done
This commit is contained in:
		| @ -0,0 +1,87 @@ | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas._libs import index as libindex | ||||
| from pandas.errors import SettingWithCopyError | ||||
| import pandas.util._test_decorators as td | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     MultiIndex, | ||||
|     Series, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
|  | ||||
|  | ||||
| def test_detect_chained_assignment(using_copy_on_write, warn_copy_on_write): | ||||
|     # Inplace ops, originally from: | ||||
|     # https://stackoverflow.com/questions/20508968/series-fillna-in-a-multiindex-dataframe-does-not-fill-is-this-a-bug | ||||
|     a = [12, 23] | ||||
|     b = [123, None] | ||||
|     c = [1234, 2345] | ||||
|     d = [12345, 23456] | ||||
|     tuples = [("eyes", "left"), ("eyes", "right"), ("ears", "left"), ("ears", "right")] | ||||
|     events = { | ||||
|         ("eyes", "left"): a, | ||||
|         ("eyes", "right"): b, | ||||
|         ("ears", "left"): c, | ||||
|         ("ears", "right"): d, | ||||
|     } | ||||
|     multiind = MultiIndex.from_tuples(tuples, names=["part", "side"]) | ||||
|     zed = DataFrame(events, index=["a", "b"], columns=multiind) | ||||
|  | ||||
|     if using_copy_on_write: | ||||
|         with tm.raises_chained_assignment_error(): | ||||
|             zed["eyes"]["right"].fillna(value=555, inplace=True) | ||||
|     elif warn_copy_on_write: | ||||
|         with tm.assert_produces_warning(None): | ||||
|             zed["eyes"]["right"].fillna(value=555, inplace=True) | ||||
|     else: | ||||
|         msg = "A value is trying to be set on a copy of a slice from a DataFrame" | ||||
|         with pytest.raises(SettingWithCopyError, match=msg): | ||||
|             with tm.assert_produces_warning(None): | ||||
|                 zed["eyes"]["right"].fillna(value=555, inplace=True) | ||||
|  | ||||
|  | ||||
| @td.skip_array_manager_invalid_test  # with ArrayManager df.loc[0] is not a view | ||||
| def test_cache_updating(using_copy_on_write, warn_copy_on_write): | ||||
|     # 5216 | ||||
|     # make sure that we don't try to set a dead cache | ||||
|     a = np.random.default_rng(2).random((10, 3)) | ||||
|     df = DataFrame(a, columns=["x", "y", "z"]) | ||||
|     df_original = df.copy() | ||||
|     tuples = [(i, j) for i in range(5) for j in range(2)] | ||||
|     index = MultiIndex.from_tuples(tuples) | ||||
|     df.index = index | ||||
|  | ||||
|     # setting via chained assignment | ||||
|     # but actually works, since everything is a view | ||||
|  | ||||
|     with tm.raises_chained_assignment_error(): | ||||
|         df.loc[0]["z"].iloc[0] = 1.0 | ||||
|  | ||||
|     if using_copy_on_write: | ||||
|         assert df.loc[(0, 0), "z"] == df_original.loc[0, "z"] | ||||
|     else: | ||||
|         result = df.loc[(0, 0), "z"] | ||||
|         assert result == 1 | ||||
|  | ||||
|     # correct setting | ||||
|     df.loc[(0, 0), "z"] = 2 | ||||
|     result = df.loc[(0, 0), "z"] | ||||
|     assert result == 2 | ||||
|  | ||||
|  | ||||
| def test_indexer_caching(monkeypatch): | ||||
|     # GH5727 | ||||
|     # make sure that indexers are in the _internal_names_set | ||||
|     size_cutoff = 20 | ||||
|     with monkeypatch.context(): | ||||
|         monkeypatch.setattr(libindex, "_SIZE_CUTOFF", size_cutoff) | ||||
|         index = MultiIndex.from_arrays([np.arange(size_cutoff), np.arange(size_cutoff)]) | ||||
|         s = Series(np.zeros(size_cutoff), index=index) | ||||
|  | ||||
|         # setitem | ||||
|         s[s == 0] = 1 | ||||
|     expected = Series(np.ones(size_cutoff), index=index) | ||||
|     tm.assert_series_equal(s, expected) | ||||
| @ -0,0 +1,50 @@ | ||||
| from datetime import datetime | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Index, | ||||
|     MultiIndex, | ||||
|     Period, | ||||
|     Series, | ||||
|     period_range, | ||||
|     to_datetime, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
|  | ||||
|  | ||||
| def test_multiindex_period_datetime(): | ||||
|     # GH4861, using datetime in period of multiindex raises exception | ||||
|  | ||||
|     idx1 = Index(["a", "a", "a", "b", "b"]) | ||||
