | ||||
|         index = MultiIndex.from_tuples(tuples, names=["first", "second"]) | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 8)), | ||||
|             index=["A", "B", "C"], | ||||
|             columns=index, | ||||
|         ) | ||||
|  | ||||
|         col = [("bar", "one"), ("bar", "two")] | ||||
|         axes = _check_plot_works(df.boxplot, column=col, return_type="axes") | ||||
|  | ||||
|         expected_xticklabel = ["(bar, one)", "(bar, two)"] | ||||
|         result_xticklabel = [x.get_text() for x in axes.get_xticklabels()] | ||||
|         assert expected_xticklabel == result_xticklabel | ||||
| @ -0,0 +1,60 @@ | ||||
| import pytest | ||||
|  | ||||
| from pandas import DataFrame | ||||
| from pandas.tests.plotting.common import ( | ||||
|     _check_plot_works, | ||||
|     _check_ticks_props, | ||||
|     _gen_two_subplots, | ||||
| ) | ||||
|  | ||||
| plt = pytest.importorskip("matplotlib.pyplot") | ||||
|  | ||||
|  | ||||
| class TestCommon: | ||||
|     def test__check_ticks_props(self): | ||||
|         # GH 34768 | ||||
|         df = DataFrame({"b": [0, 1, 0], "a": [1, 2, 3]}) | ||||
|         ax = _check_plot_works(df.plot, rot=30) | ||||
|         ax.yaxis.set_tick_params(rotation=30) | ||||
|         msg = "expected 0.00000 but got " | ||||
|         with pytest.raises(AssertionError, match=msg): | ||||
|             _check_ticks_props(ax, xrot=0) | ||||
|         with pytest.raises(AssertionError, match=msg): | ||||
|             _check_ticks_props(ax, xlabelsize=0) | ||||
|         with pytest.raises(AssertionError, match=msg): | ||||
|             _check_ticks_props(ax, yrot=0) | ||||
|         with pytest.raises(AssertionError, match=msg): | ||||
|             _check_ticks_props(ax, ylabelsize=0) | ||||
|  | ||||
|     def test__gen_two_subplots_with_ax(self): | ||||
|         fig = plt.gcf() | ||||
|         gen = _gen_two_subplots(f=lambda **kwargs: None, fig=fig, ax="test") | ||||
|         # On the first yield, no subplot should be added since ax was passed | ||||
|         next(gen) | ||||
|         assert fig.get_axes() == [] | ||||
|         # On the second, the one axis should match fig.subplot(2, 1, 2) | ||||
|         next(gen) | ||||
|         axes = fig.get_axes() | ||||
|         assert len(axes) == 1 | ||||
|         subplot_geometry = list(axes[0].get_subplotspec().get_geometry()[:-1]) | ||||
|         subplot_geometry[-1] += 1 | ||||
|         assert subplot_geometry == [2, 1, 2] | ||||
|  | ||||
|     def test_colorbar_layout(self): | ||||
|         fig = plt.figure() | ||||
|  | ||||
|         axes = fig.subplot_mosaic( | ||||
|             """ | ||||
|             AB | ||||
|             CC | ||||
|             """ | ||||
|         ) | ||||
|  | ||||
|         x = [1, 2, 3] | ||||
|         y = [1, 2, 3] | ||||
|  | ||||
|         cs0 = axes["A"].scatter(x, y) | ||||
|         axes["B"].scatter(x, y) | ||||
|  | ||||
|         fig.colorbar(cs0, ax=[axes["A"], axes["B"]], location="right") | ||||
|         DataFrame(x).plot(ax=axes["C"]) | ||||
| @ -0,0 +1,410 @@ | ||||
| from datetime import ( | ||||
|     date, | ||||
|     datetime, | ||||
| ) | ||||
| import subprocess | ||||
| import sys | ||||
|  | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| import pandas._config.config as cf | ||||
|  | ||||
| from pandas._libs.tslibs import to_offset | ||||
|  | ||||
| from pandas import ( | ||||
|     Index, | ||||
|     Period, | ||||
|     PeriodIndex, | ||||
|     Series, | ||||
|     Timestamp, | ||||
|     arrays, | ||||
|     date_range, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
|  | ||||
| from pandas.plotting import ( | ||||
|     deregister_matplotlib_converters, | ||||
|     register_matplotlib_converters, | ||||
| ) | ||||
| from pandas.tseries.offsets import ( | ||||
|     Day, | ||||
|     Micro, | ||||
|     Milli, | ||||
|     Second, | ||||
| ) | ||||
|  | ||||
| try: | ||||
|     from pandas.plotting._matplotlib import converter | ||||
| except ImportError: | ||||
|     # try / except, rather than skip, to avoid internal refactoring | ||||
|     # causing an improper skip | ||||
|     pass | ||||
|  | ||||
| pytest.importorskip("matplotlib.pyplot") | ||||
| dates = pytest.importorskip("matplotlib.dates") | ||||
|  | ||||
|  | ||||
| @pytest.mark.single_cpu | ||||
| def test_registry_mpl_resets(): | ||||
|     # Check that Matplotlib converters are properly reset (see issue #27481) | ||||
|     code = ( | ||||
|         "import matplotlib.units as units; " | ||||
|         "import matplotlib.dates as mdates; " | ||||
|         "n_conv = len(units.registry); " | ||||
|         "import pandas as pd; " | ||||
|         "pd.plotting.register_matplotlib_converters(); " | ||||
|         "pd.plotting.deregister_matplotlib_converters(); " | ||||
|         "assert len(units.registry) == n_conv" | ||||
|     ) | ||||
|     call = [sys.executable, "-c", code] | ||||
|     subprocess.check_output(call) | ||||
|  | ||||
|  | ||||
| def test_timtetonum_accepts_unicode(): | ||||
|     assert converter.time2num("00:01") == converter.time2num("00:01") | ||||
|  | ||||
|  | ||||
| class TestRegistration: | ||||
|     @pytest.mark.single_cpu | ||||
|     def test_dont_register_by_default(self): | ||||
|         # Run in subprocess to ensure a clean state | ||||
|         code = ( | ||||
|             "import matplotlib.units; " | ||||
|             "import pandas as pd; " | ||||
|             "units = dict(matplotlib.units.registry); " | ||||
|             "assert pd.Timestamp not in units" | ||||
|         ) | ||||
|         call = [sys.executable, "-c", code] | ||||
|         assert subprocess.check_call(call) == 0 | ||||
|  | ||||
|     def test_registering_no_warning(self): | ||||
|         plt = pytest.importorskip("matplotlib.pyplot") | ||||
|         s = Series(range(12), index=date_range("2017", periods=12)) | ||||
|         _, ax = plt.subplots() | ||||
|  | ||||
|         # Set to the "warn" state, in case this isn't the first test run | ||||
|         register_matplotlib_converters() | ||||
|         ax.plot(s.index, s.values) | ||||
|         plt.close() | ||||
|  | ||||
|     def test_pandas_plots_register(self): | ||||
|         plt = pytest.importorskip("matplotlib.pyplot") | ||||
|         s = Series(range(12), index=date_range("2017", periods=12)) | ||||
|         # Set to the "warn" state, in case this isn't the first test run | ||||
|         with tm.assert_produces_warning(None) as w: | ||||
|             s.plot() | ||||
|  | ||||
|         try: | ||||
|             assert len(w) == 0 | ||||
|         finally: | ||||
|             plt.close() | ||||
|  | ||||
|     def test_matplotlib_formatters(self): | ||||
|         units = pytest.importorskip("matplotlib.units") | ||||
|  | ||||
|         # Can't make any assertion about the start state. | ||||
|         # We we check that toggling converters off removes it, and toggling it | ||||
|         # on restores it. | ||||
|  | ||||
|         with cf.option_context("plotting.matplotlib.register_converters", True): | ||||
|             with cf.option_context("plotting.matplotlib.register_converters", False): | ||||
|                 assert Timestamp not in units.registry | ||||
|             assert Timestamp in units.registry | ||||
|  | ||||
|     def test_option_no_warning(self): | ||||
|         pytest.importorskip("matplotlib.pyplot") | ||||
|         ctx = cf.option_context("plotting.matplotlib.register_converters", False) | ||||
|         plt = pytest.importorskip("matplotlib.pyplot") | ||||
|         s = Series(range(12), index=date_range("2017", periods=12)) | ||||
|         _, ax = plt.subplots() | ||||
|  | ||||
|         # Test without registering first, no warning | ||||
|         with ctx: | ||||
|             ax.plot(s.index, s.values) | ||||
|  | ||||
|         # Now test with registering | ||||
|         register_matplotlib_converters() | ||||
|         with ctx: | ||||
|             ax.plot(s.index, s.values) | ||||
|         plt.close() | ||||
|  | ||||
|     def test_registry_resets(self): | ||||
|         units = pytest.importorskip("matplotlib.units") | ||||
|         dates = pytest.importorskip("matplotlib.dates") | ||||
|  | ||||
|         # make a copy, to reset to | ||||
|         original = dict(units.registry) | ||||
|  | ||||
|         try: | ||||
|             # get to a known state | ||||
|             units.registry.clear() | ||||
|             date_converter = dates.DateConverter() | ||||
|             units.registry[datetime] = date_converter | ||||
|             units.registry[date] = date_converter | ||||
|  | ||||
|             register_matplotlib_converters() | ||||
|             assert units.registry[date] is not date_converter | ||||
|             deregister_matplotlib_converters() | ||||
|             assert units.registry[date] is date_converter | ||||
|  | ||||
|         finally: | ||||
|             # restore original stater | ||||
|             units.registry.clear() | ||||
|             for k, v in original.items(): | ||||
|                 units.registry[k] = v | ||||
|  | ||||
|  | ||||
| class TestDateTimeConverter: | ||||
|     @pytest.fixture | ||||
|     def dtc(self): | ||||
|         return converter.DatetimeConverter() | ||||
|  | ||||
|     def test_convert_accepts_unicode(self, dtc): | ||||
|         r1 = dtc.convert("2000-01-01 12:22", None, None) | ||||
|         r2 = dtc.convert("2000-01-01 12:22", None, None) | ||||
|         assert r1 == r2, "DatetimeConverter.convert should accept unicode" | ||||
|  | ||||
|     def test_conversion(self, dtc): | ||||
|         rs = dtc.convert(["2012-1-1"], None, None)[0] | ||||
|         xp = dates.date2num(datetime(2012, 1, 1)) | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = dtc.convert("2012-1-1", None, None) | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = dtc.convert(date(2012, 1, 1), None, None) | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = dtc.convert("2012-1-1", None, None) | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = dtc.convert(Timestamp("2012-1-1"), None, None) | ||||
|         assert rs == xp | ||||
|  | ||||
|         # also testing datetime64 dtype (GH8614) | ||||
|         rs = dtc.convert("2012-01-01", None, None) | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = dtc.convert("2012-01-01 00:00:00+0000", None, None) | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = dtc.convert( | ||||
|             np.array(["2012-01-01 00:00:00+0000", "2012-01-02 00:00:00+0000"]), | ||||
|             None, | ||||
|             None, | ||||
|         ) | ||||
|         assert rs[0] == xp | ||||
|  | ||||
|         # we have a tz-aware date (constructed to that when we turn to utc it | ||||
|         # is the same as our sample) | ||||
|         ts = Timestamp("2012-01-01").tz_localize("UTC").tz_convert("US/Eastern") | ||||
|         rs = dtc.convert(ts, None, None) | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = dtc.convert(ts.to_pydatetime(), None, None) | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = dtc.convert(Index([ts - Day(1), ts]), None, None) | ||||
|         assert rs[1] == xp | ||||
|  | ||||
|         rs = dtc.convert(Index([ts - Day(1), ts]).to_pydatetime(), None, None) | ||||
|         assert rs[1] == xp | ||||
|  | ||||
|     def test_conversion_float(self, dtc): | ||||
|         rtol = 0.5 * 10**-9 | ||||
|  | ||||
|         rs = dtc.convert(Timestamp("2012-1-1 01:02:03", tz="UTC"), None, None) | ||||
|         xp = converter.mdates.date2num(Timestamp("2012-1-1 01:02:03", tz="UTC")) | ||||
|         tm.assert_almost_equal(rs, xp, rtol=rtol) | ||||
|  | ||||
|         rs = dtc.convert( | ||||
|             Timestamp("2012-1-1 09:02:03", tz="Asia/Hong_Kong"), None, None | ||||
|         ) | ||||
|         tm.assert_almost_equal(rs, xp, rtol=rtol) | ||||
|  | ||||
|         rs = dtc.convert(datetime(2012, 1, 1, 1, 2, 3), None, None) | ||||
|         tm.assert_almost_equal(rs, xp, rtol=rtol) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "values", | ||||
|         [ | ||||
|             [date(1677, 1, 1), date(1677, 1, 2)], | ||||
|             [datetime(1677, 1, 1, 12), datetime(1677, 1, 2, 12)], | ||||
|         ], | ||||
|     ) | ||||
|     def test_conversion_outofbounds_datetime(self, dtc, values): | ||||
|         # 2579 | ||||
|         rs = dtc.convert(values, None, None) | ||||
|         xp = converter.mdates.date2num(values) | ||||
|         tm.assert_numpy_array_equal(rs, xp) | ||||
|         rs = dtc.convert(values[0], None, None) | ||||
|         xp = converter.mdates.date2num(values[0]) | ||||
|         assert rs == xp | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "time,format_expected", | ||||
|         [ | ||||
|             (0, "00:00"),  # time2num(datetime.time.min) | ||||
|             (86399.999999, "23:59:59.999999"),  # time2num(datetime.time.max) | ||||
|             (90000, "01:00"), | ||||
|             (3723, "01:02:03"), | ||||
|             (39723.2, "11:02:03.200"), | ||||
|         ], | ||||
|     ) | ||||
|     def test_time_formatter(self, time, format_expected): | ||||
|         # issue 18478 | ||||
|         result = converter.TimeFormatter(None)(time) | ||||
|         assert result == format_expected | ||||
|  | ||||
|     @pytest.mark.parametrize("freq", ("B", "ms", "s")) | ||||
|     def test_dateindex_conversion(self, freq, dtc): | ||||
|         rtol = 10**-9 | ||||
|         dateindex = date_range("2020-01-01", periods=10, freq=freq) | ||||
|         rs = dtc.convert(dateindex, None, None) | ||||
|         xp = converter.mdates.date2num(dateindex._mpl_repr()) | ||||
|         tm.assert_almost_equal(rs, xp, rtol=rtol) | ||||
|  | ||||
|     @pytest.mark.parametrize("offset", [Second(), Milli(), Micro(50)]) | ||||
|     def test_resolution(self, offset, dtc): | ||||
|         # Matplotlib's time representation using floats cannot distinguish | ||||
|         # intervals smaller than ~10 microsecond in the common range of years. | ||||
|         ts1 = Timestamp("2012-1-1") | ||||
|         ts2 = ts1 + offset | ||||
|         val1 = dtc.convert(ts1, None, None) | ||||
|         val2 = dtc.convert(ts2, None, None) | ||||
|         if not val1 < val2: | ||||
|             raise AssertionError(f"{val1} is not less than {val2}.") | ||||
|  | ||||
|     def test_convert_nested(self, dtc): | ||||
|         inner = [Timestamp("2017-01-01"), Timestamp("2017-01-02")] | ||||
|         data = [inner, inner] | ||||
|         result = dtc.convert(data, None, None) | ||||
|         expected = [dtc.convert(x, None, None) for x in data] | ||||
|         assert (np.array(result) == expected).all() | ||||
|  | ||||
|  | ||||
| class TestPeriodConverter: | ||||
|     @pytest.fixture | ||||
|     def pc(self): | ||||
|         return converter.PeriodConverter() | ||||
|  | ||||
|     @pytest.fixture | ||||
|     def axis(self): | ||||
|         class Axis: | ||||
|             pass | ||||
|  | ||||
|         axis = Axis() | ||||
|         axis.freq = "D" | ||||
|         return axis | ||||
|  | ||||
|     def test_convert_accepts_unicode(self, pc, axis): | ||||
|         r1 = pc.convert("2012-1-1", None, axis) | ||||
|         r2 = pc.convert("2012-1-1", None, axis) | ||||
|         assert r1 == r2 | ||||
|  | ||||
|     def test_conversion(self, pc, axis): | ||||
|         rs = pc.convert(["2012-1-1"], None, axis)[0] | ||||
|         xp = Period("2012-1-1").ordinal | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = pc.convert("2012-1-1", None, axis) | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = pc.convert([date(2012, 1, 1)], None, axis)[0] | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = pc.convert(date(2012, 1, 1), None, axis) | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = pc.convert([Timestamp("2012-1-1")], None, axis)[0] | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = pc.convert(Timestamp("2012-1-1"), None, axis) | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = pc.convert("2012-01-01", None, axis) | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = pc.convert("2012-01-01 00:00:00+0000", None, axis) | ||||
|         assert rs == xp | ||||
|  | ||||
|         rs = pc.convert( | ||||
|             np.array( | ||||
|                 ["2012-01-01 00:00:00", "2012-01-02 00:00:00"], | ||||
|                 dtype="datetime64[ns]", | ||||
|             ), | ||||
|             None, | ||||
|             axis, | ||||
|         ) | ||||
|         assert rs[0] == xp | ||||
|  | ||||
|     def test_integer_passthrough(self, pc, axis): | ||||
|         # GH9012 | ||||
|         rs = pc.convert([0, 1], None, axis) | ||||
|         xp = [0, 1] | ||||
|         assert rs == xp | ||||
|  | ||||
|     def test_convert_nested(self, pc, axis): | ||||
|         data = ["2012-1-1", "2012-1-2"] | ||||
|         r1 = pc.convert([data, data], None, axis) | ||||
|         r2 = [pc.convert(data, None, axis) for _ in range(2)] | ||||
|         assert r1 == r2 | ||||
|  | ||||
|  | ||||
| class TestTimeDeltaConverter: | ||||
|     """Test timedelta converter""" | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "x, decimal, format_expected", | ||||
|         [ | ||||
|             (0.0, 0, "00:00:00"), | ||||
|             (3972320000000, 1, "01:06:12.3"), | ||||
|             (713233432000000, 2, "8 days 06:07:13.43"), | ||||
|             (32423432000000, 4, "09:00:23.4320"), | ||||
|         ], | ||||
|     ) | ||||
|     def test_format_timedelta_ticks(self, x, decimal, format_expected): | ||||
|         tdc = converter.TimeSeries_TimedeltaFormatter | ||||
|         result = tdc.format_timedelta_ticks(x, pos=None, n_decimals=decimal) | ||||
|         assert result == format_expected | ||||
|  | ||||
|     @pytest.mark.parametrize("view_interval", [(1, 2), (2, 1)]) | ||||
|     def test_call_w_different_view_intervals(self, view_interval, monkeypatch): | ||||
|         # previously broke on reversed xlmits; see GH37454 | ||||
|         class mock_axis: | ||||
|             def get_view_interval(self): | ||||
|                 return view_interval | ||||
|  | ||||
|         tdc = converter.TimeSeries_TimedeltaFormatter() | ||||
|         monkeypatch.setattr(tdc, "axis", mock_axis()) | ||||
|         tdc(0.0, 0) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize("year_span", [11.25, 30, 80, 150, 400, 800, 1500, 2500, 3500]) | ||||
| # The range is limited to 11.25 at the bottom by if statements in | ||||
| # the _quarterly_finder() function | ||||
| def test_quarterly_finder(year_span): | ||||
|     vmin = -1000 | ||||
|     vmax = vmin + year_span * 4 | ||||