|     idx2 = period_range("2012-01", periods=len(idx1), freq="M") | ||||
|     s = Series(np.random.default_rng(2).standard_normal(len(idx1)), [idx1, idx2]) | ||||
|  | ||||
|     # try Period as index | ||||
|     expected = s.iloc[0] | ||||
|     result = s.loc["a", Period("2012-01")] | ||||
|     assert result == expected | ||||
|  | ||||
|     # try datetime as index | ||||
|     result = s.loc["a", datetime(2012, 1, 1)] | ||||
|     assert result == expected | ||||
|  | ||||
|  | ||||
| def test_multiindex_datetime_columns(): | ||||
|     # GH35015, using datetime as column indices raises exception | ||||
|  | ||||
|     mi = MultiIndex.from_tuples( | ||||
|         [(to_datetime("02/29/2020"), to_datetime("03/01/2020"))], names=["a", "b"] | ||||
|     ) | ||||
|  | ||||
|     df = DataFrame([], columns=mi) | ||||
|  | ||||
|     expected_df = DataFrame( | ||||
|         [], | ||||
|         columns=MultiIndex.from_arrays( | ||||
|             [[to_datetime("02/29/2020")], [to_datetime("03/01/2020")]], names=["a", "b"] | ||||
|         ), | ||||
|     ) | ||||
|  | ||||
|     tm.assert_frame_equal(df, expected_df) | ||||
| @ -0,0 +1,410 @@ | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Index, | ||||
|     MultiIndex, | ||||
|     Series, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
| from pandas.core.indexing import IndexingError | ||||
|  | ||||
| # ---------------------------------------------------------------------------- | ||||
| # test indexing of Series with multi-level Index | ||||
| # ---------------------------------------------------------------------------- | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize( | ||||
|     "access_method", | ||||
|     [lambda s, x: s[:, x], lambda s, x: s.loc[:, x], lambda s, x: s.xs(x, level=1)], | ||||
| ) | ||||
| @pytest.mark.parametrize( | ||||
|     "level1_value, expected", | ||||
|     [(0, Series([1], index=[0])), (1, Series([2, 3], index=[1, 2]))], | ||||
| ) | ||||
| def test_series_getitem_multiindex(access_method, level1_value, expected): | ||||
|     # GH 6018 | ||||
|     # series regression getitem with a multi-index | ||||
|  | ||||
|     mi = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 1)], names=["A", "B"]) | ||||
|     ser = Series([1, 2, 3], index=mi) | ||||
|     expected.index.name = "A" | ||||
|  | ||||
|     result = access_method(ser, level1_value) | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize("level0_value", ["D", "A"]) | ||||
| def test_series_getitem_duplicates_multiindex(level0_value): | ||||
|     # GH 5725 the 'A' happens to be a valid Timestamp so the doesn't raise | ||||
|     # the appropriate error, only in PY3 of course! | ||||
|  | ||||
|     index = MultiIndex( | ||||
|         levels=[[level0_value, "B", "C"], [0, 26, 27, 37, 57, 67, 75, 82]], | ||||
|         codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], | ||||
|         names=["tag", "day"], | ||||
|     ) | ||||
|     arr = np.random.default_rng(2).standard_normal((len(index), 1)) | ||||
|     df = DataFrame(arr, index=index, columns=["val"]) | ||||
|  | ||||
|     # confirm indexing on missing value raises KeyError | ||||
|     if level0_value != "A": | ||||
|         with pytest.raises(KeyError, match=r"^'A'$"): | ||||
|             df.val["A"] | ||||
|  | ||||
|     with pytest.raises(KeyError, match=r"^'X'$"): | ||||
|         df.val["X"] | ||||
|  | ||||
|     result = df.val[level0_value] | ||||
|     expected = Series( | ||||
|         arr.ravel()[0:3], name="val", index=Index([26, 37, 57], name="day") | ||||
|     ) | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_series_getitem(multiindex_year_month_day_dataframe_random_data, indexer_sl): | ||||
|     s = multiindex_year_month_day_dataframe_random_data["A"] | ||||
|     expected = s.reindex(s.index[42:65]) | ||||
|     expected.index = expected.index.droplevel(0).droplevel(0) | ||||
|  | ||||
|     result = indexer_sl(s)[2000, 3] | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_series_getitem_returns_scalar( | ||||
|     multiindex_year_month_day_dataframe_random_data, indexer_sl | ||||
| ): | ||||
|     s = multiindex_year_month_day_dataframe_random_data["A"] | ||||
|     expected = s.iloc[49] | ||||
|  | ||||
|     result = indexer_sl(s)[2000, 3, 10] | ||||
|     assert result == expected | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize( | ||||
|     "indexer,expected_error,expected_error_msg", | ||||
|     [ | ||||
|         (lambda s: s.__getitem__((2000, 3, 4)), KeyError, r"^\(2000, 3, 4\)$"), | ||||
|         (lambda s: s[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"), | ||||
|         (lambda s: s.loc[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"), | ||||
|         (lambda s: s.loc[(2000, 3, 4, 5)], IndexingError, "Too many indexers"), | ||||
|         (lambda s: s.__getitem__(len(s)), KeyError, ""),  # match should include len(s) | ||||
|         (lambda s: s[len(s)], KeyError, ""),  # match should include len(s) | ||||
|         ( | ||||
|             lambda s: s.iloc[len(s)], | ||||
|             IndexError, | ||||
|             "single positional indexer is out-of-bounds", | ||||
|         ), | ||||
|     ], | ||||
| ) | ||||
| def test_series_getitem_indexing_errors( | ||||
|     multiindex_year_month_day_dataframe_random_data, | ||||
|     indexer, | ||||
|     expected_error, | ||||
|     expected_error_msg, | ||||
| ): | ||||
|     s = multiindex_year_month_day_dataframe_random_data["A"] | ||||
|     with pytest.raises(expected_error, match=expected_error_msg): | ||||
|         indexer(s) | ||||
|  | ||||
|  | ||||
| def test_series_getitem_corner_generator( | ||||
|     multiindex_year_month_day_dataframe_random_data, | ||||
| ): | ||||
|     s = multiindex_year_month_day_dataframe_random_data["A"] | ||||
|     result = s[(x > 0 for x in s)] | ||||
|     expected = s[s > 0] | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| # ---------------------------------------------------------------------------- | ||||
| # test indexing of DataFrame with multi-level Index | ||||
| # ---------------------------------------------------------------------------- | ||||
|  | ||||
|  | ||||
| def test_getitem_simple(multiindex_dataframe_random_data): | ||||
|     df = multiindex_dataframe_random_data.T | ||||
|     expected = df.values[:, 0] | ||||
|     result = df["foo", "one"].values | ||||
|     tm.assert_almost_equal(result, expected) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize( | ||||
|     "indexer,expected_error_msg", | ||||
|     [ | ||||
|         (lambda df: df[("foo", "four")], r"^\('foo', 'four'\)$"), | ||||
|         (lambda df: df["foobar"], r"^'foobar'$"), | ||||
|     ], | ||||
| ) | ||||
| def test_frame_getitem_simple_key_error( | ||||
|     multiindex_dataframe_random_data, indexer, expected_error_msg | ||||
| ): | ||||
|     df = multiindex_dataframe_random_data.T | ||||
|     with pytest.raises(KeyError, match=expected_error_msg): | ||||
|         indexer(df) | ||||
|  | ||||
|  | ||||
| def test_tuple_string_column_names(): | ||||
|     # GH#50372 | ||||
|     mi = MultiIndex.from_tuples([("a", "aa"), ("a", "ab"), ("b", "ba"), ("b", "bb")]) | ||||
|     df = DataFrame([range(4), range(1, 5), range(2, 6)], columns=mi) | ||||
|     df["single_index"] = 0 | ||||
|  | ||||
|     df_flat = df.copy() | ||||
|     df_flat.columns = df_flat.columns.to_flat_index() | ||||
|     df_flat["new_single_index"] = 0 | ||||
|  | ||||
|     result = df_flat[[("a", "aa"), "new_single_index"]] | ||||
|     expected = DataFrame( | ||||
|         [[0, 0], [1, 0], [2, 0]], columns=Index([("a", "aa"), "new_single_index"]) | ||||
|     ) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_frame_getitem_multicolumn_empty_level(): | ||||
|     df = DataFrame({"a": ["1", "2", "3"], "b": ["2", "3", "4"]}) | ||||
|     df.columns = [ | ||||
|         ["level1 item1", "level1 item2"], | ||||
|         ["", "level2 item2"], | ||||
|         ["level3 item1", "level3 item2"], | ||||
|     ] | ||||
|  | ||||
|     result = df["level1 item1"] | ||||
|     expected = DataFrame( | ||||
|         [["1"], ["2"], ["3"]], index=df.index, columns=["level3 item1"] | ||||
|     ) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize( | ||||
|     "indexer,expected_slice", | ||||
|     [ | ||||
|         (lambda df: df["foo"], slice(3)), | ||||
|         (lambda df: df["bar"], slice(3, 5)), | ||||
|         (lambda df: df.loc[:, "bar"], slice(3, 5)), | ||||
|     ], | ||||
| ) | ||||