|     span = vmax - vmin + 1 | ||||
|     if span < 45: | ||||
|         pytest.skip("the quarterly finder is only invoked if the span is >= 45") | ||||
|     nyears = span / 4 | ||||
|     (min_anndef, maj_anndef) = converter._get_default_annual_spacing(nyears) | ||||
|     result = converter._quarterly_finder(vmin, vmax, to_offset("QE")) | ||||
|     quarters = PeriodIndex( | ||||
|         arrays.PeriodArray(np.array([x[0] for x in result]), dtype="period[Q]") | ||||
|     ) | ||||
|     majors = np.array([x[1] for x in result]) | ||||
|     minors = np.array([x[2] for x in result]) | ||||
|     major_quarters = quarters[majors] | ||||
|     minor_quarters = quarters[minors] | ||||
|     check_major_years = major_quarters.year % maj_anndef == 0 | ||||
|     check_minor_years = minor_quarters.year % min_anndef == 0 | ||||
|     check_major_quarters = major_quarters.quarter == 1 | ||||
|     check_minor_quarters = minor_quarters.quarter == 1 | ||||
|     assert np.all(check_major_years) | ||||
|     assert np.all(check_minor_years) | ||||
|     assert np.all(check_major_quarters) | ||||
|     assert np.all(check_minor_quarters) | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @ -0,0 +1,155 @@ | ||||
| """ Test cases for GroupBy.plot """ | ||||
|  | ||||
|  | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Index, | ||||
|     Series, | ||||
| ) | ||||
| from pandas.tests.plotting.common import ( | ||||
|     _check_axes_shape, | ||||
|     _check_legend_labels, | ||||
| ) | ||||
|  | ||||
| pytest.importorskip("matplotlib") | ||||
|  | ||||
|  | ||||
| class TestDataFrameGroupByPlots: | ||||
|     def test_series_groupby_plotting_nominally_works(self): | ||||
|         n = 10 | ||||
|         weight = Series(np.random.default_rng(2).normal(166, 20, size=n)) | ||||
|         gender = np.random.default_rng(2).choice(["male", "female"], size=n) | ||||
|  | ||||
|         weight.groupby(gender).plot() | ||||
|  | ||||
|     def test_series_groupby_plotting_nominally_works_hist(self): | ||||
|         n = 10 | ||||
|         height = Series(np.random.default_rng(2).normal(60, 10, size=n)) | ||||
|         gender = np.random.default_rng(2).choice(["male", "female"], size=n) | ||||
|         height.groupby(gender).hist() | ||||
|  | ||||
|     def test_series_groupby_plotting_nominally_works_alpha(self): | ||||
|         n = 10 | ||||
|         height = Series(np.random.default_rng(2).normal(60, 10, size=n)) | ||||
|         gender = np.random.default_rng(2).choice(["male", "female"], size=n) | ||||
|         # Regression test for GH8733 | ||||
|         height.groupby(gender).plot(alpha=0.5) | ||||
|  | ||||
|     def test_plotting_with_float_index_works(self): | ||||
|         # GH 7025 | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "def": [1, 1, 1, 2, 2, 2, 3, 3, 3], | ||||
|                 "val": np.random.default_rng(2).standard_normal(9), | ||||
|             }, | ||||
|             index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0], | ||||
|         ) | ||||
|  | ||||
|         df.groupby("def")["val"].plot() | ||||
|  | ||||
|     def test_plotting_with_float_index_works_apply(self): | ||||
|         # GH 7025 | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "def": [1, 1, 1, 2, 2, 2, 3, 3, 3], | ||||
|                 "val": np.random.default_rng(2).standard_normal(9), | ||||
|             }, | ||||
|             index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0], | ||||
|         ) | ||||
|         df.groupby("def")["val"].apply(lambda x: x.plot()) | ||||
|  | ||||
|     def test_hist_single_row(self): | ||||
|         # GH10214 | ||||
|         bins = np.arange(80, 100 + 2, 1) | ||||
|         df = DataFrame({"Name": ["AAA", "BBB"], "ByCol": [1, 2], "Mark": [85, 89]}) | ||||
|         df["Mark"].hist(by=df["ByCol"], bins=bins) | ||||
|  | ||||
|     def test_hist_single_row_single_bycol(self): | ||||
|         # GH10214 | ||||
|         bins = np.arange(80, 100 + 2, 1) | ||||
|         df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]}) | ||||
|         df["Mark"].hist(by=df["ByCol"], bins=bins) | ||||
|  | ||||
|     def test_plot_submethod_works(self): | ||||
|         df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) | ||||
|         df.groupby("z").plot.scatter("x", "y") | ||||
|  | ||||
|     def test_plot_submethod_works_line(self): | ||||
|         df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) | ||||
|         df.groupby("z")["x"].plot.line() | ||||
|  | ||||
|     def test_plot_kwargs(self): | ||||
|         df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) | ||||
|  | ||||
|         res = df.groupby("z").plot(kind="scatter", x="x", y="y") | ||||
|         # check that a scatter plot is effectively plotted: the axes should | ||||
|         # contain a PathCollection from the scatter plot (GH11805) | ||||
|         assert len(res["a"].collections) == 1 | ||||
|  | ||||
|     def test_plot_kwargs_scatter(self): | ||||
|         df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) | ||||
|         res = df.groupby("z").plot.scatter(x="x", y="y") | ||||
|         assert len(res["a"].collections) == 1 | ||||
|  | ||||
|     @pytest.mark.parametrize("column, expected_axes_num", [(None, 2), ("b", 1)]) | ||||
|     def test_groupby_hist_frame_with_legend(self, column, expected_axes_num): | ||||
|         # GH 6279 - DataFrameGroupBy histogram can have a legend | ||||
|         expected_layout = (1, expected_axes_num) | ||||
|         expected_labels = column or [["a"], ["b"]] | ||||
|  | ||||
|         index = Index(15 * ["1"] + 15 * ["2"], name="c") | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 2)), | ||||
|             index=index, | ||||
|             columns=["a", "b"], | ||||
|         ) | ||||
|         g = df.groupby("c") | ||||
|  | ||||
|         for axes in g.hist(legend=True, column=column): | ||||
|             _check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout) | ||||
|             for ax, expected_label in zip(axes[0], expected_labels): | ||||
|                 _check_legend_labels(ax, expected_label) | ||||
|  | ||||
|     @pytest.mark.parametrize("column", [None, "b"]) | ||||
|     def test_groupby_hist_frame_with_legend_raises(self, column): | ||||
|         # GH 6279 - DataFrameGroupBy histogram with legend and label raises | ||||
|         index = Index(15 * ["1"] + 15 * ["2"], name="c") | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 2)), | ||||
|             index=index, | ||||
|             columns=["a", "b"], | ||||
|         ) | ||||
|         g = df.groupby("c") | ||||
|  | ||||
|         with pytest.raises(ValueError, match="Cannot use both legend and label"): | ||||
|             g.hist(legend=True, column=column, label="d") | ||||
|  | ||||
|     def test_groupby_hist_series_with_legend(self): | ||||
|         # GH 6279 - SeriesGroupBy histogram can have a legend | ||||
|         index = Index(15 * ["1"] + 15 * ["2"], name="c") | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 2)), | ||||
|             index=index, | ||||
|             columns=["a", "b"], | ||||
|         ) | ||||
|         g = df.groupby("c") | ||||
|  | ||||
|         for ax in g["a"].hist(legend=True): | ||||
|             _check_axes_shape(ax, axes_num=1, layout=(1, 1)) | ||||
|             _check_legend_labels(ax, ["1", "2"]) | ||||
|  | ||||
|     def test_groupby_hist_series_with_legend_raises(self): | ||||
|         # GH 6279 - SeriesGroupBy histogram with legend and label raises | ||||
|         index = Index(15 * ["1"] + 15 * ["2"], name="c") | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 2)), | ||||
|             index=index, | ||||
|             columns=["a", "b"], | ||||
|         ) | ||||
|         g = df.groupby("c") | ||||
|  | ||||
|         with pytest.raises(ValueError, match="Cannot use both legend and label"): | ||||
|             g.hist(legend=True, label="d") | ||||
| @ -0,0 +1,971 @@ | ||||
| """ Test cases for .hist method """ | ||||
| import re | ||||
|  | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Index, | ||||
|     Series, | ||||
|     date_range, | ||||
|     to_datetime, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
| from pandas.tests.plotting.common import ( | ||||
|     _check_ax_scales, | ||||
|     _check_axes_shape, | ||||
|     _check_colors, | ||||
|     _check_legend_labels, | ||||
|     _check_patches_all_filled, | ||||
|     _check_plot_works, | ||||
|     _check_text_labels, | ||||
|     _check_ticks_props, | ||||
|     get_x_axis, | ||||
|     get_y_axis, | ||||
| ) | ||||
|  | ||||
| mpl = pytest.importorskip("matplotlib") | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def ts(): | ||||
|     return Series( | ||||
|         np.arange(30, dtype=np.float64), | ||||
|         index=date_range("2020-01-01", periods=30, freq="B"), | ||||
|         name="ts", | ||||
|     ) | ||||
|  | ||||
|  | ||||
| class TestSeriesPlots: | ||||
|     @pytest.mark.parametrize("kwargs", [{}, {"grid": False}, {"figsize": (8, 10)}]) | ||||
|     def test_hist_legacy_kwargs(self, ts, kwargs): | ||||
|         _check_plot_works(ts.hist, **kwargs) | ||||
|  | ||||
|     @pytest.mark.parametrize("kwargs", [{}, {"bins": 5}]) | ||||
|     def test_hist_legacy_kwargs_warning(self, ts, kwargs): | ||||
|         # _check_plot_works adds an ax so catch warning. see GH #13188 | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             _check_plot_works(ts.hist, by=ts.index.month, **kwargs) | ||||
|  | ||||
|     def test_hist_legacy_ax(self, ts): | ||||
|         fig, ax = mpl.pyplot.subplots(1, 1) | ||||
|         _check_plot_works(ts.hist, ax=ax, default_axes=True) | ||||
|  | ||||
|     def test_hist_legacy_ax_and_fig(self, ts): | ||||
|         fig, ax = mpl.pyplot.subplots(1, 1) | ||||
|         _check_plot_works(ts.hist, ax=ax, figure=fig, default_axes=True) | ||||
|  | ||||
|     def test_hist_legacy_fig(self, ts): | ||||
|         fig, _ = mpl.pyplot.subplots(1, 1) | ||||
|         _check_plot_works(ts.hist, figure=fig, default_axes=True) | ||||
|  | ||||
|     def test_hist_legacy_multi_ax(self, ts): | ||||
|         fig, (ax1, ax2) = mpl.pyplot.subplots(1, 2) | ||||
|         _check_plot_works(ts.hist, figure=fig, ax=ax1, default_axes=True) | ||||
|         _check_plot_works(ts.hist, figure=fig, ax=ax2, default_axes=True) | ||||
|  | ||||
|     def test_hist_legacy_by_fig_error(self, ts): | ||||
|         fig, _ = mpl.pyplot.subplots(1, 1) | ||||
|         msg = ( | ||||
|             "Cannot pass 'figure' when using the 'by' argument, since a new 'Figure' " | ||||
|             "instance will be created" | ||||
|         ) | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             ts.hist(by=ts.index, figure=fig) | ||||
|  | ||||
|     def test_hist_bins_legacy(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((10, 2))) | ||||
|         ax = df.hist(bins=2)[0][0] | ||||
|         assert len(ax.patches) == 2 | ||||
|  | ||||
|     def test_hist_layout(self, hist_df): | ||||
|         df = hist_df | ||||
|         msg = "The 'layout' keyword is not supported when 'by' is None" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.height.hist(layout=(1, 1)) | ||||
|  | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.height.hist(layout=[1, 1]) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "by, layout, axes_num, res_layout", | ||||
|         [ | ||||
|             ["gender", (2, 1), 2, (2, 1)], | ||||
|             ["gender", (3, -1), 2, (3, 1)], | ||||
|             ["category", (4, 1), 4, (4, 1)], | ||||
|             ["category", (2, -1), 4, (2, 2)], | ||||
|             ["category", (3, -1), 4, (3, 2)], | ||||
|             ["category", (-1, 4), 4, (1, 4)], | ||||
|             ["classroom", (2, 2), 3, (2, 2)], | ||||
|         ], | ||||
|     ) | ||||
|     def test_hist_layout_with_by(self, hist_df, by, layout, axes_num, res_layout): | ||||
|         df = hist_df | ||||
|  | ||||
|         # _check_plot_works adds an `ax` kwarg to the method call | ||||
|         # so we get a warning about an axis being cleared, even | ||||
|         # though we don't explicing pass one, see GH #13188 | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             axes = _check_plot_works(df.height.hist, by=getattr(df, by), layout=layout) | ||||
|         _check_axes_shape(axes, axes_num=axes_num, layout=res_layout) | ||||
|  | ||||
|     def test_hist_layout_with_by_shape(self, hist_df): | ||||
|         df = hist_df | ||||
|  | ||||
|         axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7)) | ||||
|         _check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 7)) | ||||
|  | ||||
|     def test_hist_no_overlap(self): | ||||
|         from matplotlib.pyplot import ( | ||||
|             gcf, | ||||
|             subplot, | ||||
|         ) | ||||
|  | ||||
|         x = Series(np.random.default_rng(2).standard_normal(2)) | ||||
|         y = Series(np.random.default_rng(2).standard_normal(2)) | ||||
|         subplot(121) | ||||
|         x.hist() | ||||
|         subplot(122) | ||||
|         y.hist() | ||||
|         fig = gcf() | ||||
|         axes = fig.axes | ||||
|         assert len(axes) == 2 | ||||
|  | ||||
|     def test_hist_by_no_extra_plots(self, hist_df): | ||||
|         df = hist_df | ||||
|         df.height.hist(by=df.gender) | ||||
|         assert len(mpl.pyplot.get_fignums()) == 1 | ||||
|  | ||||
|     def test_plot_fails_when_ax_differs_from_figure(self, ts): | ||||
|         from pylab import figure | ||||
|  | ||||
|         fig1 = figure() | ||||
|         fig2 = figure() | ||||
|         ax1 = fig1.add_subplot(111) | ||||
|         msg = "passed axis not bound to passed figure" | ||||
|         with pytest.raises(AssertionError, match=msg): | ||||
|             ts.hist(ax=ax1, figure=fig2) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "histtype, expected", | ||||
|         [ | ||||
|             ("bar", True), | ||||
|             ("barstacked", True), | ||||
|             ("step", False), | ||||
|             ("stepfilled", True), | ||||
|         ], | ||||
|     ) | ||||
|     def test_histtype_argument(self, histtype, expected): | ||||
|         # GH23992 Verify functioning of histtype argument | ||||
|         ser = Series(np.random.default_rng(2).integers(1, 10)) | ||||
|         ax = ser.hist(histtype=histtype) | ||||
|         _check_patches_all_filled(ax, filled=expected) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "by, expected_axes_num, expected_layout", [(None, 1, (1, 1)), ("b", 2, (1, 2))] | ||||
|     ) | ||||
|     def test_hist_with_legend(self, by, expected_axes_num, expected_layout): | ||||
|         # GH 6279 - Series histogram can have a legend | ||||
|         index = 15 * ["1"] + 15 * ["2"] | ||||
|         s = Series(np.random.default_rng(2).standard_normal(30), index=index, name="a") | ||||
|         s.index.name = "b" | ||||
|  | ||||
|         # Use default_axes=True when plotting method generate subplots itself | ||||
|         axes = _check_plot_works(s.hist, default_axes=True, legend=True, by=by) | ||||
|         _check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout) | ||||
|         _check_legend_labels(axes, "a") | ||||
|  | ||||
|     @pytest.mark.parametrize("by", [None, "b"]) | ||||
|     def test_hist_with_legend_raises(self, by): | ||||
|         # GH 6279 - Series histogram with legend and label raises | ||||
|         index = 15 * ["1"] + 15 * ["2"] | ||||
|         s = Series(np.random.default_rng(2).standard_normal(30), index=index, name="a") | ||||
|         s.index.name = "b" | ||||
|  | ||||
|         with pytest.raises(ValueError, match="Cannot use both legend and label"): | ||||
|             s.hist(legend=True, by=by, label="c") | ||||
|  | ||||
|     def test_hist_kwargs(self, ts): | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ts.plot.hist(bins=5, ax=ax) | ||||
|         assert len(ax.patches) == 5 | ||||
|         _check_text_labels(ax.yaxis.get_label(), "Frequency") | ||||
|  | ||||
|     def test_hist_kwargs_horizontal(self, ts): | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ts.plot.hist(bins=5, ax=ax) | ||||
|         ax = ts.plot.hist(orientation="horizontal", ax=ax) | ||||
|         _check_text_labels(ax.xaxis.get_label(), "Frequency") | ||||
|  | ||||
|     def test_hist_kwargs_align(self, ts): | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ts.plot.hist(bins=5, ax=ax) | ||||
|         ax = ts.plot.hist(align="left", stacked=True, ax=ax) | ||||
|  | ||||
|     @pytest.mark.xfail(reason="Api changed in 3.6.0") | ||||
|     def test_hist_kde(self, ts): | ||||
|         pytest.importorskip("scipy") | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ts.plot.hist(logy=True, ax=ax) | ||||
|         _check_ax_scales(ax, yaxis="log") | ||||
|         xlabels = ax.get_xticklabels() | ||||
|         # ticks are values, thus ticklabels are blank | ||||
|         _check_text_labels(xlabels, [""] * len(xlabels)) | ||||
|         ylabels = ax.get_yticklabels() | ||||
|         _check_text_labels(ylabels, [""] * len(ylabels)) | ||||
|  | ||||
|     def test_hist_kde_plot_works(self, ts): | ||||
|         pytest.importorskip("scipy") | ||||
|         _check_plot_works(ts.plot.kde) | ||||
|  | ||||
|     def test_hist_kde_density_works(self, ts): | ||||
|         pytest.importorskip("scipy") | ||||
|         _check_plot_works(ts.plot.density) | ||||
|  | ||||
|     @pytest.mark.xfail(reason="Api changed in 3.6.0") | ||||
|     def test_hist_kde_logy(self, ts): | ||||
|         pytest.importorskip("scipy") | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ts.plot.kde(logy=True, ax=ax) | ||||
|         _check_ax_scales(ax, yaxis="log") | ||||
|         xlabels = ax.get_xticklabels() | ||||
|         _check_text_labels(xlabels, [""] * len(xlabels)) | ||||
|         ylabels = ax.get_yticklabels() | ||||
|         _check_text_labels(ylabels, [""] * len(ylabels)) | ||||
|  | ||||
|     def test_hist_kde_color_bins(self, ts): | ||||
|         pytest.importorskip("scipy") | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ts.plot.hist(logy=True, bins=10, color="b", ax=ax) | ||||
|         _check_ax_scales(ax, yaxis="log") | ||||
|         assert len(ax.patches) == 10 | ||||
|         _check_colors(ax.patches, facecolors=["b"] * 10) | ||||
|  | ||||
|     def test_hist_kde_color(self, ts): | ||||
|         pytest.importorskip("scipy") | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ts.plot.kde(logy=True, color="r", ax=ax) | ||||
|         _check_ax_scales(ax, yaxis="log") | ||||
|         lines = ax.get_lines() | ||||