| def test_frame_getitem_toplevel( | ||||
|     multiindex_dataframe_random_data, indexer, expected_slice | ||||
| ): | ||||
|     df = multiindex_dataframe_random_data.T | ||||
|     expected = df.reindex(columns=df.columns[expected_slice]) | ||||
|     expected.columns = expected.columns.droplevel(0) | ||||
|     result = indexer(df) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_frame_mixed_depth_get(): | ||||
|     arrays = [ | ||||
|         ["a", "top", "top", "routine1", "routine1", "routine2"], | ||||
|         ["", "OD", "OD", "result1", "result2", "result1"], | ||||
|         ["", "wx", "wy", "", "", ""], | ||||
|     ] | ||||
|  | ||||
|     tuples = sorted(zip(*arrays)) | ||||
|     index = MultiIndex.from_tuples(tuples) | ||||
|     df = DataFrame(np.random.default_rng(2).standard_normal((4, 6)), columns=index) | ||||
|  | ||||
|     result = df["a"] | ||||
|     expected = df["a", "", ""].rename("a") | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|     result = df["routine1", "result1"] | ||||
|     expected = df["routine1", "result1", ""] | ||||
|     expected = expected.rename(("routine1", "result1")) | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_frame_getitem_nan_multiindex(nulls_fixture): | ||||
|     # GH#29751 | ||||
|     # loc on a multiindex containing nan values | ||||
|     n = nulls_fixture  # for code readability | ||||
|     cols = ["a", "b", "c"] | ||||
|     df = DataFrame( | ||||
|         [[11, n, 13], [21, n, 23], [31, n, 33], [41, n, 43]], | ||||
|         columns=cols, | ||||
|     ).set_index(["a", "b"]) | ||||
|     df["c"] = df["c"].astype("int64") | ||||
|  | ||||
|     idx = (21, n) | ||||
|     result = df.loc[:idx] | ||||
|     expected = DataFrame([[11, n, 13], [21, n, 23]], columns=cols).set_index(["a", "b"]) | ||||
|     expected["c"] = expected["c"].astype("int64") | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     result = df.loc[idx:] | ||||
|     expected = DataFrame( | ||||
|         [[21, n, 23], [31, n, 33], [41, n, 43]], columns=cols | ||||
|     ).set_index(["a", "b"]) | ||||
|     expected["c"] = expected["c"].astype("int64") | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     idx1, idx2 = (21, n), (31, n) | ||||
|     result = df.loc[idx1:idx2] | ||||
|     expected = DataFrame([[21, n, 23], [31, n, 33]], columns=cols).set_index(["a", "b"]) | ||||
|     expected["c"] = expected["c"].astype("int64") | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize( | ||||
|     "indexer,expected", | ||||
|     [ | ||||
|         ( | ||||
|             (["b"], ["bar", np.nan]), | ||||
|             ( | ||||
|                 DataFrame( | ||||
|                     [[2, 3], [5, 6]], | ||||
|                     columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]), | ||||
|                     dtype="int64", | ||||
|                 ) | ||||
|             ), | ||||
|         ), | ||||
|         ( | ||||
|             (["a", "b"]), | ||||
|             ( | ||||
|                 DataFrame( | ||||
|                     [[1, 2, 3], [4, 5, 6]], | ||||
|                     columns=MultiIndex.from_tuples( | ||||
|                         [("a", "foo"), ("b", "bar"), ("b", np.nan)] | ||||
|                     ), | ||||
|                     dtype="int64", | ||||
|                 ) | ||||
|             ), | ||||
|         ), | ||||
|         ( | ||||
|             (["b"]), | ||||
|             ( | ||||
|                 DataFrame( | ||||
|                     [[2, 3], [5, 6]], | ||||
|                     columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]), | ||||
|                     dtype="int64", | ||||
|                 ) | ||||
|             ), | ||||
|         ), | ||||
|         ( | ||||
|             (["b"], ["bar"]), | ||||
|             ( | ||||
|                 DataFrame( | ||||
|                     [[2], [5]], | ||||
|                     columns=MultiIndex.from_tuples([("b", "bar")]), | ||||
|                     dtype="int64", | ||||
|                 ) | ||||
|             ), | ||||
|         ), | ||||
|         ( | ||||
|             (["b"], [np.nan]), | ||||
|             ( | ||||
|                 DataFrame( | ||||
|                     [[3], [6]], | ||||
|                     columns=MultiIndex( | ||||
|                         codes=[[1], [-1]], levels=[["a", "b"], ["bar", "foo"]] | ||||
|                     ), | ||||
|                     dtype="int64", | ||||
|                 ) | ||||
|             ), | ||||
|         ), | ||||
|         (("b", np.nan), Series([3, 6], dtype="int64", name=("b", np.nan))), | ||||
|     ], | ||||
| ) | ||||
| def test_frame_getitem_nan_cols_multiindex( | ||||
|     indexer, | ||||
|     expected, | ||||
|     nulls_fixture, | ||||
| ): | ||||
|     # Slicing MultiIndex including levels with nan values, for more information | ||||
|     # see GH#25154 | ||||
|     df = DataFrame( | ||||
|         [[1, 2, 3], [4, 5, 6]], | ||||
|         columns=MultiIndex.from_tuples( | ||||
|             [("a", "foo"), ("b", "bar"), ("b", nulls_fixture)] | ||||
|         ), | ||||
|         dtype="int64", | ||||
|     ) | ||||
|  | ||||
|     result = df.loc[:, indexer] | ||||
|     tm.assert_equal(result, expected) | ||||
|  | ||||
|  | ||||
| # ---------------------------------------------------------------------------- | ||||
| # test indexing of DataFrame with multi-level Index with duplicates | ||||
| # ---------------------------------------------------------------------------- | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def dataframe_with_duplicate_index(): | ||||
|     """Fixture for DataFrame used in tests for gh-4145 and gh-4146""" | ||||
|     data = [["a", "d", "e", "c", "f", "b"], [1, 4, 5, 3, 6, 2], [1, 4, 5, 3, 6, 2]] | ||||
|     index = ["h1", "h3", "h5"] | ||||
|     columns = MultiIndex( | ||||
|         levels=[["A", "B"], ["A1", "A2", "B1", "B2"]], | ||||
|         codes=[[0, 0, 0, 1, 1, 1], [0, 3, 3, 0, 1, 2]], | ||||
|         names=["main", "sub"], | ||||
|     ) | ||||
|     return DataFrame(data, index=index, columns=columns) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize( | ||||
|     "indexer", [lambda df: df[("A", "A1")], lambda df: df.loc[:, ("A", "A1")]] | ||||
| ) | ||||
| def test_frame_mi_access(dataframe_with_duplicate_index, indexer): | ||||
|     # GH 4145 | ||||
|     df = dataframe_with_duplicate_index | ||||
|     index = Index(["h1", "h3", "h5"]) | ||||
|     columns = MultiIndex.from_tuples([("A", "A1")], names=["main", "sub"]) | ||||
|     expected = DataFrame([["a", 1, 1]], index=columns, columns=index).T | ||||
|  | ||||
|     result = indexer(df) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_frame_mi_access_returns_series(dataframe_with_duplicate_index): | ||||
|     # GH 4146, not returning a block manager when selecting a unique index | ||||
|     # from a duplicate index | ||||
|     # as of 4879, this returns a Series (which is similar to what happens | ||||
|     # with a non-unique) | ||||
|     df = dataframe_with_duplicate_index | ||||
|     expected = Series(["a", 1, 1], index=["h1", "h3", "h5"], name="A1") | ||||
|     result = df["A"]["A1"] | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_frame_mi_access_returns_frame(dataframe_with_duplicate_index): | ||||
|     # selecting a non_unique from the 2nd level | ||||
|     df = dataframe_with_duplicate_index | ||||
|     expected = DataFrame( | ||||
|         [["d", 4, 4], ["e", 5, 5]], | ||||
|         index=Index(["B2", "B2"], name="sub"), | ||||
|         columns=["h1", "h3", "h5"], | ||||
|     ).T | ||||
|     result = df["A"]["B2"] | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_frame_mi_empty_slice(): | ||||
|     # GH 15454 | ||||
|     df = DataFrame(0, index=range(2), columns=MultiIndex.from_product([[1], [2]])) | ||||
|     result = df[[]] | ||||
|     expected = DataFrame( | ||||
|         index=[0, 1], columns=MultiIndex(levels=[[1], [2]], codes=[[], []]) | ||||
|     ) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_loc_empty_multiindex(): | ||||
|     # GH#36936 | ||||
|     arrays = [["a", "a", "b", "a"], ["a", "a", "b", "b"]] | ||||
|     index = MultiIndex.from_arrays(arrays, names=("idx1", "idx2")) | ||||
|     df = DataFrame([1, 2, 3, 4], index=index, columns=["value"]) | ||||
|  | ||||
|     # loc on empty multiindex == loc with False mask | ||||
|     empty_multiindex = df.loc[df.loc[:, "value"] == 0, :].index | ||||