|         assert len(lines) == 1 | ||||
|         _check_colors(lines, ["r"]) | ||||
|  | ||||
|  | ||||
| class TestDataFramePlots: | ||||
|     @pytest.mark.slow | ||||
|     def test_hist_df_legacy(self, hist_df): | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             _check_plot_works(hist_df.hist) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_hist_df_legacy_layout(self): | ||||
|         # make sure layout is handled | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((10, 2))) | ||||
|         df[2] = to_datetime( | ||||
|             np.random.default_rng(2).integers( | ||||
|                 812419200000000000, | ||||
|                 819331200000000000, | ||||
|                 size=10, | ||||
|                 dtype=np.int64, | ||||
|             ) | ||||
|         ) | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             axes = _check_plot_works(df.hist, grid=False) | ||||
|         _check_axes_shape(axes, axes_num=3, layout=(2, 2)) | ||||
|         assert not axes[1, 1].get_visible() | ||||
|  | ||||
|         _check_plot_works(df[[2]].hist) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_hist_df_legacy_layout2(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((10, 1))) | ||||
|         _check_plot_works(df.hist) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_hist_df_legacy_layout3(self): | ||||
|         # make sure layout is handled | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((10, 5))) | ||||
|         df[5] = to_datetime( | ||||
|             np.random.default_rng(2).integers( | ||||
|                 812419200000000000, | ||||
|                 819331200000000000, | ||||
|                 size=10, | ||||
|                 dtype=np.int64, | ||||
|             ) | ||||
|         ) | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             axes = _check_plot_works(df.hist, layout=(4, 2)) | ||||
|         _check_axes_shape(axes, axes_num=6, layout=(4, 2)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "kwargs", [{"sharex": True, "sharey": True}, {"figsize": (8, 10)}, {"bins": 5}] | ||||
|     ) | ||||
|     def test_hist_df_legacy_layout_kwargs(self, kwargs): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((10, 5))) | ||||
|         df[5] = to_datetime( | ||||
|             np.random.default_rng(2).integers( | ||||
|                 812419200000000000, | ||||
|                 819331200000000000, | ||||
|                 size=10, | ||||
|                 dtype=np.int64, | ||||
|             ) | ||||
|         ) | ||||
|         # make sure sharex, sharey is handled | ||||
|         # handle figsize arg | ||||
|         # check bins argument | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             _check_plot_works(df.hist, **kwargs) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_hist_df_legacy_layout_labelsize_rot(self, frame_or_series): | ||||
|         # make sure xlabelsize and xrot are handled | ||||
|         obj = frame_or_series(range(10)) | ||||
|         xf, yf = 20, 18 | ||||
|         xrot, yrot = 30, 40 | ||||
|         axes = obj.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot) | ||||
|         _check_ticks_props(axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_hist_df_legacy_rectangles(self): | ||||
|         from matplotlib.patches import Rectangle | ||||
|  | ||||
|         ser = Series(range(10)) | ||||
|         ax = ser.hist(cumulative=True, bins=4, density=True) | ||||
|         # height of last bin (index 5) must be 1.0 | ||||
|         rects = [x for x in ax.get_children() if isinstance(x, Rectangle)] | ||||
|         tm.assert_almost_equal(rects[-1].get_height(), 1.0) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_hist_df_legacy_scale(self): | ||||
|         ser = Series(range(10)) | ||||
|         ax = ser.hist(log=True) | ||||
|         # scale of y must be 'log' | ||||
|         _check_ax_scales(ax, yaxis="log") | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_hist_df_legacy_external_error(self): | ||||
|         ser = Series(range(10)) | ||||
|         # propagate attr exception from matplotlib.Axes.hist | ||||
|         with tm.external_error_raised(AttributeError): | ||||
|             ser.hist(foo="bar") | ||||
|  | ||||
|     def test_hist_non_numerical_or_datetime_raises(self): | ||||
|         # gh-10444, GH32590 | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "a": np.random.default_rng(2).random(10), | ||||
|                 "b": np.random.default_rng(2).integers(0, 10, 10), | ||||
|                 "c": to_datetime( | ||||
|                     np.random.default_rng(2).integers( | ||||
|                         1582800000000000000, 1583500000000000000, 10, dtype=np.int64 | ||||
|                     ) | ||||
|                 ), | ||||
|                 "d": to_datetime( | ||||
|                     np.random.default_rng(2).integers( | ||||
|                         1582800000000000000, 1583500000000000000, 10, dtype=np.int64 | ||||
|                     ), | ||||
|                     utc=True, | ||||
|                 ), | ||||
|             } | ||||
|         ) | ||||
|         df_o = df.astype(object) | ||||
|  | ||||
|         msg = "hist method requires numerical or datetime columns, nothing to plot." | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df_o.hist() | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "layout_test", | ||||
|         ( | ||||
|             {"layout": None, "expected_size": (2, 2)},  # default is 2x2 | ||||
|             {"layout": (2, 2), "expected_size": (2, 2)}, | ||||
|             {"layout": (4, 1), "expected_size": (4, 1)}, | ||||
|             {"layout": (1, 4), "expected_size": (1, 4)}, | ||||
|             {"layout": (3, 3), "expected_size": (3, 3)}, | ||||
|             {"layout": (-1, 4), "expected_size": (1, 4)}, | ||||
|             {"layout": (4, -1), "expected_size": (4, 1)}, | ||||
|             {"layout": (-1, 2), "expected_size": (2, 2)}, | ||||
|             {"layout": (2, -1), "expected_size": (2, 2)}, | ||||
|         ), | ||||
|     ) | ||||
|     def test_hist_layout(self, layout_test): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((10, 2))) | ||||
|         df[2] = to_datetime( | ||||
|             np.random.default_rng(2).integers( | ||||
|                 812419200000000000, | ||||
|                 819331200000000000, | ||||
|                 size=10, | ||||
|                 dtype=np.int64, | ||||
|             ) | ||||
|         ) | ||||
|         axes = df.hist(layout=layout_test["layout"]) | ||||
|         expected = layout_test["expected_size"] | ||||
|         _check_axes_shape(axes, axes_num=3, layout=expected) | ||||
|  | ||||
|     def test_hist_layout_error(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((10, 2))) | ||||
|         df[2] = to_datetime( | ||||
|             np.random.default_rng(2).integers( | ||||
|                 812419200000000000, | ||||
|                 819331200000000000, | ||||
|                 size=10, | ||||
|                 dtype=np.int64, | ||||
|             ) | ||||
|         ) | ||||
|         # layout too small for all 4 plots | ||||
|         msg = "Layout of 1x1 must be larger than required size 3" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.hist(layout=(1, 1)) | ||||
|  | ||||
|         # invalid format for layout | ||||
|         msg = re.escape("Layout must be a tuple of (rows, columns)") | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.hist(layout=(1,)) | ||||
|         msg = "At least one dimension of layout must be positive" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.hist(layout=(-1, -1)) | ||||
|  | ||||
|     # GH 9351 | ||||
|     def test_tight_layout(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((100, 2))) | ||||
|         df[2] = to_datetime( | ||||
|             np.random.default_rng(2).integers( | ||||
|                 812419200000000000, | ||||
|                 819331200000000000, | ||||
|                 size=100, | ||||
|                 dtype=np.int64, | ||||
|             ) | ||||
|         ) | ||||
|         # Use default_axes=True when plotting method generate subplots itself | ||||
|         _check_plot_works(df.hist, default_axes=True) | ||||
|         mpl.pyplot.tight_layout() | ||||
|  | ||||
|     def test_hist_subplot_xrot(self): | ||||
|         # GH 30288 | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "length": [1.5, 0.5, 1.2, 0.9, 3], | ||||
|                 "animal": ["pig", "rabbit", "pig", "pig", "rabbit"], | ||||
|             } | ||||
|         ) | ||||
|         # Use default_axes=True when plotting method generate subplots itself | ||||
|         axes = _check_plot_works( | ||||
|             df.hist, | ||||
|             default_axes=True, | ||||
|             column="length", | ||||
|             by="animal", | ||||
|             bins=5, | ||||
|             xrot=0, | ||||
|         ) | ||||
|         _check_ticks_props(axes, xrot=0) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "column, expected", | ||||
|         [ | ||||
|             (None, ["width", "length", "height"]), | ||||
|             (["length", "width", "height"], ["length", "width", "height"]), | ||||
|         ], | ||||
|     ) | ||||
|     def test_hist_column_order_unchanged(self, column, expected): | ||||
|         # GH29235 | ||||
|  | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "width": [0.7, 0.2, 0.15, 0.2, 1.1], | ||||
|                 "length": [1.5, 0.5, 1.2, 0.9, 3], | ||||
|                 "height": [3, 0.5, 3.4, 2, 1], | ||||
|             }, | ||||
|             index=["pig", "rabbit", "duck", "chicken", "horse"], | ||||
|         ) | ||||
|  | ||||
|         # Use default_axes=True when plotting method generate subplots itself | ||||
|         axes = _check_plot_works( | ||||
|             df.hist, | ||||
|             default_axes=True, | ||||
|             column=column, | ||||
|             layout=(1, 3), | ||||
|         ) | ||||
|         result = [axes[0, i].get_title() for i in range(3)] | ||||
|         assert result == expected | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "histtype, expected", | ||||
|         [ | ||||
|             ("bar", True), | ||||
|             ("barstacked", True), | ||||
|             ("step", False), | ||||
|             ("stepfilled", True), | ||||
|         ], | ||||
|     ) | ||||
|     def test_histtype_argument(self, histtype, expected): | ||||
|         # GH23992 Verify functioning of histtype argument | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).integers(1, 10, size=(100, 2)), columns=["a", "b"] | ||||
|         ) | ||||
|         ax = df.hist(histtype=histtype) | ||||
|         _check_patches_all_filled(ax, filled=expected) | ||||
|  | ||||
|     @pytest.mark.parametrize("by", [None, "c"]) | ||||
|     @pytest.mark.parametrize("column", [None, "b"]) | ||||
|     def test_hist_with_legend(self, by, column): | ||||
|         # GH 6279 - DataFrame histogram can have a legend | ||||
|         expected_axes_num = 1 if by is None and column is not None else 2 | ||||
|         expected_layout = (1, expected_axes_num) | ||||
|         expected_labels = column or ["a", "b"] | ||||
|         if by is not None: | ||||
|             expected_labels = [expected_labels] * 2 | ||||
|  | ||||
|         index = Index(15 * ["1"] + 15 * ["2"], name="c") | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 2)), | ||||
|             index=index, | ||||
|             columns=["a", "b"], | ||||
|         ) | ||||
|  | ||||
|         # Use default_axes=True when plotting method generate subplots itself | ||||
|         axes = _check_plot_works( | ||||
|             df.hist, | ||||
|             default_axes=True, | ||||
|             legend=True, | ||||
|             by=by, | ||||
|             column=column, | ||||
|         ) | ||||
|  | ||||
|         _check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout) | ||||
|         if by is None and column is None: | ||||
|             axes = axes[0] | ||||
|         for expected_label, ax in zip(expected_labels, axes): | ||||
|             _check_legend_labels(ax, expected_label) | ||||
|  | ||||
|     @pytest.mark.parametrize("by", [None, "c"]) | ||||
|     @pytest.mark.parametrize("column", [None, "b"]) | ||||
|     def test_hist_with_legend_raises(self, by, column): | ||||
|         # GH 6279 - DataFrame histogram with legend and label raises | ||||
|         index = Index(15 * ["1"] + 15 * ["2"], name="c") | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 2)), | ||||
|             index=index, | ||||
|             columns=["a", "b"], | ||||
|         ) | ||||
|  | ||||
|         with pytest.raises(ValueError, match="Cannot use both legend and label"): | ||||
|             df.hist(legend=True, by=by, column=column, label="d") | ||||
|  | ||||
|     def test_hist_df_kwargs(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((10, 2))) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = df.plot.hist(bins=5, ax=ax) | ||||
|         assert len(ax.patches) == 10 | ||||
|  | ||||
|     def test_hist_df_with_nonnumerics(self): | ||||
|         # GH 9853 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((10, 4)), | ||||
|             columns=["A", "B", "C", "D"], | ||||
|         ) | ||||
|         df["E"] = ["x", "y"] * 5 | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = df.plot.hist(bins=5, ax=ax) | ||||
|         assert len(ax.patches) == 20 | ||||
|  | ||||
|     def test_hist_df_with_nonnumerics_no_bins(self): | ||||
|         # GH 9853 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((10, 4)), | ||||
|             columns=["A", "B", "C", "D"], | ||||
|         ) | ||||
|         df["E"] = ["x", "y"] * 5 | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = df.plot.hist(ax=ax)  # bins=10 | ||||
|         assert len(ax.patches) == 40 | ||||
|  | ||||
|     def test_hist_secondary_legend(self): | ||||
|         # GH 9610 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 4)), columns=list("abcd") | ||||
|         ) | ||||
|  | ||||
|         # primary -> secondary | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = df["a"].plot.hist(legend=True, ax=ax) | ||||
|         df["b"].plot.hist(ax=ax, legend=True, secondary_y=True) | ||||
|         # both legends are drawn on left ax | ||||
|         # left and right axis must be visible | ||||
|         _check_legend_labels(ax, labels=["a", "b (right)"]) | ||||
|         assert ax.get_yaxis().get_visible() | ||||
|         assert ax.right_ax.get_yaxis().get_visible() | ||||
|  | ||||
|     def test_hist_secondary_secondary(self): | ||||
|         # GH 9610 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 4)), columns=list("abcd") | ||||
|         ) | ||||
|         # secondary -> secondary | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax) | ||||
|         df["b"].plot.hist(ax=ax, legend=True, secondary_y=True) | ||||
|         # both legends are draw on left ax | ||||
|         # left axis must be invisible, right axis must be visible | ||||
|         _check_legend_labels(ax.left_ax, labels=["a (right)", "b (right)"]) | ||||
|         assert not ax.left_ax.get_yaxis().get_visible() | ||||
|         assert ax.get_yaxis().get_visible() | ||||
|  | ||||
|     def test_hist_secondary_primary(self): | ||||
|         # GH 9610 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 4)), columns=list("abcd") | ||||
|         ) | ||||
|         # secondary -> primary | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = df["a"].plot.hist(legend=True, secondary_y=True, ax=ax) | ||||
|         # right axes is returned | ||||
|         df["b"].plot.hist(ax=ax, legend=True) | ||||
|         # both legends are draw on left ax | ||||
|         # left and right axis must be visible | ||||
|         _check_legend_labels(ax.left_ax, labels=["a (right)", "b"]) | ||||
|         assert ax.left_ax.get_yaxis().get_visible() | ||||
|         assert ax.get_yaxis().get_visible() | ||||
|  | ||||
|     def test_hist_with_nans_and_weights(self): | ||||
|         # GH 48884 | ||||
|         mpl_patches = pytest.importorskip("matplotlib.patches") | ||||
|         df = DataFrame( | ||||
|             [[np.nan, 0.2, 0.3], [0.4, np.nan, np.nan], [0.7, 0.8, 0.9]], | ||||
|             columns=list("abc"), | ||||
|         ) | ||||
|         weights = np.array([0.25, 0.3, 0.45]) | ||||
|         no_nan_df = DataFrame([[0.4, 0.2, 0.3], [0.7, 0.8, 0.9]], columns=list("abc")) | ||||
|         no_nan_weights = np.array([[0.3, 0.25, 0.25], [0.45, 0.45, 0.45]]) | ||||
|  | ||||
|         _, ax0 = mpl.pyplot.subplots() | ||||
|         df.plot.hist(ax=ax0, weights=weights) | ||||
|         rects = [x for x in ax0.get_children() if isinstance(x, mpl_patches.Rectangle)] | ||||
|         heights = [rect.get_height() for rect in rects] | ||||
|         _, ax1 = mpl.pyplot.subplots() | ||||
|         no_nan_df.plot.hist(ax=ax1, weights=no_nan_weights) | ||||
|         no_nan_rects = [ | ||||
|             x for x in ax1.get_children() if isinstance(x, mpl_patches.Rectangle) | ||||
|         ] | ||||
|         no_nan_heights = [rect.get_height() for rect in no_nan_rects] | ||||
|         assert all(h0 == h1 for h0, h1 in zip(heights, no_nan_heights)) | ||||
|  | ||||
|         idxerror_weights = np.array([[0.3, 0.25], [0.45, 0.45]]) | ||||
|  | ||||
|         msg = "weights must have the same shape as data, or be a single column" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             _, ax2 = mpl.pyplot.subplots() | ||||
|             no_nan_df.plot.hist(ax=ax2, weights=idxerror_weights) | ||||
|  | ||||
|  | ||||
| class TestDataFrameGroupByPlots: | ||||
|     def test_grouped_hist_legacy(self): | ||||
|         from pandas.plotting._matplotlib.hist import _grouped_hist | ||||
|  | ||||
|         rs = np.random.default_rng(10) | ||||
|         df = DataFrame(rs.standard_normal((10, 1)), columns=["A"]) | ||||
|         df["B"] = to_datetime( | ||||
|             rs.integers( | ||||
|                 812419200000000000, | ||||
|                 819331200000000000, | ||||
|                 size=10, | ||||
|                 dtype=np.int64, | ||||
|             ) | ||||
|         ) | ||||
|         df["C"] = rs.integers(0, 4, 10) | ||||
|         df["D"] = ["X"] * 10 | ||||
|  | ||||
|         axes = _grouped_hist(df.A, by=df.C) | ||||
|         _check_axes_shape(axes, axes_num=4, layout=(2, 2)) | ||||
|  | ||||
|     def test_grouped_hist_legacy_axes_shape_no_col(self): | ||||
|         rs = np.random.default_rng(10) | ||||
|         df = DataFrame(rs.standard_normal((10, 1)), columns=["A"]) | ||||
|         df["B"] = to_datetime( | ||||