|     result = df.loc[empty_multiindex, :] | ||||
|     expected = df.loc[[False] * len(df.index), :] | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     # replacing value with loc on empty multiindex | ||||
|     df.loc[df.loc[df.loc[:, "value"] == 0].index, "value"] = 5 | ||||
|     result = df | ||||
|     expected = DataFrame([1, 2, 3, 4], index=index, columns=["value"]) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
| @ -0,0 +1,171 @@ | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     MultiIndex, | ||||
|     Series, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def simple_multiindex_dataframe(): | ||||
|     """ | ||||
|     Factory function to create simple 3 x 3 dataframe with | ||||
|     both columns and row MultiIndex using supplied data or | ||||
|     random data by default. | ||||
|     """ | ||||
|  | ||||
|     data = np.random.default_rng(2).standard_normal((3, 3)) | ||||
|     return DataFrame( | ||||
|         data, columns=[[2, 2, 4], [6, 8, 10]], index=[[4, 4, 8], [8, 10, 12]] | ||||
|     ) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize( | ||||
|     "indexer, expected", | ||||
|     [ | ||||
|         ( | ||||
|             lambda df: df.iloc[0], | ||||
|             lambda arr: Series(arr[0], index=[[2, 2, 4], [6, 8, 10]], name=(4, 8)), | ||||
|         ), | ||||
|         ( | ||||
|             lambda df: df.iloc[2], | ||||
|             lambda arr: Series(arr[2], index=[[2, 2, 4], [6, 8, 10]], name=(8, 12)), | ||||
|         ), | ||||
|         ( | ||||
|             lambda df: df.iloc[:, 2], | ||||
|             lambda arr: Series(arr[:, 2], index=[[4, 4, 8], [8, 10, 12]], name=(4, 10)), | ||||
|         ), | ||||
|     ], | ||||
| ) | ||||
| def test_iloc_returns_series(indexer, expected, simple_multiindex_dataframe): | ||||
|     df = simple_multiindex_dataframe | ||||
|     arr = df.values | ||||
|     result = indexer(df) | ||||
|     expected = expected(arr) | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_iloc_returns_dataframe(simple_multiindex_dataframe): | ||||
|     df = simple_multiindex_dataframe | ||||
|     result = df.iloc[[0, 1]] | ||||
|     expected = df.xs(4, drop_level=False) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_iloc_returns_scalar(simple_multiindex_dataframe): | ||||
|     df = simple_multiindex_dataframe | ||||
|     arr = df.values | ||||
|     result = df.iloc[2, 2] | ||||
|     expected = arr[2, 2] | ||||
|     assert result == expected | ||||
|  | ||||
|  | ||||
| def test_iloc_getitem_multiple_items(): | ||||
|     # GH 5528 | ||||
|     tup = zip(*[["a", "a", "b", "b"], ["x", "y", "x", "y"]]) | ||||
|     index = MultiIndex.from_tuples(tup) | ||||
|     df = DataFrame(np.random.default_rng(2).standard_normal((4, 4)), index=index) | ||||
|     result = df.iloc[[2, 3]] | ||||
|     expected = df.xs("b", drop_level=False) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_iloc_getitem_labels(): | ||||
|     # this is basically regular indexing | ||||
|     arr = np.random.default_rng(2).standard_normal((4, 3)) | ||||
|     df = DataFrame( | ||||
|         arr, | ||||
|         columns=[["i", "i", "j"], ["A", "A", "B"]], | ||||
|         index=[["i", "i", "j", "k"], ["X", "X", "Y", "Y"]], | ||||
|     ) | ||||
|     result = df.iloc[2, 2] | ||||
|     expected = arr[2, 2] | ||||
|     assert result == expected | ||||
|  | ||||
|  | ||||
| def test_frame_getitem_slice(multiindex_dataframe_random_data): | ||||
|     df = multiindex_dataframe_random_data | ||||
|     result = df.iloc[:4] | ||||
|     expected = df[:4] | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_frame_setitem_slice(multiindex_dataframe_random_data): | ||||
|     df = multiindex_dataframe_random_data | ||||
|     df.iloc[:4] = 0 | ||||
|  | ||||
|     assert (df.values[:4] == 0).all() | ||||
|     assert (df.values[4:] != 0).all() | ||||
|  | ||||
|  | ||||
| def test_indexing_ambiguity_bug_1678(): | ||||
|     # GH 1678 | ||||
|     columns = MultiIndex.from_tuples( | ||||
|         [("Ohio", "Green"), ("Ohio", "Red"), ("Colorado", "Green")] | ||||
|     ) | ||||
|     index = MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1), ("b", 2)]) | ||||
|  | ||||
|     df = DataFrame(np.arange(12).reshape((4, 3)), index=index, columns=columns) | ||||