|             rs.integers( | ||||
|                 812419200000000000, | ||||
|                 819331200000000000, | ||||
|                 size=10, | ||||
|                 dtype=np.int64, | ||||
|             ) | ||||
|         ) | ||||
|         df["C"] = rs.integers(0, 4, 10) | ||||
|         df["D"] = ["X"] * 10 | ||||
|         axes = df.hist(by=df.C) | ||||
|         _check_axes_shape(axes, axes_num=4, layout=(2, 2)) | ||||
|  | ||||
|     def test_grouped_hist_legacy_single_key(self): | ||||
|         rs = np.random.default_rng(2) | ||||
|         df = DataFrame(rs.standard_normal((10, 1)), columns=["A"]) | ||||
|         df["B"] = to_datetime( | ||||
|             rs.integers( | ||||
|                 812419200000000000, | ||||
|                 819331200000000000, | ||||
|                 size=10, | ||||
|                 dtype=np.int64, | ||||
|             ) | ||||
|         ) | ||||
|         df["C"] = rs.integers(0, 4, 10) | ||||
|         df["D"] = ["X"] * 10 | ||||
|         # group by a key with single value | ||||
|         axes = df.hist(by="D", rot=30) | ||||
|         _check_axes_shape(axes, axes_num=1, layout=(1, 1)) | ||||
|         _check_ticks_props(axes, xrot=30) | ||||
|  | ||||
|     def test_grouped_hist_legacy_grouped_hist_kwargs(self): | ||||
|         from matplotlib.patches import Rectangle | ||||
|  | ||||
|         from pandas.plotting._matplotlib.hist import _grouped_hist | ||||
|  | ||||
|         rs = np.random.default_rng(2) | ||||
|         df = DataFrame(rs.standard_normal((10, 1)), columns=["A"]) | ||||
|         df["B"] = to_datetime( | ||||
|             rs.integers( | ||||
|                 812419200000000000, | ||||
|                 819331200000000000, | ||||
|                 size=10, | ||||
|                 dtype=np.int64, | ||||
|             ) | ||||
|         ) | ||||
|         df["C"] = rs.integers(0, 4, 10) | ||||
|         # make sure kwargs to hist are handled | ||||
|         xf, yf = 20, 18 | ||||
|         xrot, yrot = 30, 40 | ||||
|  | ||||
|         axes = _grouped_hist( | ||||
|             df.A, | ||||
|             by=df.C, | ||||
|             cumulative=True, | ||||
|             bins=4, | ||||
|             xlabelsize=xf, | ||||
|             xrot=xrot, | ||||
|             ylabelsize=yf, | ||||
|             yrot=yrot, | ||||
|             density=True, | ||||
|         ) | ||||
|         # height of last bin (index 5) must be 1.0 | ||||
|         for ax in axes.ravel(): | ||||
|             rects = [x for x in ax.get_children() if isinstance(x, Rectangle)] | ||||
|             height = rects[-1].get_height() | ||||
|             tm.assert_almost_equal(height, 1.0) | ||||
|         _check_ticks_props(axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot) | ||||
|  | ||||
|     def test_grouped_hist_legacy_grouped_hist(self): | ||||
|         from pandas.plotting._matplotlib.hist import _grouped_hist | ||||
|  | ||||
|         rs = np.random.default_rng(2) | ||||
|         df = DataFrame(rs.standard_normal((10, 1)), columns=["A"]) | ||||
|         df["B"] = to_datetime( | ||||
|             rs.integers( | ||||
|                 812419200000000000, | ||||
|                 819331200000000000, | ||||
|                 size=10, | ||||
|                 dtype=np.int64, | ||||
|             ) | ||||
|         ) | ||||
|         df["C"] = rs.integers(0, 4, 10) | ||||
|         df["D"] = ["X"] * 10 | ||||
|         axes = _grouped_hist(df.A, by=df.C, log=True) | ||||
|         # scale of y must be 'log' | ||||
|         _check_ax_scales(axes, yaxis="log") | ||||
|  | ||||
|     def test_grouped_hist_legacy_external_err(self): | ||||
|         from pandas.plotting._matplotlib.hist import _grouped_hist | ||||
|  | ||||
|         rs = np.random.default_rng(2) | ||||
|         df = DataFrame(rs.standard_normal((10, 1)), columns=["A"]) | ||||
|         df["B"] = to_datetime( | ||||
|             rs.integers( | ||||
|                 812419200000000000, | ||||
|                 819331200000000000, | ||||
|                 size=10, | ||||
|                 dtype=np.int64, | ||||
|             ) | ||||
|         ) | ||||
|         df["C"] = rs.integers(0, 4, 10) | ||||
|         df["D"] = ["X"] * 10 | ||||
|         # propagate attr exception from matplotlib.Axes.hist | ||||
|         with tm.external_error_raised(AttributeError): | ||||
|             _grouped_hist(df.A, by=df.C, foo="bar") | ||||
|  | ||||
|     def test_grouped_hist_legacy_figsize_err(self): | ||||
|         rs = np.random.default_rng(2) | ||||
|         df = DataFrame(rs.standard_normal((10, 1)), columns=["A"]) | ||||
|         df["B"] = to_datetime( | ||||
|             rs.integers( | ||||
|                 812419200000000000, | ||||
|                 819331200000000000, | ||||
|                 size=10, | ||||
|                 dtype=np.int64, | ||||
|             ) | ||||
|         ) | ||||
|         df["C"] = rs.integers(0, 4, 10) | ||||
|         df["D"] = ["X"] * 10 | ||||
|         msg = "Specify figure size by tuple instead" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.hist(by="C", figsize="default") | ||||
|  | ||||
|     def test_grouped_hist_legacy2(self): | ||||
|         n = 10 | ||||
|         weight = Series(np.random.default_rng(2).normal(166, 20, size=n)) | ||||
|         height = Series(np.random.default_rng(2).normal(60, 10, size=n)) | ||||
|         gender_int = np.random.default_rng(2).choice([0, 1], size=n) | ||||
|         df_int = DataFrame({"height": height, "weight": weight, "gender": gender_int}) | ||||
|         gb = df_int.groupby("gender") | ||||
|         axes = gb.hist() | ||||
|         assert len(axes) == 2 | ||||
|         assert len(mpl.pyplot.get_fignums()) == 2 | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "msg, plot_col, by_col, layout", | ||||
|         [ | ||||
|             [ | ||||
|                 "Layout of 1x1 must be larger than required size 2", | ||||
|                 "weight", | ||||
|                 "gender", | ||||
|                 (1, 1), | ||||
|             ], | ||||
|             [ | ||||
|                 "Layout of 1x3 must be larger than required size 4", | ||||
|                 "height", | ||||
|                 "category", | ||||
|                 (1, 3), | ||||
|             ], | ||||
|             [ | ||||
|                 "At least one dimension of layout must be positive", | ||||
|                 "height", | ||||
|                 "category", | ||||
|                 (-1, -1), | ||||
|             ], | ||||
|         ], | ||||
|     ) | ||||
|     def test_grouped_hist_layout_error(self, hist_df, msg, plot_col, by_col, layout): | ||||
|         df = hist_df | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.hist(column=plot_col, by=getattr(df, by_col), layout=layout) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_grouped_hist_layout_warning(self, hist_df): | ||||
|         df = hist_df | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             axes = _check_plot_works( | ||||
|                 df.hist, column="height", by=df.gender, layout=(2, 1) | ||||
|             ) | ||||
|         _check_axes_shape(axes, axes_num=2, layout=(2, 1)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "layout, check_layout, figsize", | ||||
|         [[(4, 1), (4, 1), None], [(-1, 1), (4, 1), None], [(4, 2), (4, 2), (12, 8)]], | ||||
|     ) | ||||
|     def test_grouped_hist_layout_figsize(self, hist_df, layout, check_layout, figsize): | ||||
|         df = hist_df | ||||
|         axes = df.hist(column="height", by=df.category, layout=layout, figsize=figsize) | ||||
|         _check_axes_shape(axes, axes_num=4, layout=check_layout, figsize=figsize) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize("kwargs", [{}, {"column": "height", "layout": (2, 2)}]) | ||||
|     def test_grouped_hist_layout_by_warning(self, hist_df, kwargs): | ||||
|         df = hist_df | ||||
|         # GH 6769 | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             axes = _check_plot_works(df.hist, by="classroom", **kwargs) | ||||
|         _check_axes_shape(axes, axes_num=3, layout=(2, 2)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "kwargs, axes_num, layout", | ||||
|         [ | ||||
|             [{"by": "gender", "layout": (3, 5)}, 2, (3, 5)], | ||||
|             [{"column": ["height", "weight", "category"]}, 3, (2, 2)], | ||||
|         ], | ||||
|     ) | ||||
|     def test_grouped_hist_layout_axes(self, hist_df, kwargs, axes_num, layout): | ||||
|         df = hist_df | ||||
|         axes = df.hist(**kwargs) | ||||
|         _check_axes_shape(axes, axes_num=axes_num, layout=layout) | ||||
|  | ||||
|     def test_grouped_hist_multiple_axes(self, hist_df): | ||||
|         # GH 6970, GH 7069 | ||||
|         df = hist_df | ||||
|  | ||||
|         fig, axes = mpl.pyplot.subplots(2, 3) | ||||
|         returned = df.hist(column=["height", "weight", "category"], ax=axes[0]) | ||||
|         _check_axes_shape(returned, axes_num=3, layout=(1, 3)) | ||||
|         tm.assert_numpy_array_equal(returned, axes[0]) | ||||
|         assert returned[0].figure is fig | ||||
|  | ||||
|     def test_grouped_hist_multiple_axes_no_cols(self, hist_df): | ||||
|         # GH 6970, GH 7069 | ||||
|         df = hist_df | ||||
|  | ||||
|         fig, axes = mpl.pyplot.subplots(2, 3) | ||||
|         returned = df.hist(by="classroom", ax=axes[1]) | ||||
|         _check_axes_shape(returned, axes_num=3, layout=(1, 3)) | ||||
|         tm.assert_numpy_array_equal(returned, axes[1]) | ||||
|         assert returned[0].figure is fig | ||||
|  | ||||
|     def test_grouped_hist_multiple_axes_error(self, hist_df): | ||||
|         # GH 6970, GH 7069 | ||||
|         df = hist_df | ||||
|         fig, axes = mpl.pyplot.subplots(2, 3) | ||||
|         # pass different number of axes from required | ||||
|         msg = "The number of passed axes must be 1, the same as the output plot" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             axes = df.hist(column="height", ax=axes) | ||||
|  | ||||
|     def test_axis_share_x(self, hist_df): | ||||
|         df = hist_df | ||||
|         # GH4089 | ||||
|         ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True) | ||||
|  | ||||
|         # share x | ||||
|         assert get_x_axis(ax1).joined(ax1, ax2) | ||||
|         assert get_x_axis(ax2).joined(ax1, ax2) | ||||
|  | ||||
|         # don't share y | ||||
|         assert not get_y_axis(ax1).joined(ax1, ax2) | ||||
|         assert not get_y_axis(ax2).joined(ax1, ax2) | ||||
|  | ||||
|     def test_axis_share_y(self, hist_df): | ||||
|         df = hist_df | ||||
|         ax1, ax2 = df.hist(column="height", by=df.gender, sharey=True) | ||||
|  | ||||
|         # share y | ||||
|         assert get_y_axis(ax1).joined(ax1, ax2) | ||||
|         assert get_y_axis(ax2).joined(ax1, ax2) | ||||
|  | ||||
|         # don't share x | ||||
|         assert not get_x_axis(ax1).joined(ax1, ax2) | ||||
|         assert not get_x_axis(ax2).joined(ax1, ax2) | ||||
|  | ||||
|     def test_axis_share_xy(self, hist_df): | ||||
|         df = hist_df | ||||
|         ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True, sharey=True) | ||||
|  | ||||
|         # share both x and y | ||||
|         assert get_x_axis(ax1).joined(ax1, ax2) | ||||
|         assert get_x_axis(ax2).joined(ax1, ax2) | ||||
|  | ||||
|         assert get_y_axis(ax1).joined(ax1, ax2) | ||||
|         assert get_y_axis(ax2).joined(ax1, ax2) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "histtype, expected", | ||||
|         [ | ||||
|             ("bar", True), | ||||
|             ("barstacked", True), | ||||
|             ("step", False), | ||||
|             ("stepfilled", True), | ||||
|         ], | ||||
|     ) | ||||
|     def test_histtype_argument(self, histtype, expected): | ||||
|         # GH23992 Verify functioning of histtype argument | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).integers(1, 10, size=(10, 2)), columns=["a", "b"] | ||||
|         ) | ||||
|         ax = df.hist(by="a", histtype=histtype) | ||||
|         _check_patches_all_filled(ax, filled=expected) | ||||
							
								
								
									
										720
									
								
								lib/python3.11/site-packages/pandas/tests/plotting/test_misc.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										720
									
								
								lib/python3.11/site-packages/pandas/tests/plotting/test_misc.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,720 @@ | ||||
| """ Test cases for misc plot functions """ | ||||
| import os | ||||
|  | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| import pandas.util._test_decorators as td | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Index, | ||||
|     Series, | ||||
|     Timestamp, | ||||
|     date_range, | ||||
|     interval_range, | ||||
|     period_range, | ||||
|     plotting, | ||||
|     read_csv, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
| from pandas.tests.plotting.common import ( | ||||
|     _check_colors, | ||||
|     _check_legend_labels, | ||||
|     _check_plot_works, | ||||
|     _check_text_labels, | ||||
|     _check_ticks_props, | ||||
| ) | ||||
|  | ||||
| mpl = pytest.importorskip("matplotlib") | ||||
| plt = pytest.importorskip("matplotlib.pyplot") | ||||
| cm = pytest.importorskip("matplotlib.cm") | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def iris(datapath) -> DataFrame: | ||||
|     """ | ||||
|     The iris dataset as a DataFrame. | ||||
|     """ | ||||
|     return read_csv(datapath("io", "data", "csv", "iris.csv")) | ||||
|  | ||||
|  | ||||
| @td.skip_if_installed("matplotlib") | ||||
| def test_import_error_message(): | ||||
|     # GH-19810 | ||||
|     df = DataFrame({"A": [1, 2]}) | ||||
|  | ||||
|     with pytest.raises(ImportError, match="matplotlib is required for plotting"): | ||||
|         df.plot() | ||||
|  | ||||
|  | ||||
| def test_get_accessor_args(): | ||||
|     func = plotting._core.PlotAccessor._get_call_args | ||||
|  | ||||
|     msg = "Called plot accessor for type list, expected Series or DataFrame" | ||||
|     with pytest.raises(TypeError, match=msg): | ||||
|         func(backend_name="", data=[], args=[], kwargs={}) | ||||
|  | ||||
|     msg = "should not be called with positional arguments" | ||||
|     with pytest.raises(TypeError, match=msg): | ||||
|         func(backend_name="", data=Series(dtype=object), args=["line", None], kwargs={}) | ||||
|  | ||||
|     x, y, kind, kwargs = func( | ||||
|         backend_name="", | ||||
|         data=DataFrame(), | ||||
|         args=["x"], | ||||
|         kwargs={"y": "y", "kind": "bar", "grid": False}, | ||||
|     ) | ||||
|     assert x == "x" | ||||
|     assert y == "y" | ||||
|     assert kind == "bar" | ||||
|     assert kwargs == {"grid": False} | ||||
|  | ||||
|     x, y, kind, kwargs = func( | ||||
|         backend_name="pandas.plotting._matplotlib", | ||||
|         data=Series(dtype=object), | ||||
|         args=[], | ||||
|         kwargs={}, | ||||
|     ) | ||||
|     assert x is None | ||||
|     assert y is None | ||||
|     assert kind == "line" | ||||
|     assert len(kwargs) == 24 | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize("kind", plotting.PlotAccessor._all_kinds) | ||||
| @pytest.mark.parametrize( | ||||
|     "data", [DataFrame(np.arange(15).reshape(5, 3)), Series(range(5))] | ||||
| ) | ||||
| @pytest.mark.parametrize( | ||||
|     "index", | ||||
|     [ | ||||
|         Index(range(5)), | ||||
|         date_range("2020-01-01", periods=5), | ||||
|         period_range("2020-01-01", periods=5), | ||||
|     ], | ||||
| ) | ||||
| def test_savefig(kind, data, index): | ||||
|     fig, ax = plt.subplots() | ||||
|     data.index = index | ||||
|     kwargs = {} | ||||
|     if kind in ["hexbin", "scatter", "pie"]: | ||||
|         if isinstance(data, Series): | ||||
|             pytest.skip(f"{kind} not supported with Series") | ||||
|         kwargs = {"x": 0, "y": 1} | ||||
|     data.plot(kind=kind, ax=ax, **kwargs) | ||||
|     fig.savefig(os.devnull) | ||||
|  | ||||
|  | ||||
| class TestSeriesPlots: | ||||
|     def test_autocorrelation_plot(self): | ||||
|         from pandas.plotting import autocorrelation_plot | ||||
|  | ||||
|         ser = Series( | ||||
|             np.arange(10, dtype=np.float64), | ||||
|             index=date_range("2020-01-01", periods=10), | ||||
|             name="ts", | ||||
|         ) | ||||
|         # Ensure no UserWarning when making plot | ||||
|         with tm.assert_produces_warning(None): | ||||
|             _check_plot_works(autocorrelation_plot, series=ser) | ||||
|             _check_plot_works(autocorrelation_plot, series=ser.values) | ||||
|  | ||||
|             ax = autocorrelation_plot(ser, label="Test") | ||||
|         _check_legend_labels(ax, labels=["Test"]) | ||||
|  | ||||
|     @pytest.mark.parametrize("kwargs", [{}, {"lag": 5}]) | ||||
|     def test_lag_plot(self, kwargs): | ||||
|         from pandas.plotting import lag_plot | ||||
|  | ||||
|         ser = Series( | ||||
|             np.arange(10, dtype=np.float64), | ||||
|             index=date_range("2020-01-01", periods=10), | ||||
|             name="ts", | ||||
|         ) | ||||
|         _check_plot_works(lag_plot, series=ser, **kwargs) | ||||
|  | ||||
|     def test_bootstrap_plot(self): | ||||
|         from pandas.plotting import bootstrap_plot | ||||
|  | ||||
|         ser = Series( | ||||
|             np.arange(10, dtype=np.float64), | ||||
|             index=date_range("2020-01-01", periods=10), | ||||
|             name="ts", | ||||
|         ) | ||||
|         _check_plot_works(bootstrap_plot, series=ser, size=10) | ||||
|  | ||||
|  | ||||
| class TestDataFramePlots: | ||||
|     @pytest.mark.parametrize("pass_axis", [False, True]) | ||||
|     def test_scatter_matrix_axis(self, pass_axis): | ||||
|         pytest.importorskip("scipy") | ||||
|         scatter_matrix = plotting.scatter_matrix | ||||
|  | ||||
|         ax = None | ||||
|         if pass_axis: | ||||
|             _, ax = mpl.pyplot.subplots(3, 3) | ||||
|  | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((100, 3))) | ||||
|  | ||||
|         # we are plotting multiples on a sub-plot | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             axes = _check_plot_works( | ||||
|                 scatter_matrix, | ||||
|                 frame=df, | ||||
|                 range_padding=0.1, | ||||
|                 ax=ax, | ||||
|             ) | ||||
|         axes0_labels = axes[0][0].yaxis.get_majorticklabels() | ||||
|         # GH 5662 | ||||
|         expected = ["-2", "0", "2"] | ||||
|         _check_text_labels(axes0_labels, expected) | ||||
|         _check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0) | ||||
|  | ||||
|     @pytest.mark.parametrize("pass_axis", [False, True]) | ||||
|     def test_scatter_matrix_axis_smaller(self, pass_axis): | ||||
|         pytest.importorskip("scipy") | ||||
|         scatter_matrix = plotting.scatter_matrix | ||||
|  | ||||
|         ax = None | ||||
|         if pass_axis: | ||||
|             _, ax = mpl.pyplot.subplots(3, 3) | ||||
|  | ||||
|         df = DataFrame(np.random.default_rng(11).standard_normal((100, 3))) | ||||
|         df[0] = (df[0] - 2) / 3 | ||||
|  | ||||
|         # we are plotting multiples on a sub-plot | ||||
|         with tm.assert_produces_warning(UserWarning, check_stacklevel=False): | ||||
|             axes = _check_plot_works( | ||||
|                 scatter_matrix, | ||||
|                 frame=df, | ||||
|                 range_padding=0.1, | ||||
|                 ax=ax, | ||||
|             ) | ||||
|         axes0_labels = axes[0][0].yaxis.get_majorticklabels() | ||||
|         expected = ["-1.0", "-0.5", "0.0"] | ||||
|         _check_text_labels(axes0_labels, expected) | ||||
|         _check_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_andrews_curves_no_warning(self, iris): | ||||
|         from pandas.plotting import andrews_curves | ||||
|  | ||||
|         df = iris | ||||
|         # Ensure no UserWarning when making plot | ||||
|         with tm.assert_produces_warning(None): | ||||
|             _check_plot_works(andrews_curves, frame=df, class_column="Name") | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "linecolors", | ||||
|         [ | ||||
|             ("#556270", "#4ECDC4", "#C7F464"), | ||||
|             ["dodgerblue", "aquamarine", "seagreen"], | ||||
|         ], | ||||
|     ) | ||||
|     @pytest.mark.parametrize( | ||||
|         "df", | ||||
|         [ | ||||
|             "iris", | ||||
|             DataFrame( | ||||
|                 { | ||||
|                     "A": np.random.default_rng(2).standard_normal(10), | ||||
|                     "B": np.random.default_rng(2).standard_normal(10), | ||||
|                     "C": np.random.default_rng(2).standard_normal(10), | ||||
|                     "Name": ["A"] * 10, | ||||
|                 } | ||||
|             ), | ||||
|         ], | ||||
|     ) | ||||
|     def test_andrews_curves_linecolors(self, request, df, linecolors): | ||||
|         from pandas.plotting import andrews_curves | ||||
|  | ||||
|         if isinstance(df, str): | ||||
|             df = request.getfixturevalue(df) | ||||
|         ax = _check_plot_works( | ||||
|             andrews_curves, frame=df, class_column="Name", color=linecolors | ||||
|         ) | ||||
|         _check_colors( | ||||
|             ax.get_lines()[:10], linecolors=linecolors, mapping=df["Name"][:10] | ||||
|         ) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "df", | ||||
|         [ | ||||
|             "iris", | ||||
|             DataFrame( | ||||
|                 { | ||||
|                     "A": np.random.default_rng(2).standard_normal(10), | ||||
|                     "B": np.random.default_rng(2).standard_normal(10), | ||||
|                     "C": np.random.default_rng(2).standard_normal(10), | ||||
|                     "Name": ["A"] * 10, | ||||
|                 } | ||||
|             ), | ||||
|         ], | ||||
|     ) | ||||
|     def test_andrews_curves_cmap(self, request, df): | ||||
|         from pandas.plotting import andrews_curves | ||||
|  | ||||
|         if isinstance(df, str): | ||||
|             df = request.getfixturevalue(df) | ||||
|         cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())] | ||||
|         ax = _check_plot_works( | ||||
|             andrews_curves, frame=df, class_column="Name", color=cmaps | ||||
|         ) | ||||
|         _check_colors(ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_andrews_curves_handle(self): | ||||
|         from pandas.plotting import andrews_curves | ||||
|  | ||||
|         colors = ["b", "g", "r"] | ||||
|         df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors}) | ||||
|         ax = andrews_curves(df, "Name", color=colors) | ||||
|         handles, _ = ax.get_legend_handles_labels() | ||||
|         _check_colors(handles, linecolors=colors) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "color", | ||||
|         [("#556270", "#4ECDC4", "#C7F464"), ["dodgerblue", "aquamarine", "seagreen"]], | ||||
|     ) | ||||
|     def test_parallel_coordinates_colors(self, iris, color): | ||||
|         from pandas.plotting import parallel_coordinates | ||||
|  | ||||
|         df = iris | ||||
|  | ||||
|         ax = _check_plot_works( | ||||
|             parallel_coordinates, frame=df, class_column="Name", color=color | ||||
|         ) | ||||
|         _check_colors(ax.get_lines()[:10], linecolors=color, mapping=df["Name"][:10]) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_parallel_coordinates_cmap(self, iris): | ||||
|         from matplotlib import cm | ||||
|  | ||||
|         from pandas.plotting import parallel_coordinates | ||||
|  | ||||
|         df = iris | ||||
|  | ||||
|         ax = _check_plot_works( | ||||
|             parallel_coordinates, frame=df, class_column="Name", colormap=cm.jet | ||||
|         ) | ||||
|         cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())] | ||||
|         _check_colors(ax.get_lines()[:10], linecolors=cmaps, mapping=df["Name"][:10]) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_parallel_coordinates_line_diff(self, iris): | ||||
|         from pandas.plotting import parallel_coordinates | ||||
|  | ||||
|         df = iris | ||||
|  | ||||
|         ax = _check_plot_works(parallel_coordinates, frame=df, class_column="Name") | ||||
|         nlines = len(ax.get_lines()) | ||||
|         nxticks = len(ax.xaxis.get_ticklabels()) | ||||
|  | ||||
|         ax = _check_plot_works( | ||||
|             parallel_coordinates, frame=df, class_column="Name", axvlines=False | ||||
|         ) | ||||
|         assert len(ax.get_lines()) == (nlines - nxticks) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_parallel_coordinates_handles(self, iris): | ||||
|         from pandas.plotting import parallel_coordinates | ||||
|  | ||||
|         df = iris | ||||
|         colors = ["b", "g", "r"] | ||||
|         df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3], "C": [1, 2, 3], "Name": colors}) | ||||
|         ax = parallel_coordinates(df, "Name", color=colors) | ||||
|         handles, _ = ax.get_legend_handles_labels() | ||||
|         _check_colors(handles, linecolors=colors) | ||||
|  | ||||
|     # not sure if this is indicative of a problem | ||||
|     @pytest.mark.filterwarnings("ignore:Attempting to set:UserWarning") | ||||
|     def test_parallel_coordinates_with_sorted_labels(self): | ||||
|         """For #15908""" | ||||
|         from pandas.plotting import parallel_coordinates | ||||
|  | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "feat": list(range(30)), | ||||
|                 "class": [2 for _ in range(10)] | ||||
|                 + [3 for _ in range(10)] | ||||
|                 + [1 for _ in range(10)], | ||||
|             } | ||||
|         ) | ||||
|         ax = parallel_coordinates(df, "class", sort_labels=True) | ||||
|         polylines, labels = ax.get_legend_handles_labels() | ||||
|         color_label_tuples = zip( | ||||
|             [polyline.get_color() for polyline in polylines], labels | ||||
|         ) | ||||
|         ordered_color_label_tuples = sorted(color_label_tuples, key=lambda x: x[1]) | ||||
|         prev_next_tupels = zip( | ||||
|             list(ordered_color_label_tuples[0:-1]), list(ordered_color_label_tuples[1:]) | ||||
|         ) | ||||
|         for prev, nxt in prev_next_tupels: | ||||
|             # labels and colors are ordered strictly increasing | ||||
|             assert prev[1] < nxt[1] and prev[0] < nxt[0] | ||||
|  | ||||
|     def test_radviz_no_warning(self, iris): | ||||
|         from pandas.plotting import radviz | ||||
|  | ||||
|         df = iris | ||||
|         # Ensure no UserWarning when making plot | ||||
|         with tm.assert_produces_warning(None): | ||||
|             _check_plot_works(radviz, frame=df, class_column="Name") | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "color", | ||||
|         [("#556270", "#4ECDC4", "#C7F464"), ["dodgerblue", "aquamarine", "seagreen"]], | ||||
|     ) | ||||
|     def test_radviz_color(self, iris, color): | ||||
|         from pandas.plotting import radviz | ||||
|  | ||||
|         df = iris | ||||
|         ax = _check_plot_works(radviz, frame=df, class_column="Name", color=color) | ||||
|         # skip Circle drawn as ticks | ||||
|         patches = [p for p in ax.patches[:20] if p.get_label() != ""] | ||||
|         _check_colors(patches[:10], facecolors=color, mapping=df["Name"][:10]) | ||||
|  | ||||
|     def test_radviz_color_cmap(self, iris): | ||||
|         from matplotlib import cm | ||||
|  | ||||
|         from pandas.plotting import radviz | ||||
|  | ||||
|         df = iris | ||||
|         ax = _check_plot_works(radviz, frame=df, class_column="Name", colormap=cm.jet) | ||||
|         cmaps = [cm.jet(n) for n in np.linspace(0, 1, df["Name"].nunique())] | ||||
|         patches = [p for p in ax.patches[:20] if p.get_label() != ""] | ||||
|         _check_colors(patches, facecolors=cmaps, mapping=df["Name"][:10]) | ||||
|  | ||||
|     def test_radviz_colors_handles(self): | ||||
|         from pandas.plotting import radviz | ||||
|  | ||||
|         colors = [[0.0, 0.0, 1.0, 1.0], [0.0, 0.5, 1.0, 1.0], [1.0, 0.0, 0.0, 1.0]] | ||||
|         df = DataFrame( | ||||
|             {"A": [1, 2, 3], "B": [2, 1, 3], "C": [3, 2, 1], "Name": ["b", "g", "r"]} | ||||
|         ) | ||||
|         ax = radviz(df, "Name", color=colors) | ||||
|         handles, _ = ax.get_legend_handles_labels() | ||||
|         _check_colors(handles, facecolors=colors) | ||||
|  | ||||
|     def test_subplot_titles(self, iris): | ||||
|         df = iris.drop("Name", axis=1).head() | ||||
|         # Use the column names as the subplot titles | ||||
|         title = list(df.columns) | ||||
|  | ||||
|         # Case len(title) == len(df) | ||||
|         plot = df.plot(subplots=True, title=title) | ||||
|         assert [p.get_title() for p in plot] == title | ||||
|  | ||||
|     def test_subplot_titles_too_much(self, iris): | ||||
|         df = iris.drop("Name", axis=1).head() | ||||
|         # Use the column names as the subplot titles | ||||
|         title = list(df.columns) | ||||
|         # Case len(title) > len(df) | ||||
|         msg = ( | ||||
|             "The length of `title` must equal the number of columns if " | ||||
|             "using `title` of type `list` and `subplots=True`" | ||||
|         ) | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.plot(subplots=True, title=title + ["kittens > puppies"]) | ||||
|  | ||||
|     def test_subplot_titles_too_little(self, iris): | ||||
|         df = iris.drop("Name", axis=1).head() | ||||
|         # Use the column names as the subplot titles | ||||
|         title = list(df.columns) | ||||
|         msg = ( | ||||
|             "The length of `title` must equal the number of columns if " | ||||
|             "using `title` of type `list` and `subplots=True`" | ||||
|         ) | ||||
|         # Case len(title) < len(df) | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.plot(subplots=True, title=title[:2]) | ||||
|  | ||||
|     def test_subplot_titles_subplots_false(self, iris): | ||||
|         df = iris.drop("Name", axis=1).head() | ||||
|         # Use the column names as the subplot titles | ||||
|         title = list(df.columns) | ||||
|         # Case subplots=False and title is of type list | ||||
|         msg = ( | ||||
|             "Using `title` of type `list` is not supported unless " | ||||
|             "`subplots=True` is passed" | ||||
|         ) | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.plot(subplots=False, title=title) | ||||
|  | ||||
|     def test_subplot_titles_numeric_square_layout(self, iris): | ||||
|         df = iris.drop("Name", axis=1).head() | ||||
|         # Use the column names as the subplot titles | ||||
|         title = list(df.columns) | ||||
|         # Case df with 3 numeric columns but layout of (2,2) | ||||
|         plot = df.drop("SepalWidth", axis=1).plot( | ||||
|             subplots=True, layout=(2, 2), title=title[:-1] | ||||
|         ) | ||||
|         title_list = [ax.get_title() for sublist in plot for ax in sublist] | ||||
|         assert title_list == title[:3] + [""] | ||||
|  | ||||
|     def test_get_standard_colors_random_seed(self): | ||||
|         # GH17525 | ||||
|         df = DataFrame(np.zeros((10, 10))) | ||||
|  | ||||
|         # Make sure that the random seed isn't reset by get_standard_colors | ||||
|         plotting.parallel_coordinates(df, 0) | ||||
|         rand1 = np.random.default_rng(None).random() | ||||
|         plotting.parallel_coordinates(df, 0) | ||||
|         rand2 = np.random.default_rng(None).random() | ||||
|         assert rand1 != rand2 | ||||
|  | ||||
|     def test_get_standard_colors_consistency(self): | ||||
|         # GH17525 | ||||
|         # Make sure it produces the same colors every time it's called | ||||
|         from pandas.plotting._matplotlib.style import get_standard_colors | ||||
|  | ||||
|         color1 = get_standard_colors(1, color_type="random") | ||||
|         color2 = get_standard_colors(1, color_type="random") | ||||
|         assert color1 == color2 | ||||
|  | ||||
|     def test_get_standard_colors_default_num_colors(self): | ||||
|         from pandas.plotting._matplotlib.style import get_standard_colors | ||||
|  | ||||
|         # Make sure the default color_types returns the specified amount | ||||
|         color1 = get_standard_colors(1, color_type="default") | ||||
|         color2 = get_standard_colors(9, color_type="default") | ||||
|         color3 = get_standard_colors(20, color_type="default") | ||||
|         assert len(color1) == 1 | ||||
|         assert len(color2) == 9 | ||||
|         assert len(color3) == 20 | ||||
|  | ||||
|     def test_plot_single_color(self): | ||||
|         # Example from #20585. All 3 bars should have the same color | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "account-start": ["2017-02-03", "2017-03-03", "2017-01-01"], | ||||
|                 "client": ["Alice Anders", "Bob Baker", "Charlie Chaplin"], | ||||
|                 "balance": [-1432.32, 10.43, 30000.00], | ||||
|                 "db-id": [1234, 2424, 251], | ||||
|                 "proxy-id": [525, 1525, 2542], | ||||
|                 "rank": [52, 525, 32], | ||||
|             } | ||||
|         ) | ||||
|         ax = df.client.value_counts().plot.bar() | ||||
|         colors = [rect.get_facecolor() for rect in ax.get_children()[0:3]] | ||||
|         assert all(color == colors[0] for color in colors) | ||||
|  | ||||
|     def test_get_standard_colors_no_appending(self): | ||||
|         # GH20726 | ||||
|  | ||||
|         # Make sure not to add more colors so that matplotlib can cycle | ||||
|         # correctly. | ||||
|         from matplotlib import cm | ||||
|  | ||||
|         from pandas.plotting._matplotlib.style import get_standard_colors | ||||
|  | ||||
|         color_before = cm.gnuplot(range(5)) | ||||
|         color_after = get_standard_colors(1, color=color_before) | ||||
|         assert len(color_after) == len(color_before) | ||||
|  | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((48, 4)), columns=list("ABCD") | ||||
|         ) | ||||
|  | ||||
|         color_list = cm.gnuplot(np.linspace(0, 1, 16)) | ||||
|         p = df.A.plot.bar(figsize=(16, 7), color=color_list) | ||||
|         assert p.patches[1].get_facecolor() == p.patches[17].get_facecolor() | ||||
|  | ||||
|     @pytest.mark.parametrize("kind", ["bar", "line"]) | ||||
|     def test_dictionary_color(self, kind): | ||||
|         # issue-8193 | ||||
|         # Test plot color dictionary format | ||||
|         data_files = ["a", "b"] | ||||
|  | ||||
|         expected = [(0.5, 0.24, 0.6), (0.3, 0.7, 0.7)] | ||||
|  | ||||
|         df1 = DataFrame(np.random.default_rng(2).random((2, 2)), columns=data_files) | ||||
|         dic_color = {"b": (0.3, 0.7, 0.7), "a": (0.5, 0.24, 0.6)} | ||||
|  | ||||
|         ax = df1.plot(kind=kind, color=dic_color) | ||||
|         if kind == "bar": | ||||
|             colors = [rect.get_facecolor()[0:-1] for rect in ax.get_children()[0:3:2]] | ||||
|         else: | ||||
|             colors = [rect.get_color() for rect in ax.get_lines()[0:2]] | ||||
|         assert all(color == expected[index] for index, color in enumerate(colors)) | ||||
|  | ||||
|     def test_bar_plot(self): | ||||
|         # GH38947 | ||||
|         # Test bar plot with string and int index | ||||
|         from matplotlib.text import Text | ||||
|  | ||||
|         expected = [Text(0, 0, "0"), Text(1, 0, "Total")] | ||||
|  | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "a": [1, 2], | ||||
|             }, | ||||
|             index=Index([0, "Total"]), | ||||
|         ) | ||||
|         plot_bar = df.plot.bar() | ||||
|         assert all( | ||||
|             (a.get_text() == b.get_text()) | ||||
|             for a, b in zip(plot_bar.get_xticklabels(), expected) | ||||
|         ) | ||||
|  | ||||
|     def test_barh_plot_labels_mixed_integer_string(self): | ||||
|         # GH39126 | ||||
|         # Test barh plot with string and integer at the same column | ||||
|         from matplotlib.text import Text | ||||
|  | ||||
|         df = DataFrame([{"word": 1, "value": 0}, {"word": "knowledge", "value": 2}]) | ||||
|         plot_barh = df.plot.barh(x="word", legend=None) | ||||
|         expected_yticklabels = [Text(0, 0, "1"), Text(0, 1, "knowledge")] | ||||
|         assert all( | ||||
|             actual.get_text() == expected.get_text() | ||||
|             for actual, expected in zip( | ||||
|                 plot_barh.get_yticklabels(), expected_yticklabels | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|     def test_has_externally_shared_axis_x_axis(self): | ||||
|         # GH33819 | ||||
|         # Test _has_externally_shared_axis() works for x-axis | ||||
|         func = plotting._matplotlib.tools._has_externally_shared_axis | ||||