|  | ||||
|     result = df.iloc[:, 1] | ||||
|     expected = df.loc[:, ("Ohio", "Red")] | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_iloc_integer_locations(): | ||||
|     # GH 13797 | ||||
|     data = [ | ||||
|         ["str00", "str01"], | ||||
|         ["str10", "str11"], | ||||
|         ["str20", "srt21"], | ||||
|         ["str30", "str31"], | ||||
|         ["str40", "str41"], | ||||
|     ] | ||||
|  | ||||
|     index = MultiIndex.from_tuples( | ||||
|         [("CC", "A"), ("CC", "B"), ("CC", "B"), ("BB", "a"), ("BB", "b")] | ||||
|     ) | ||||
|  | ||||
|     expected = DataFrame(data) | ||||
|     df = DataFrame(data, index=index) | ||||
|  | ||||
|     result = DataFrame([[df.iloc[r, c] for c in range(2)] for r in range(5)]) | ||||
|  | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize( | ||||
|     "data, indexes, values, expected_k", | ||||
|     [ | ||||
|         # test without indexer value in first level of MultiIndex | ||||
|         ([[2, 22, 5], [2, 33, 6]], [0, -1, 1], [2, 3, 1], [7, 10]), | ||||
|         # test like code sample 1 in the issue | ||||
|         ([[1, 22, 555], [1, 33, 666]], [0, -1, 1], [200, 300, 100], [755, 1066]), | ||||
|         # test like code sample 2 in the issue | ||||
|         ([[1, 3, 7], [2, 4, 8]], [0, -1, 1], [10, 10, 1000], [17, 1018]), | ||||
|         # test like code sample 3 in the issue | ||||
|         ([[1, 11, 4], [2, 22, 5], [3, 33, 6]], [0, -1, 1], [4, 7, 10], [8, 15, 13]), | ||||
|     ], | ||||
| ) | ||||
| def test_iloc_setitem_int_multiindex_series(data, indexes, values, expected_k): | ||||
|     # GH17148 | ||||
|     df = DataFrame(data=data, columns=["i", "j", "k"]) | ||||
|     df = df.set_index(["i", "j"]) | ||||
|  | ||||
|     series = df.k.copy() | ||||
|     for i, v in zip(indexes, values): | ||||
|         series.iloc[i] += v | ||||
|  | ||||
|     df["k"] = expected_k | ||||
|     expected = df.k | ||||
|     tm.assert_series_equal(series, expected) | ||||
|  | ||||
|  | ||||
| def test_getitem_iloc(multiindex_dataframe_random_data): | ||||
|     df = multiindex_dataframe_random_data | ||||
|     result = df.iloc[2] | ||||
|     expected = df.xs(df.index[2]) | ||||
|     tm.assert_series_equal(result, expected) | ||||
| @ -0,0 +1,118 @@ | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| import pandas as pd | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Series, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def m(): | ||||
|     return 5 | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def n(): | ||||
|     return 100 | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def cols(): | ||||
|     return ["jim", "joe", "jolie", "joline", "jolia"] | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def vals(n): | ||||
|     vals = [ | ||||
|         np.random.default_rng(2).integers(0, 10, n), | ||||
|         np.random.default_rng(2).choice(list("abcdefghij"), n), | ||||
|         np.random.default_rng(2).choice( | ||||
|             pd.date_range("20141009", periods=10).tolist(), n | ||||
|         ), | ||||
|         np.random.default_rng(2).choice(list("ZYXWVUTSRQ"), n), | ||||
|         np.random.default_rng(2).standard_normal(n), | ||||
|     ] | ||||
|     vals = list(map(tuple, zip(*vals))) | ||||
|     return vals | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def keys(n, m, vals): | ||||
|     # bunch of keys for testing | ||||
|     keys = [ | ||||
|         np.random.default_rng(2).integers(0, 11, m), | ||||
|         np.random.default_rng(2).choice(list("abcdefghijk"), m), | ||||
|         np.random.default_rng(2).choice( | ||||
|             pd.date_range("20141009", periods=11).tolist(), m | ||||
|         ), | ||||
|         np.random.default_rng(2).choice(list("ZYXWVUTSRQP"), m), | ||||
|     ] | ||||
|     keys = list(map(tuple, zip(*keys))) | ||||
|     keys += [t[:-1] for t in vals[:: n // m]] | ||||
|     return keys | ||||
|  | ||||
|  | ||||
| # covers both unique index and non-unique index | ||||
| @pytest.fixture | ||||
| def df(vals, cols): | ||||
|     return DataFrame(vals, columns=cols) | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def a(df): | ||||