|  | ||||
|         fig = mpl.pyplot.figure() | ||||
|         plots = fig.subplots(2, 4) | ||||
|  | ||||
|         # Create *externally* shared axes for first and third columns | ||||
|         plots[0][0] = fig.add_subplot(231, sharex=plots[1][0]) | ||||
|         plots[0][2] = fig.add_subplot(233, sharex=plots[1][2]) | ||||
|  | ||||
|         # Create *internally* shared axes for second and third columns | ||||
|         plots[0][1].twinx() | ||||
|         plots[0][2].twinx() | ||||
|  | ||||
|         # First  column is only externally shared | ||||
|         # Second column is only internally shared | ||||
|         # Third  column is both | ||||
|         # Fourth column is neither | ||||
|         assert func(plots[0][0], "x") | ||||
|         assert not func(plots[0][1], "x") | ||||
|         assert func(plots[0][2], "x") | ||||
|         assert not func(plots[0][3], "x") | ||||
|  | ||||
|     def test_has_externally_shared_axis_y_axis(self): | ||||
|         # GH33819 | ||||
|         # Test _has_externally_shared_axis() works for y-axis | ||||
|         func = plotting._matplotlib.tools._has_externally_shared_axis | ||||
|  | ||||
|         fig = mpl.pyplot.figure() | ||||
|         plots = fig.subplots(4, 2) | ||||
|  | ||||
|         # Create *externally* shared axes for first and third rows | ||||
|         plots[0][0] = fig.add_subplot(321, sharey=plots[0][1]) | ||||
|         plots[2][0] = fig.add_subplot(325, sharey=plots[2][1]) | ||||
|  | ||||
|         # Create *internally* shared axes for second and third rows | ||||
|         plots[1][0].twiny() | ||||
|         plots[2][0].twiny() | ||||
|  | ||||
|         # First  row is only externally shared | ||||
|         # Second row is only internally shared | ||||
|         # Third  row is both | ||||
|         # Fourth row is neither | ||||
|         assert func(plots[0][0], "y") | ||||
|         assert not func(plots[1][0], "y") | ||||
|         assert func(plots[2][0], "y") | ||||
|         assert not func(plots[3][0], "y") | ||||
|  | ||||
|     def test_has_externally_shared_axis_invalid_compare_axis(self): | ||||
|         # GH33819 | ||||
|         # Test _has_externally_shared_axis() raises an exception when | ||||
|         # passed an invalid value as compare_axis parameter | ||||
|         func = plotting._matplotlib.tools._has_externally_shared_axis | ||||
|  | ||||
|         fig = mpl.pyplot.figure() | ||||
|         plots = fig.subplots(4, 2) | ||||
|  | ||||
|         # Create arbitrary axes | ||||
|         plots[0][0] = fig.add_subplot(321, sharey=plots[0][1]) | ||||
|  | ||||
|         # Check that an invalid compare_axis value triggers the expected exception | ||||
|         msg = "needs 'x' or 'y' as a second parameter" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             func(plots[0][0], "z") | ||||
|  | ||||
|     def test_externally_shared_axes(self): | ||||
|         # Example from GH33819 | ||||
|         # Create data | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "a": np.random.default_rng(2).standard_normal(1000), | ||||
|                 "b": np.random.default_rng(2).standard_normal(1000), | ||||
|             } | ||||
|         ) | ||||
|  | ||||
|         # Create figure | ||||
|         fig = mpl.pyplot.figure() | ||||
|         plots = fig.subplots(2, 3) | ||||
|  | ||||
|         # Create *externally* shared axes | ||||
|         plots[0][0] = fig.add_subplot(231, sharex=plots[1][0]) | ||||
|         # note: no plots[0][1] that's the twin only case | ||||
|         plots[0][2] = fig.add_subplot(233, sharex=plots[1][2]) | ||||
|  | ||||
|         # Create *internally* shared axes | ||||
|         # note: no plots[0][0] that's the external only case | ||||
|         twin_ax1 = plots[0][1].twinx() | ||||
|         twin_ax2 = plots[0][2].twinx() | ||||
|  | ||||
|         # Plot data to primary axes | ||||
|         df["a"].plot(ax=plots[0][0], title="External share only").set_xlabel( | ||||
|             "this label should never be visible" | ||||
|         ) | ||||
|         df["a"].plot(ax=plots[1][0]) | ||||
|  | ||||
|         df["a"].plot(ax=plots[0][1], title="Internal share (twin) only").set_xlabel( | ||||
|             "this label should always be visible" | ||||
|         ) | ||||
|         df["a"].plot(ax=plots[1][1]) | ||||
|  | ||||
|         df["a"].plot(ax=plots[0][2], title="Both").set_xlabel( | ||||
|             "this label should never be visible" | ||||
|         ) | ||||
|         df["a"].plot(ax=plots[1][2]) | ||||
|  | ||||
|         # Plot data to twinned axes | ||||
|         df["b"].plot(ax=twin_ax1, color="green") | ||||
|         df["b"].plot(ax=twin_ax2, color="yellow") | ||||
|  | ||||
|         assert not plots[0][0].xaxis.get_label().get_visible() | ||||
|         assert plots[0][1].xaxis.get_label().get_visible() | ||||
|         assert not plots[0][2].xaxis.get_label().get_visible() | ||||
|  | ||||
|     def test_plot_bar_axis_units_timestamp_conversion(self): | ||||
|         # GH 38736 | ||||
|         # Ensure string x-axis from the second plot will not be converted to datetime | ||||
|         # due to axis data from first plot | ||||
|         df = DataFrame( | ||||
|             [1.0], | ||||
|             index=[Timestamp("2022-02-22 22:22:22")], | ||||
|         ) | ||||
|         _check_plot_works(df.plot) | ||||
|         s = Series({"A": 1.0}) | ||||
|         _check_plot_works(s.plot.bar) | ||||
|  | ||||
|     def test_bar_plt_xaxis_intervalrange(self): | ||||
|         # GH 38969 | ||||
|         # Ensure IntervalIndex x-axis produces a bar plot as expected | ||||
|         from matplotlib.text import Text | ||||
|  | ||||
|         expected = [Text(0, 0, "([0, 1],)"), Text(1, 0, "([1, 2],)")] | ||||
|         s = Series( | ||||
|             [1, 2], | ||||
|             index=[interval_range(0, 2, closed="both")], | ||||
|         ) | ||||
|         _check_plot_works(s.plot.bar) | ||||
|         assert all( | ||||
|             (a.get_text() == b.get_text()) | ||||
|             for a, b in zip(s.plot.bar().get_xticklabels(), expected) | ||||
|         ) | ||||
| @ -0,0 +1,985 @@ | ||||
| """ Test cases for Series.plot """ | ||||
| from datetime import datetime | ||||
| from itertools import chain | ||||
|  | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas.compat import is_platform_linux | ||||
| from pandas.compat.numpy import np_version_gte1p24 | ||||
| import pandas.util._test_decorators as td | ||||
|  | ||||
| import pandas as pd | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Series, | ||||
|     date_range, | ||||
|     period_range, | ||||
|     plotting, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
| from pandas.tests.plotting.common import ( | ||||
|     _check_ax_scales, | ||||
|     _check_axes_shape, | ||||
|     _check_colors, | ||||
|     _check_grid_settings, | ||||
|     _check_has_errorbars, | ||||
|     _check_legend_labels, | ||||
|     _check_plot_works, | ||||
|     _check_text_labels, | ||||
|     _check_ticks_props, | ||||
|     _unpack_cycler, | ||||
|     get_y_axis, | ||||
| ) | ||||
|  | ||||
| mpl = pytest.importorskip("matplotlib") | ||||
| plt = pytest.importorskip("matplotlib.pyplot") | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def ts(): | ||||
|     return Series( | ||||
|         np.arange(10, dtype=np.float64), | ||||
|         index=date_range("2020-01-01", periods=10), | ||||
|         name="ts", | ||||
|     ) | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def series(): | ||||
|     return Series( | ||||
|         range(20), dtype=np.float64, name="series", index=[f"i_{i}" for i in range(20)] | ||||
|     ) | ||||
|  | ||||
|  | ||||
| class TestSeriesPlots: | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize("kwargs", [{"label": "foo"}, {"use_index": False}]) | ||||
|     def test_plot(self, ts, kwargs): | ||||
|         _check_plot_works(ts.plot, **kwargs) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_plot_tick_props(self, ts): | ||||
|         axes = _check_plot_works(ts.plot, rot=0) | ||||
|         _check_ticks_props(axes, xrot=0) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "scale, exp_scale", | ||||
|         [ | ||||
|             [{"logy": True}, {"yaxis": "log"}], | ||||
|             [{"logx": True}, {"xaxis": "log"}], | ||||
|             [{"loglog": True}, {"xaxis": "log", "yaxis": "log"}], | ||||
|         ], | ||||
|     ) | ||||
|     def test_plot_scales(self, ts, scale, exp_scale): | ||||
|         ax = _check_plot_works(ts.plot, style=".", **scale) | ||||
|         _check_ax_scales(ax, **exp_scale) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_plot_ts_bar(self, ts): | ||||
|         _check_plot_works(ts[:10].plot.bar) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_plot_ts_area_stacked(self, ts): | ||||
|         _check_plot_works(ts.plot.area, stacked=False) | ||||
|  | ||||
|     def test_plot_iseries(self): | ||||
|         ser = Series(range(5), period_range("2020-01-01", periods=5)) | ||||
|         _check_plot_works(ser.plot) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "kind", | ||||
|         [ | ||||
|             "line", | ||||
|             "bar", | ||||
|             "barh", | ||||
|             pytest.param("kde", marks=td.skip_if_no("scipy")), | ||||
|             "hist", | ||||
|             "box", | ||||
|         ], | ||||
|     ) | ||||
|     def test_plot_series_kinds(self, series, kind): | ||||
|         _check_plot_works(series[:5].plot, kind=kind) | ||||
|  | ||||
|     def test_plot_series_barh(self, series): | ||||
|         _check_plot_works(series[:10].plot.barh) | ||||
|  | ||||
|     def test_plot_series_bar_ax(self): | ||||
|         ax = _check_plot_works( | ||||
|             Series(np.random.default_rng(2).standard_normal(10)).plot.bar, color="black" | ||||
|         ) | ||||
|         _check_colors([ax.patches[0]], facecolors=["black"]) | ||||
|  | ||||
|     @pytest.mark.parametrize("kwargs", [{}, {"layout": (-1, 1)}, {"layout": (1, -1)}]) | ||||
|     def test_plot_6951(self, ts, kwargs): | ||||
|         # GH 6951 | ||||
|         ax = _check_plot_works(ts.plot, subplots=True, **kwargs) | ||||
|         _check_axes_shape(ax, axes_num=1, layout=(1, 1)) | ||||
|  | ||||
|     def test_plot_figsize_and_title(self, series): | ||||
|         # figsize and title | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = series.plot(title="Test", figsize=(16, 8), ax=ax) | ||||
|         _check_text_labels(ax.title, "Test") | ||||
|         _check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16, 8)) | ||||
|  | ||||
|     def test_dont_modify_rcParams(self): | ||||
|         # GH 8242 | ||||
|         key = "axes.prop_cycle" | ||||
|         colors = mpl.pyplot.rcParams[key] | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         Series([1, 2, 3]).plot(ax=ax) | ||||
|         assert colors == mpl.pyplot.rcParams[key] | ||||
|  | ||||
|     @pytest.mark.parametrize("kwargs", [{}, {"secondary_y": True}]) | ||||
|     def test_ts_line_lim(self, ts, kwargs): | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ts.plot(ax=ax, **kwargs) | ||||
|         xmin, xmax = ax.get_xlim() | ||||
|         lines = ax.get_lines() | ||||
|         assert xmin <= lines[0].get_data(orig=False)[0][0] | ||||
|         assert xmax >= lines[0].get_data(orig=False)[0][-1] | ||||
|  | ||||
|     def test_ts_area_lim(self, ts): | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ts.plot.area(stacked=False, ax=ax) | ||||
|         xmin, xmax = ax.get_xlim() | ||||
|         line = ax.get_lines()[0].get_data(orig=False)[0] | ||||
|         assert xmin <= line[0] | ||||
|         assert xmax >= line[-1] | ||||
|         _check_ticks_props(ax, xrot=0) | ||||
|  | ||||
|     def test_ts_area_lim_xcompat(self, ts): | ||||
|         # GH 7471 | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ts.plot.area(stacked=False, x_compat=True, ax=ax) | ||||
|         xmin, xmax = ax.get_xlim() | ||||
|         line = ax.get_lines()[0].get_data(orig=False)[0] | ||||
|         assert xmin <= line[0] | ||||
|         assert xmax >= line[-1] | ||||
|         _check_ticks_props(ax, xrot=30) | ||||
|  | ||||
|     def test_ts_tz_area_lim_xcompat(self, ts): | ||||
|         tz_ts = ts.copy() | ||||
|         tz_ts.index = tz_ts.tz_localize("GMT").tz_convert("CET") | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = tz_ts.plot.area(stacked=False, x_compat=True, ax=ax) | ||||
|         xmin, xmax = ax.get_xlim() | ||||
|         line = ax.get_lines()[0].get_data(orig=False)[0] | ||||
|         assert xmin <= line[0] | ||||
|         assert xmax >= line[-1] | ||||
|         _check_ticks_props(ax, xrot=0) | ||||
|  | ||||
|     def test_ts_tz_area_lim_xcompat_secondary_y(self, ts): | ||||
|         tz_ts = ts.copy() | ||||
|         tz_ts.index = tz_ts.tz_localize("GMT").tz_convert("CET") | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = tz_ts.plot.area(stacked=False, secondary_y=True, ax=ax) | ||||
|         xmin, xmax = ax.get_xlim() | ||||
|         line = ax.get_lines()[0].get_data(orig=False)[0] | ||||
|         assert xmin <= line[0] | ||||
|         assert xmax >= line[-1] | ||||
|         _check_ticks_props(ax, xrot=0) | ||||
|  | ||||
|     def test_area_sharey_dont_overwrite(self, ts): | ||||
|         # GH37942 | ||||
|         fig, (ax1, ax2) = mpl.pyplot.subplots(1, 2, sharey=True) | ||||
|  | ||||
|         abs(ts).plot(ax=ax1, kind="area") | ||||
|         abs(ts).plot(ax=ax2, kind="area") | ||||
|  | ||||
|         assert get_y_axis(ax1).joined(ax1, ax2) | ||||
|         assert get_y_axis(ax2).joined(ax1, ax2) | ||||
|         plt.close(fig) | ||||
|  | ||||
|     def test_label(self): | ||||
|         s = Series([1, 2]) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = s.plot(label="LABEL", legend=True, ax=ax) | ||||
|         _check_legend_labels(ax, labels=["LABEL"]) | ||||
|         mpl.pyplot.close("all") | ||||
|  | ||||
|     def test_label_none(self): | ||||
|         s = Series([1, 2]) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = s.plot(legend=True, ax=ax) | ||||
|         _check_legend_labels(ax, labels=[""]) | ||||
|         mpl.pyplot.close("all") | ||||
|  | ||||
|     def test_label_ser_name(self): | ||||
|         s = Series([1, 2], name="NAME") | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = s.plot(legend=True, ax=ax) | ||||
|         _check_legend_labels(ax, labels=["NAME"]) | ||||
|         mpl.pyplot.close("all") | ||||
|  | ||||
|     def test_label_ser_name_override(self): | ||||
|         s = Series([1, 2], name="NAME") | ||||
|         # override the default | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = s.plot(legend=True, label="LABEL", ax=ax) | ||||
|         _check_legend_labels(ax, labels=["LABEL"]) | ||||
|         mpl.pyplot.close("all") | ||||
|  | ||||
|     def test_label_ser_name_override_dont_draw(self): | ||||
|         s = Series([1, 2], name="NAME") | ||||
|         # Add lebel info, but don't draw | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = s.plot(legend=False, label="LABEL", ax=ax) | ||||
|         assert ax.get_legend() is None  # Hasn't been drawn | ||||
|         ax.legend()  # draw it | ||||
|         _check_legend_labels(ax, labels=["LABEL"]) | ||||
|         mpl.pyplot.close("all") | ||||
|  | ||||
|     def test_boolean(self): | ||||
|         # GH 23719 | ||||
|         s = Series([False, False, True]) | ||||
|         _check_plot_works(s.plot, include_bool=True) | ||||
|  | ||||
|         msg = "no numeric data to plot" | ||||
|         with pytest.raises(TypeError, match=msg): | ||||
|             _check_plot_works(s.plot) | ||||
|  | ||||
|     @pytest.mark.parametrize("index", [None, date_range("2020-01-01", periods=4)]) | ||||
|     def test_line_area_nan_series(self, index): | ||||
|         values = [1, 2, np.nan, 3] | ||||
|         d = Series(values, index=index) | ||||
|         ax = _check_plot_works(d.plot) | ||||
|         masked = ax.lines[0].get_ydata() | ||||
|         # remove nan for comparison purpose | ||||
|         exp = np.array([1, 2, 3], dtype=np.float64) | ||||
|         tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp) | ||||
|         tm.assert_numpy_array_equal(masked.mask, np.array([False, False, True, False])) | ||||
|  | ||||
|         expected = np.array([1, 2, 0, 3], dtype=np.float64) | ||||
|         ax = _check_plot_works(d.plot, stacked=True) | ||||
|         tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) | ||||
|         ax = _check_plot_works(d.plot.area) | ||||
|         tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) | ||||
|         ax = _check_plot_works(d.plot.area, stacked=False) | ||||
|         tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) | ||||
|  | ||||
|     def test_line_use_index_false(self): | ||||
|         s = Series([1, 2, 3], index=["a", "b", "c"]) | ||||
|         s.index.name = "The Index" | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = s.plot(use_index=False, ax=ax) | ||||
|         label = ax.get_xlabel() | ||||
|         assert label == "" | ||||
|  | ||||
|     def test_line_use_index_false_diff_var(self): | ||||
|         s = Series([1, 2, 3], index=["a", "b", "c"]) | ||||
|         s.index.name = "The Index" | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax2 = s.plot.bar(use_index=False, ax=ax) | ||||
|         label2 = ax2.get_xlabel() | ||||
|         assert label2 == "" | ||||
|  | ||||
|     @pytest.mark.xfail( | ||||
|         np_version_gte1p24 and is_platform_linux(), | ||||
|         reason="Weird rounding problems", | ||||
|         strict=False, | ||||
|     ) | ||||
|     @pytest.mark.parametrize("axis, meth", [("yaxis", "bar"), ("xaxis", "barh")]) | ||||
|     def test_bar_log(self, axis, meth): | ||||
|         expected = np.array([1e-1, 1e0, 1e1, 1e2, 1e3, 1e4]) | ||||
|  | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = getattr(Series([200, 500]).plot, meth)(log=True, ax=ax) | ||||
|         tm.assert_numpy_array_equal(getattr(ax, axis).get_ticklocs(), expected) | ||||
|  | ||||
|     @pytest.mark.xfail( | ||||
|         np_version_gte1p24 and is_platform_linux(), | ||||
|         reason="Weird rounding problems", | ||||
|         strict=False, | ||||
|     ) | ||||
|     @pytest.mark.parametrize( | ||||
|         "axis, kind, res_meth", | ||||
|         [["yaxis", "bar", "get_ylim"], ["xaxis", "barh", "get_xlim"]], | ||||
|     ) | ||||
|     def test_bar_log_kind_bar(self, axis, kind, res_meth): | ||||
|         # GH 9905 | ||||
|         expected = np.array([1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1]) | ||||
|  | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind=kind, ax=ax) | ||||
|         ymin = 0.0007943282347242822 | ||||
|         ymax = 0.12589254117941673 | ||||
|         res = getattr(ax, res_meth)() | ||||
|         tm.assert_almost_equal(res[0], ymin) | ||||
|         tm.assert_almost_equal(res[1], ymax) | ||||
|         tm.assert_numpy_array_equal(getattr(ax, axis).get_ticklocs(), expected) | ||||
|  | ||||
|     def test_bar_ignore_index(self): | ||||
|         df = Series([1, 2, 3, 4], index=["a", "b", "c", "d"]) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = df.plot.bar(use_index=False, ax=ax) | ||||
|         _check_text_labels(ax.get_xticklabels(), ["0", "1", "2", "3"]) | ||||
|  | ||||
|     def test_bar_user_colors(self): | ||||
|         s = Series([1, 2, 3, 4]) | ||||
|         ax = s.plot.bar(color=["red", "blue", "blue", "red"]) | ||||
|         result = [p.get_facecolor() for p in ax.patches] | ||||
|         expected = [ | ||||
|             (1.0, 0.0, 0.0, 1.0), | ||||
|             (0.0, 0.0, 1.0, 1.0), | ||||
|             (0.0, 0.0, 1.0, 1.0), | ||||
|             (1.0, 0.0, 0.0, 1.0), | ||||
|         ] | ||||
|         assert result == expected | ||||
|  | ||||
|     def test_rotation_default(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         # Default rot 0 | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         axes = df.plot(ax=ax) | ||||
|         _check_ticks_props(axes, xrot=0) | ||||
|  | ||||
|     def test_rotation_30(self): | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         axes = df.plot(rot=30, ax=ax) | ||||
|         _check_ticks_props(axes, xrot=30) | ||||
|  | ||||
|     def test_irregular_datetime(self): | ||||
|         from pandas.plotting._matplotlib.converter import DatetimeConverter | ||||
|  | ||||
|         rng = date_range("1/1/2000", "3/1/2000") | ||||
|         rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]] | ||||
|         ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ser.plot(ax=ax) | ||||
|         xp = DatetimeConverter.convert(datetime(1999, 1, 1), "", ax) | ||||
|         ax.set_xlim("1/1/1999", "1/1/2001") | ||||
|         assert xp == ax.get_xlim()[0] | ||||
|         _check_ticks_props(ax, xrot=30) | ||||
|  | ||||
|     def test_unsorted_index_xlim(self): | ||||
|         ser = Series( | ||||
|             [0.0, 1.0, np.nan, 3.0, 4.0, 5.0, 6.0], | ||||
|             index=[1.0, 0.0, 3.0, 2.0, np.nan, 3.0, 2.0], | ||||
|         ) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ser.plot(ax=ax) | ||||
|         xmin, xmax = ax.get_xlim() | ||||
|         lines = ax.get_lines() | ||||
|         assert xmin <= np.nanmin(lines[0].get_data(orig=False)[0]) | ||||
|         assert xmax >= np.nanmax(lines[0].get_data(orig=False)[0]) | ||||
|  | ||||
|     def test_pie_series(self): | ||||
|         # if sum of values is less than 1.0, pie handle them as rate and draw | ||||
|         # semicircle. | ||||
|         series = Series( | ||||
|             np.random.default_rng(2).integers(1, 5), | ||||
|             index=["a", "b", "c", "d", "e"], | ||||
|             name="YLABEL", | ||||
|         ) | ||||
|         ax = _check_plot_works(series.plot.pie) | ||||
|         _check_text_labels(ax.texts, series.index) | ||||
|         assert ax.get_ylabel() == "YLABEL" | ||||
|  | ||||
|     def test_pie_series_no_label(self): | ||||
|         series = Series( | ||||
|             np.random.default_rng(2).integers(1, 5), | ||||
|             index=["a", "b", "c", "d", "e"], | ||||
|             name="YLABEL", | ||||
|         ) | ||||
|         ax = _check_plot_works(series.plot.pie, labels=None) | ||||
|         _check_text_labels(ax.texts, [""] * 5) | ||||
|  | ||||
|     def test_pie_series_less_colors_than_elements(self): | ||||
|         series = Series( | ||||
|             np.random.default_rng(2).integers(1, 5), | ||||
|             index=["a", "b", "c", "d", "e"], | ||||
|             name="YLABEL", | ||||
|         ) | ||||
|         color_args = ["r", "g", "b"] | ||||
|         ax = _check_plot_works(series.plot.pie, colors=color_args) | ||||
|  | ||||
|         color_expected = ["r", "g", "b", "r", "g"] | ||||
|         _check_colors(ax.patches, facecolors=color_expected) | ||||
|  | ||||
|     def test_pie_series_labels_and_colors(self): | ||||
|         series = Series( | ||||
|             np.random.default_rng(2).integers(1, 5), | ||||
|             index=["a", "b", "c", "d", "e"], | ||||
|             name="YLABEL", | ||||
|         ) | ||||
|         # with labels and colors | ||||
|         labels = ["A", "B", "C", "D", "E"] | ||||
|         color_args = ["r", "g", "b", "c", "m"] | ||||
|         ax = _check_plot_works(series.plot.pie, labels=labels, colors=color_args) | ||||
|         _check_text_labels(ax.texts, labels) | ||||
|         _check_colors(ax.patches, facecolors=color_args) | ||||
|  | ||||
|     def test_pie_series_autopct_and_fontsize(self): | ||||
|         series = Series( | ||||
|             np.random.default_rng(2).integers(1, 5), | ||||
|             index=["a", "b", "c", "d", "e"], | ||||
|             name="YLABEL", | ||||
|         ) | ||||
|         color_args = ["r", "g", "b", "c", "m"] | ||||
|         ax = _check_plot_works( | ||||
|             series.plot.pie, colors=color_args, autopct="%.2f", fontsize=7 | ||||
|         ) | ||||
|         pcts = [f"{s*100:.2f}" for s in series.values / series.sum()] | ||||
|         expected_texts = list(chain.from_iterable(zip(series.index, pcts))) | ||||
|         _check_text_labels(ax.texts, expected_texts) | ||||
|         for t in ax.texts: | ||||
|             assert t.get_fontsize() == 7 | ||||
|  | ||||
|     def test_pie_series_negative_raises(self): | ||||
|         # includes negative value | ||||
|         series = Series([1, 2, 0, 4, -1], index=["a", "b", "c", "d", "e"]) | ||||
|         with pytest.raises(ValueError, match="pie plot doesn't allow negative values"): | ||||
|             series.plot.pie() | ||||
|  | ||||
|     def test_pie_series_nan(self): | ||||
|         # includes nan | ||||
|         series = Series([1, 2, np.nan, 4], index=["a", "b", "c", "d"], name="YLABEL") | ||||
|         ax = _check_plot_works(series.plot.pie) | ||||
|         _check_text_labels(ax.texts, ["a", "b", "", "d"]) | ||||
|  | ||||
|     def test_pie_nan(self): | ||||
|         s = Series([1, np.nan, 1, 1]) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = s.plot.pie(legend=True, ax=ax) | ||||
|         expected = ["0", "", "2", "3"] | ||||
|         result = [x.get_text() for x in ax.texts] | ||||
|         assert result == expected | ||||
|  | ||||
|     def test_df_series_secondary_legend(self): | ||||
|         # GH 9779 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 3)), columns=list("abc") | ||||
|         ) | ||||
|         s = Series(np.random.default_rng(2).standard_normal(30), name="x") | ||||
|  | ||||
|         # primary -> secondary (without passing ax) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = df.plot(ax=ax) | ||||
|         s.plot(legend=True, secondary_y=True, ax=ax) | ||||
|         # both legends are drawn on left ax | ||||
|         # left and right axis must be visible | ||||
|         _check_legend_labels(ax, labels=["a", "b", "c", "x (right)"]) | ||||
|         assert ax.get_yaxis().get_visible() | ||||
|         assert ax.right_ax.get_yaxis().get_visible() | ||||
|  | ||||
|     def test_df_series_secondary_legend_with_axes(self): | ||||
|         # GH 9779 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 3)), columns=list("abc") | ||||
|         ) | ||||
|         s = Series(np.random.default_rng(2).standard_normal(30), name="x") | ||||
|         # primary -> secondary (with passing ax) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = df.plot(ax=ax) | ||||
|         s.plot(ax=ax, legend=True, secondary_y=True) | ||||
|         # both legends are drawn on left ax | ||||
|         # left and right axis must be visible | ||||
|         _check_legend_labels(ax, labels=["a", "b", "c", "x (right)"]) | ||||
|         assert ax.get_yaxis().get_visible() | ||||
|         assert ax.right_ax.get_yaxis().get_visible() | ||||
|  | ||||
|     def test_df_series_secondary_legend_both(self): | ||||
|         # GH 9779 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 3)), columns=list("abc") | ||||
|         ) | ||||
|         s = Series(np.random.default_rng(2).standard_normal(30), name="x") | ||||
|         # secondary -> secondary (without passing ax) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = df.plot(secondary_y=True, ax=ax) | ||||
|         s.plot(legend=True, secondary_y=True, ax=ax) | ||||
|         # both legends are drawn on left ax | ||||
|         # left axis must be invisible and right axis must be visible | ||||
|         expected = ["a (right)", "b (right)", "c (right)", "x (right)"] | ||||
|         _check_legend_labels(ax.left_ax, labels=expected) | ||||
|         assert not ax.left_ax.get_yaxis().get_visible() | ||||
|         assert ax.get_yaxis().get_visible() | ||||
|  | ||||
|     def test_df_series_secondary_legend_both_with_axis(self): | ||||
|         # GH 9779 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 3)), columns=list("abc") | ||||
|         ) | ||||
|         s = Series(np.random.default_rng(2).standard_normal(30), name="x") | ||||
|         # secondary -> secondary (with passing ax) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = df.plot(secondary_y=True, ax=ax) | ||||
|         s.plot(ax=ax, legend=True, secondary_y=True) | ||||
|         # both legends are drawn on left ax | ||||
|         # left axis must be invisible and right axis must be visible | ||||
|         expected = ["a (right)", "b (right)", "c (right)", "x (right)"] | ||||
|         _check_legend_labels(ax.left_ax, expected) | ||||
|         assert not ax.left_ax.get_yaxis().get_visible() | ||||
|         assert ax.get_yaxis().get_visible() | ||||
|  | ||||
|     def test_df_series_secondary_legend_both_with_axis_2(self): | ||||
|         # GH 9779 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((30, 3)), columns=list("abc") | ||||
|         ) | ||||
|         s = Series(np.random.default_rng(2).standard_normal(30), name="x") | ||||
|         # secondary -> secondary (with passing ax) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = df.plot(secondary_y=True, mark_right=False, ax=ax) | ||||
|         s.plot(ax=ax, legend=True, secondary_y=True) | ||||
|         # both legends are drawn on left ax | ||||
|         # left axis must be invisible and right axis must be visible | ||||
|         expected = ["a", "b", "c", "x (right)"] | ||||
|         _check_legend_labels(ax.left_ax, expected) | ||||
|         assert not ax.left_ax.get_yaxis().get_visible() | ||||
|         assert ax.get_yaxis().get_visible() | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "input_logy, expected_scale", [(True, "log"), ("sym", "symlog")] | ||||
|     ) | ||||
|     def test_secondary_logy(self, input_logy, expected_scale): | ||||
|         # GH 25545 | ||||
|         s1 = Series(np.random.default_rng(2).standard_normal(100)) | ||||
|         s2 = Series(np.random.default_rng(2).standard_normal(100)) | ||||
|  | ||||
|         # GH 24980 | ||||
|         ax1 = s1.plot(logy=input_logy) | ||||
|         ax2 = s2.plot(secondary_y=True, logy=input_logy) | ||||
|  | ||||
|         assert ax1.get_yscale() == expected_scale | ||||
|         assert ax2.get_yscale() == expected_scale | ||||
|  | ||||
|     def test_plot_fails_with_dupe_color_and_style(self): | ||||
|         x = Series(np.random.default_rng(2).standard_normal(2)) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         msg = ( | ||||
|             "Cannot pass 'style' string with a color symbol and 'color' keyword " | ||||
|             "argument. Please use one or the other or pass 'style' without a color " | ||||
|             "symbol" | ||||
|         ) | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             x.plot(style="k--", color="k", ax=ax) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "bw_method, ind", | ||||
|         [ | ||||
|             ["scott", 20], | ||||
|             [None, 20], | ||||
|             [None, np.int_(20)], | ||||
|             [0.5, np.linspace(-100, 100, 20)], | ||||
|         ], | ||||
|     ) | ||||
|     def test_kde_kwargs(self, ts, bw_method, ind): | ||||
|         pytest.importorskip("scipy") | ||||
|         _check_plot_works(ts.plot.kde, bw_method=bw_method, ind=ind) | ||||
|  | ||||
|     def test_density_kwargs(self, ts): | ||||
|         pytest.importorskip("scipy") | ||||
|         sample_points = np.linspace(-100, 100, 20) | ||||
|         _check_plot_works(ts.plot.density, bw_method=0.5, ind=sample_points) | ||||
|  | ||||
|     def test_kde_kwargs_check_axes(self, ts): | ||||
|         pytest.importorskip("scipy") | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         sample_points = np.linspace(-100, 100, 20) | ||||
|         ax = ts.plot.kde(logy=True, bw_method=0.5, ind=sample_points, ax=ax) | ||||
|         _check_ax_scales(ax, yaxis="log") | ||||
|         _check_text_labels(ax.yaxis.get_label(), "Density") | ||||
|  | ||||
|     def test_kde_missing_vals(self): | ||||
|         pytest.importorskip("scipy") | ||||
|         s = Series(np.random.default_rng(2).uniform(size=50)) | ||||
|         s[0] = np.nan | ||||
|         axes = _check_plot_works(s.plot.kde) | ||||
|  | ||||
|         # gh-14821: check if the values have any missing values | ||||
|         assert any(~np.isnan(axes.lines[0].get_xdata())) | ||||
|  | ||||
|     @pytest.mark.xfail(reason="Api changed in 3.6.0") | ||||
|     def test_boxplot_series(self, ts): | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ts.plot.box(logy=True, ax=ax) | ||||
|         _check_ax_scales(ax, yaxis="log") | ||||
|         xlabels = ax.get_xticklabels() | ||||
|         _check_text_labels(xlabels, [ts.name]) | ||||
|         ylabels = ax.get_yticklabels() | ||||
|         _check_text_labels(ylabels, [""] * len(ylabels)) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "kind", | ||||
|         plotting.PlotAccessor._common_kinds + plotting.PlotAccessor._series_kinds, | ||||
|     ) | ||||
|     def test_kind_kwarg(self, kind): | ||||
|         pytest.importorskip("scipy") | ||||
|         s = Series(range(3)) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         s.plot(kind=kind, ax=ax) | ||||
|         mpl.pyplot.close() | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "kind", | ||||
|         plotting.PlotAccessor._common_kinds + plotting.PlotAccessor._series_kinds, | ||||
|     ) | ||||
|     def test_kind_attr(self, kind): | ||||
|         pytest.importorskip("scipy") | ||||
|         s = Series(range(3)) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         getattr(s.plot, kind)() | ||||
|         mpl.pyplot.close() | ||||
|  | ||||
|     @pytest.mark.parametrize("kind", plotting.PlotAccessor._common_kinds) | ||||
|     def test_invalid_plot_data(self, kind): | ||||
|         s = Series(list("abcd")) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         msg = "no numeric data to plot" | ||||
|         with pytest.raises(TypeError, match=msg): | ||||
|             s.plot(kind=kind, ax=ax) | ||||
|  | ||||
|     @pytest.mark.parametrize("kind", plotting.PlotAccessor._common_kinds) | ||||
|     def test_valid_object_plot(self, kind): | ||||
|         pytest.importorskip("scipy") | ||||
|         s = Series(range(10), dtype=object) | ||||
|         _check_plot_works(s.plot, kind=kind) | ||||
|  | ||||
|     @pytest.mark.parametrize("kind", plotting.PlotAccessor._common_kinds) | ||||
|     def test_partially_invalid_plot_data(self, kind): | ||||
|         s = Series(["a", "b", 1.0, 2]) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         msg = "no numeric data to plot" | ||||
|         with pytest.raises(TypeError, match=msg): | ||||
|             s.plot(kind=kind, ax=ax) | ||||
|  | ||||
|     def test_invalid_kind(self): | ||||
|         s = Series([1, 2]) | ||||
|         with pytest.raises(ValueError, match="invalid_kind is not a valid plot kind"): | ||||
|             s.plot(kind="invalid_kind") | ||||
|  | ||||
|     def test_dup_datetime_index_plot(self): | ||||
|         dr1 = date_range("1/1/2009", periods=4) | ||||
|         dr2 = date_range("1/2/2009", periods=4) | ||||
|         index = dr1.append(dr2) | ||||
|         values = np.random.default_rng(2).standard_normal(index.size) | ||||
|         s = Series(values, index=index) | ||||
|         _check_plot_works(s.plot) | ||||
|  | ||||
|     def test_errorbar_asymmetrical(self): | ||||
|         # GH9536 | ||||
|         s = Series(np.arange(10), name="x") | ||||
|         err = np.random.default_rng(2).random((2, 10)) | ||||
|  | ||||
|         ax = s.plot(yerr=err, xerr=err) | ||||
|  | ||||
|         result = np.vstack([i.vertices[:, 1] for i in ax.collections[1].get_paths()]) | ||||
|         expected = (err.T * np.array([-1, 1])) + s.to_numpy().reshape(-1, 1) | ||||
|         tm.assert_numpy_array_equal(result, expected) | ||||
|  | ||||
|         msg = ( | ||||
|             "Asymmetrical error bars should be provided " | ||||
|             f"with the shape \\(2, {len(s)}\\)" | ||||
|         ) | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             s.plot(yerr=np.random.default_rng(2).random((2, 11))) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize("kind", ["line", "bar"]) | ||||
|     @pytest.mark.parametrize( | ||||
|         "yerr", | ||||
|         [ | ||||
|             Series(np.abs(np.random.default_rng(2).standard_normal(10))), | ||||
|             np.abs(np.random.default_rng(2).standard_normal(10)), | ||||
|             list(np.abs(np.random.default_rng(2).standard_normal(10))), | ||||
|             DataFrame( | ||||
|                 np.abs(np.random.default_rng(2).standard_normal((10, 2))), | ||||
|                 columns=["x", "y"], | ||||
|             ), | ||||
|         ], | ||||
|     ) | ||||
|     def test_errorbar_plot(self, kind, yerr): | ||||
|         s = Series(np.arange(10), name="x") | ||||
|         ax = _check_plot_works(s.plot, yerr=yerr, kind=kind) | ||||
|         _check_has_errorbars(ax, xerr=0, yerr=1) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_errorbar_plot_yerr_0(self): | ||||
|         s = Series(np.arange(10), name="x") | ||||
|         s_err = np.abs(np.random.default_rng(2).standard_normal(10)) | ||||
|         ax = _check_plot_works(s.plot, xerr=s_err) | ||||
|         _check_has_errorbars(ax, xerr=1, yerr=0) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     @pytest.mark.parametrize( | ||||
|         "yerr", | ||||
|         [ | ||||
|             Series(np.abs(np.random.default_rng(2).standard_normal(12))), | ||||
|             DataFrame( | ||||
|                 np.abs(np.random.default_rng(2).standard_normal((12, 2))), | ||||
|                 columns=["x", "y"], | ||||
|             ), | ||||
|         ], | ||||
|     ) | ||||
|     def test_errorbar_plot_ts(self, yerr): | ||||
|         # test time series plotting | ||||
|         ix = date_range("1/1/2000", "1/1/2001", freq="ME") | ||||
|         ts = Series(np.arange(12), index=ix, name="x") | ||||
|         yerr.index = ix | ||||
|  | ||||
|         ax = _check_plot_works(ts.plot, yerr=yerr) | ||||
|         _check_has_errorbars(ax, xerr=0, yerr=1) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_errorbar_plot_invalid_yerr_shape(self): | ||||
|         s = Series(np.arange(10), name="x") | ||||
|         # check incorrect lengths and types | ||||
|         with tm.external_error_raised(ValueError): | ||||
|             s.plot(yerr=np.arange(11)) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_errorbar_plot_invalid_yerr(self): | ||||
|         s = Series(np.arange(10), name="x") | ||||
|         s_err = ["zzz"] * 10 | ||||
|         with tm.external_error_raised(TypeError): | ||||
|             s.plot(yerr=s_err) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_table_true(self, series): | ||||
|         _check_plot_works(series.plot, table=True) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_table_self(self, series): | ||||
|         _check_plot_works(series.plot, table=series) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_series_grid_settings(self): | ||||
|         # Make sure plot defaults to rcParams['axes.grid'] setting, GH 9792 | ||||
|         pytest.importorskip("scipy") | ||||
|         _check_grid_settings( | ||||
|             Series([1, 2, 3]), | ||||
|             plotting.PlotAccessor._series_kinds + plotting.PlotAccessor._common_kinds, | ||||
|         ) | ||||
|  | ||||
|     @pytest.mark.parametrize("c", ["r", "red", "green", "#FF0000"]) | ||||
|     def test_standard_colors(self, c): | ||||
|         from pandas.plotting._matplotlib.style import get_standard_colors | ||||
|  | ||||
|         result = get_standard_colors(1, color=c) | ||||
|         assert result == [c] | ||||
|  | ||||
|         result = get_standard_colors(1, color=[c]) | ||||
|         assert result == [c] | ||||
|  | ||||
|         result = get_standard_colors(3, color=c) | ||||
|         assert result == [c] * 3 | ||||
|  | ||||
|         result = get_standard_colors(3, color=[c]) | ||||
|         assert result == [c] * 3 | ||||
|  | ||||
|     def test_standard_colors_all(self): | ||||
|         from matplotlib import colors | ||||
|  | ||||
|         from pandas.plotting._matplotlib.style import get_standard_colors | ||||
|  | ||||
|         # multiple colors like mediumaquamarine | ||||
|         for c in colors.cnames: | ||||
|             result = get_standard_colors(num_colors=1, color=c) | ||||
|             assert result == [c] | ||||
|  | ||||
|             result = get_standard_colors(num_colors=1, color=[c]) | ||||
|             assert result == [c] | ||||
|  | ||||
|             result = get_standard_colors(num_colors=3, color=c) | ||||
|             assert result == [c] * 3 | ||||
|  | ||||
|             result = get_standard_colors(num_colors=3, color=[c]) | ||||
|             assert result == [c] * 3 | ||||
|  | ||||
|         # single letter colors like k | ||||
|         for c in colors.ColorConverter.colors: | ||||
|             result = get_standard_colors(num_colors=1, color=c) | ||||
|             assert result == [c] | ||||
|  | ||||
|             result = get_standard_colors(num_colors=1, color=[c]) | ||||
|             assert result == [c] | ||||
|  | ||||
|             result = get_standard_colors(num_colors=3, color=c) | ||||
|             assert result == [c] * 3 | ||||
|  | ||||
|             result = get_standard_colors(num_colors=3, color=[c]) | ||||
|             assert result == [c] * 3 | ||||
|  | ||||
|     def test_series_plot_color_kwargs(self): | ||||
|         # GH1890 | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = Series(np.arange(12) + 1).plot(color="green", ax=ax) | ||||
|         _check_colors(ax.get_lines(), linecolors=["green"]) | ||||
|  | ||||
|     def test_time_series_plot_color_kwargs(self): | ||||
|         # #1890 | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = Series(np.arange(12) + 1, index=date_range("1/1/2000", periods=12)).plot( | ||||
|             color="green", ax=ax | ||||
|         ) | ||||
|         _check_colors(ax.get_lines(), linecolors=["green"]) | ||||
|  | ||||
|     def test_time_series_plot_color_with_empty_kwargs(self): | ||||
|         import matplotlib as mpl | ||||
|  | ||||
|         def_colors = _unpack_cycler(mpl.rcParams) | ||||
|         index = date_range("1/1/2000", periods=12) | ||||
|         s = Series(np.arange(1, 13), index=index) | ||||
|  | ||||
|         ncolors = 3 | ||||
|  | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         for i in range(ncolors): | ||||
|             ax = s.plot(ax=ax) | ||||
|         _check_colors(ax.get_lines(), linecolors=def_colors[:ncolors]) | ||||
|  | ||||
|     def test_xticklabels(self): | ||||
|         # GH11529 | ||||
|         s = Series(np.arange(10), index=[f"P{i:02d}" for i in range(10)]) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = s.plot(xticks=[0, 3, 5, 9], ax=ax) | ||||
|         exp = [f"P{i:02d}" for i in [0, 3, 5, 9]] | ||||
|         _check_text_labels(ax.get_xticklabels(), exp) | ||||
|  | ||||
|     def test_xtick_barPlot(self): | ||||
|         # GH28172 | ||||
|         s = Series(range(10), index=[f"P{i:02d}" for i in range(10)]) | ||||
|         ax = s.plot.bar(xticks=range(0, 11, 2)) | ||||
|         exp = np.array(list(range(0, 11, 2))) | ||||
|         tm.assert_numpy_array_equal(exp, ax.get_xticks()) | ||||
|  | ||||
|     def test_custom_business_day_freq(self): | ||||
|         # GH7222 | ||||
|         from pandas.tseries.offsets import CustomBusinessDay | ||||
|  | ||||
|         s = Series( | ||||
|             range(100, 121), | ||||
|             index=pd.bdate_range( | ||||
|                 start="2014-05-01", | ||||
|                 end="2014-06-01", | ||||
|                 freq=CustomBusinessDay(holidays=["2014-05-26"]), | ||||
|             ), | ||||
|         ) | ||||
|  | ||||
|         _check_plot_works(s.plot) | ||||
|  | ||||
|     @pytest.mark.xfail( | ||||
|         reason="GH#24426, see also " | ||||
|         "github.com/pandas-dev/pandas/commit/" | ||||
|         "ef1bd69fa42bbed5d09dd17f08c44fc8bfc2b685#r61470674" | ||||
|     ) | ||||
|     def test_plot_accessor_updates_on_inplace(self): | ||||
|         ser = Series([1, 2, 3, 4]) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         ax = ser.plot(ax=ax) | ||||
|         before = ax.xaxis.get_ticklocs() | ||||
|  | ||||
|         ser.drop([0, 1], inplace=True) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         after = ax.xaxis.get_ticklocs() | ||||
|         tm.assert_numpy_array_equal(before, after) | ||||
|  | ||||
|     @pytest.mark.parametrize("kind", ["line", "area"]) | ||||
|     def test_plot_xlim_for_series(self, kind): | ||||
|         # test if xlim is also correctly plotted in Series for line and area | ||||
|         # GH 27686 | ||||
|         s = Series([2, 3]) | ||||
|         _, ax = mpl.pyplot.subplots() | ||||
|         s.plot(kind=kind, ax=ax) | ||||
|         xlims = ax.get_xlim() | ||||
|  | ||||
|         assert xlims[0] < 0 | ||||
|         assert xlims[1] > 1 | ||||
|  | ||||
|     def test_plot_no_rows(self): | ||||
|         # GH 27758 | ||||
|         df = Series(dtype=int) | ||||
|         assert df.empty | ||||
|         ax = df.plot() | ||||
|         assert len(ax.get_lines()) == 1 | ||||
|         line = ax.get_lines()[0] | ||||
|         assert len(line.get_xdata()) == 0 | ||||
|         assert len(line.get_ydata()) == 0 | ||||
|  | ||||
|     def test_plot_no_numeric_data(self): | ||||
|         df = Series(["a", "b", "c"]) | ||||
|         with pytest.raises(TypeError, match="no numeric data to plot"): | ||||
|             df.plot() | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "data, index", | ||||
|         [ | ||||
|             ([1, 2, 3, 4], [3, 2, 1, 0]), | ||||
|             ([10, 50, 20, 30], [1910, 1920, 1980, 1950]), | ||||
|         ], | ||||
|     ) | ||||
|     def test_plot_order(self, data, index): | ||||
|         # GH38865 Verify plot order of a Series | ||||
|         ser = Series(data=data, index=index) | ||||
|         ax = ser.plot(kind="bar") | ||||
|  | ||||
|         expected = ser.tolist() | ||||
|         result = [ | ||||
|             patch.get_bbox().ymax | ||||
|             for patch in sorted(ax.patches, key=lambda patch: patch.get_bbox().xmax) | ||||
|         ] | ||||
|         assert expected == result | ||||
|  | ||||
|     def test_style_single_ok(self): | ||||
|         s = Series([1, 2]) | ||||
|         ax = s.plot(style="s", color="C3") | ||||
|         assert ax.lines[0].get_color() == "C3" | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "index_name, old_label, new_label", | ||||
|         [(None, "", "new"), ("old", "old", "new"), (None, "", "")], | ||||
|     ) | ||||
|     @pytest.mark.parametrize("kind", ["line", "area", "bar", "barh", "hist"]) | ||||
|     def test_xlabel_ylabel_series(self, kind, index_name, old_label, new_label): | ||||
|         # GH 9093 | ||||
|         ser = Series([1, 2, 3, 4]) | ||||
|         ser.index.name = index_name | ||||
|  | ||||
|         # default is the ylabel is not shown and xlabel is index name (reverse for barh) | ||||
|         ax = ser.plot(kind=kind) | ||||
|         if kind == "barh": | ||||
|             assert ax.get_xlabel() == "" | ||||
|             assert ax.get_ylabel() == old_label | ||||
|         elif kind == "hist": | ||||
|             assert ax.get_xlabel() == "" | ||||
|             assert ax.get_ylabel() == "Frequency" | ||||
|         else: | ||||
|             assert ax.get_ylabel() == "" | ||||
|             assert ax.get_xlabel() == old_label | ||||
|  | ||||
|         # old xlabel will be overridden and assigned ylabel will be used as ylabel | ||||
|         ax = ser.plot(kind=kind, ylabel=new_label, xlabel=new_label) | ||||
|         assert ax.get_ylabel() == new_label | ||||
|         assert ax.get_xlabel() == new_label | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "index", | ||||
|         [ | ||||
|             pd.timedelta_range(start=0, periods=2, freq="D"), | ||||
|             [pd.Timedelta(days=1), pd.Timedelta(days=2)], | ||||
|         ], | ||||
|     ) | ||||
|     def test_timedelta_index(self, index): | ||||
|         # GH37454 | ||||
|         xlims = (3, 1) | ||||
|         ax = Series([1, 2], index=index).plot(xlim=(xlims)) | ||||
|         assert ax.get_xlim() == (3, 1) | ||||
|  | ||||
|     def test_series_none_color(self): | ||||
|         # GH51953 | ||||
|         series = Series([1, 2, 3]) | ||||
|         ax = series.plot(color=None) | ||||
|         expected = _unpack_cycler(mpl.pyplot.rcParams)[:1] | ||||
|         _check_colors(ax.get_lines(), linecolors=expected) | ||||
|  | ||||
|     @pytest.mark.slow | ||||
|     def test_plot_no_warning(self, ts): | ||||
|         # GH 55138 | ||||
|         # TODO(3.0): this can be removed once Period[B] deprecation is enforced | ||||
|         with tm.assert_produces_warning(False): | ||||
|             _ = ts.plot() | ||||
							
								
								
									
										157
									
								
								lib/python3.11/site-packages/pandas/tests/plotting/test_style.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										157
									
								
								lib/python3.11/site-packages/pandas/tests/plotting/test_style.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,157 @@ | ||||
| import pytest | ||||
|  | ||||
| from pandas import Series | ||||
|  | ||||
| pytest.importorskip("matplotlib") | ||||
| from pandas.plotting._matplotlib.style import get_standard_colors | ||||
|  | ||||
|  | ||||
| class TestGetStandardColors: | ||||
|     @pytest.mark.parametrize( | ||||
|         "num_colors, expected", | ||||
|         [ | ||||
|             (3, ["red", "green", "blue"]), | ||||
|             (5, ["red", "green", "blue", "red", "green"]), | ||||
|             (7, ["red", "green", "blue", "red", "green", "blue", "red"]), | ||||
|             (2, ["red", "green"]), | ||||
|             (1, ["red"]), | ||||
|         ], | ||||
|     ) | ||||
|     def test_default_colors_named_from_prop_cycle(self, num_colors, expected): | ||||
|         import matplotlib as mpl | ||||
|         from matplotlib.pyplot import cycler | ||||
|  | ||||
|         mpl_params = { | ||||
|             "axes.prop_cycle": cycler(color=["red", "green", "blue"]), | ||||
|         } | ||||
|         with mpl.rc_context(rc=mpl_params): | ||||
|             result = get_standard_colors(num_colors=num_colors) | ||||
|             assert result == expected | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "num_colors, expected", | ||||
|         [ | ||||
|             (1, ["b"]), | ||||
|             (3, ["b", "g", "r"]), | ||||
|             (4, ["b", "g", "r", "y"]), | ||||
|             (5, ["b", "g", "r", "y", "b"]), | ||||
|             (7, ["b", "g", "r", "y", "b", "g", "r"]), | ||||
|         ], | ||||
|     ) | ||||
|     def test_default_colors_named_from_prop_cycle_string(self, num_colors, expected): | ||||
|         import matplotlib as mpl | ||||
|         from matplotlib.pyplot import cycler | ||||
|  | ||||
|         mpl_params = { | ||||
|             "axes.prop_cycle": cycler(color="bgry"), | ||||
|         } | ||||
|         with mpl.rc_context(rc=mpl_params): | ||||
|             result = get_standard_colors(num_colors=num_colors) | ||||
|             assert result == expected | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "num_colors, expected_name", | ||||
|         [ | ||||
|             (1, ["C0"]), | ||||
|             (3, ["C0", "C1", "C2"]), | ||||
|             ( | ||||
|                 12, | ||||
|                 [ | ||||
|                     "C0", | ||||
|                     "C1", | ||||
|                     "C2", | ||||
|                     "C3", | ||||
|                     "C4", | ||||
|                     "C5", | ||||
|                     "C6", | ||||
|                     "C7", | ||||
|                     "C8", | ||||
|                     "C9", | ||||
|                     "C0", | ||||
|                     "C1", | ||||
|                 ], | ||||
|             ), | ||||
|         ], | ||||
|     ) | ||||
|     def test_default_colors_named_undefined_prop_cycle(self, num_colors, expected_name): | ||||
|         import matplotlib as mpl | ||||
|         import matplotlib.colors as mcolors | ||||
|  | ||||
|         with mpl.rc_context(rc={}): | ||||
|             expected = [mcolors.to_hex(x) for x in expected_name] | ||||
|             result = get_standard_colors(num_colors=num_colors) | ||||
|             assert result == expected | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "num_colors, expected", | ||||
|         [ | ||||
|             (1, ["red", "green", (0.1, 0.2, 0.3)]), | ||||
|             (2, ["red", "green", (0.1, 0.2, 0.3)]), | ||||
|             (3, ["red", "green", (0.1, 0.2, 0.3)]), | ||||
|             (4, ["red", "green", (0.1, 0.2, 0.3), "red"]), | ||||
|         ], | ||||
|     ) | ||||
|     def test_user_input_color_sequence(self, num_colors, expected): | ||||
|         color = ["red", "green", (0.1, 0.2, 0.3)] | ||||
|         result = get_standard_colors(color=color, num_colors=num_colors) | ||||
|         assert result == expected | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "num_colors, expected", | ||||
|         [ | ||||
|             (1, ["r", "g", "b", "k"]), | ||||
|             (2, ["r", "g", "b", "k"]), | ||||
|             (3, ["r", "g", "b", "k"]), | ||||
|             (4, ["r", "g", "b", "k"]), | ||||
|             (5, ["r", "g", "b", "k", "r"]), | ||||
|             (6, ["r", "g", "b", "k", "r", "g"]), | ||||
|         ], | ||||
|     ) | ||||
|     def test_user_input_color_string(self, num_colors, expected): | ||||
|         color = "rgbk" | ||||
|         result = get_standard_colors(color=color, num_colors=num_colors) | ||||
|         assert result == expected | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "num_colors, expected", | ||||
|         [ | ||||
|             (1, [(0.1, 0.2, 0.3)]), | ||||
|             (2, [(0.1, 0.2, 0.3), (0.1, 0.2, 0.3)]), | ||||
|             (3, [(0.1, 0.2, 0.3), (0.1, 0.2, 0.3), (0.1, 0.2, 0.3)]), | ||||
|         ], | ||||
|     ) | ||||
|     def test_user_input_color_floats(self, num_colors, expected): | ||||
|         color = (0.1, 0.2, 0.3) | ||||
|         result = get_standard_colors(color=color, num_colors=num_colors) | ||||
|         assert result == expected | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "color, num_colors, expected", | ||||
|         [ | ||||
|             ("Crimson", 1, ["Crimson"]), | ||||
|             ("DodgerBlue", 2, ["DodgerBlue", "DodgerBlue"]), | ||||
|             ("firebrick", 3, ["firebrick", "firebrick", "firebrick"]), | ||||
|         ], | ||||
|     ) | ||||
|     def test_user_input_named_color_string(self, color, num_colors, expected): | ||||
|         result = get_standard_colors(color=color, num_colors=num_colors) | ||||
|         assert result == expected | ||||
|  | ||||
|     @pytest.mark.parametrize("color", ["", [], (), Series([], dtype="object")]) | ||||
|     def test_empty_color_raises(self, color): | ||||
|         with pytest.raises(ValueError, match="Invalid color argument"): | ||||
|             get_standard_colors(color=color, num_colors=1) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "color", | ||||
|         [ | ||||
|             "bad_color", | ||||
|             ("red", "green", "bad_color"), | ||||
|             (0.1,), | ||||
|             (0.1, 0.2), | ||||
|             (0.1, 0.2, 0.3, 0.4, 0.5),  # must be either 3 or 4 floats | ||||
|         ], | ||||
|     ) | ||||
|     def test_bad_color_raises(self, color): | ||||
|         with pytest.raises(ValueError, match="Invalid color"): | ||||
|             get_standard_colors(color=color, num_colors=5) | ||||
		Reference in New Issue
	
	Block a user