|     return pd.concat([df, df]) | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def b(df, cols): | ||||
|     return df.drop_duplicates(subset=cols[:-1]) | ||||
|  | ||||
|  | ||||
| @pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning") | ||||
| @pytest.mark.parametrize("lexsort_depth", list(range(5))) | ||||
| @pytest.mark.parametrize("frame_fixture", ["a", "b"]) | ||||
| def test_multiindex_get_loc(request, lexsort_depth, keys, frame_fixture, cols): | ||||
|     # GH7724, GH2646 | ||||
|  | ||||
|     frame = request.getfixturevalue(frame_fixture) | ||||
|     if lexsort_depth == 0: | ||||
|         df = frame.copy(deep=False) | ||||
|     else: | ||||
|         df = frame.sort_values(by=cols[:lexsort_depth]) | ||||
|  | ||||
|     mi = df.set_index(cols[:-1]) | ||||
|     assert not mi.index._lexsort_depth < lexsort_depth | ||||
|     for key in keys: | ||||
|         mask = np.ones(len(df), dtype=bool) | ||||
|  | ||||
|         # test for all partials of this key | ||||
|         for i, k in enumerate(key): | ||||
|             mask &= df.iloc[:, i] == k | ||||
|  | ||||
|             if not mask.any(): | ||||
|                 assert key[: i + 1] not in mi.index | ||||
|                 continue | ||||
|  | ||||
|             assert key[: i + 1] in mi.index | ||||
|             right = df[mask].copy(deep=False) | ||||
|  | ||||
|             if i + 1 != len(key):  # partial key | ||||
|                 return_value = right.drop(cols[: i + 1], axis=1, inplace=True) | ||||
|                 assert return_value is None | ||||
|                 return_value = right.set_index(cols[i + 1 : -1], inplace=True) | ||||
|                 assert return_value is None | ||||
|                 tm.assert_frame_equal(mi.loc[key[: i + 1]], right) | ||||
|  | ||||
|             else:  # full key | ||||
|                 return_value = right.set_index(cols[:-1], inplace=True) | ||||
|                 assert return_value is None | ||||
|                 if len(right) == 1:  # single hit | ||||
|                     right = Series( | ||||
|                         right["jolia"].values, name=right.index[0], index=["jolia"] | ||||
|                     ) | ||||
|                     tm.assert_series_equal(mi.loc[key[: i + 1]], right) | ||||
|                 else:  # multi hit | ||||
|                     tm.assert_frame_equal(mi.loc[key[: i + 1]], right) | ||||
| @ -0,0 +1,992 @@ | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas.errors import ( | ||||
|     IndexingError, | ||||
|     PerformanceWarning, | ||||
| ) | ||||
|  | ||||
| import pandas as pd | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Index, | ||||
|     MultiIndex, | ||||
|     Series, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def single_level_multiindex(): | ||||
|     """single level MultiIndex""" | ||||
|     return MultiIndex( | ||||
|         levels=[["foo", "bar", "baz", "qux"]], codes=[[0, 1, 2, 3]], names=["first"] | ||||
|     ) | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def frame_random_data_integer_multi_index(): | ||||
|     levels = [[0, 1], [0, 1, 2]] | ||||
|     codes = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] | ||||
|     index = MultiIndex(levels=levels, codes=codes) | ||||
|     return DataFrame(np.random.default_rng(2).standard_normal((6, 2)), index=index) | ||||
|  | ||||
|  | ||||
| class TestMultiIndexLoc: | ||||
|     def test_loc_setitem_frame_with_multiindex(self, multiindex_dataframe_random_data): | ||||
|         frame = multiindex_dataframe_random_data | ||||
|         frame.loc[("bar", "two"), "B"] = 5 | ||||
|         assert frame.loc[("bar", "two"), "B"] == 5 | ||||
|  | ||||
|         # with integer labels | ||||
|         df = frame.copy() | ||||
|         df.columns = list(range(3)) | ||||
|         df.loc[("bar", "two"), 1] = 7 | ||||
|         assert df.loc[("bar", "two"), 1] == 7 | ||||
|  | ||||
|     def test_loc_getitem_general(self, any_real_numpy_dtype): | ||||
|         # GH#2817 | ||||
|         dtype = any_real_numpy_dtype | ||||
|         data = { | ||||
|             "amount": {0: 700, 1: 600, 2: 222, 3: 333, 4: 444}, | ||||
|             "col": {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0}, | ||||
|             "num": {0: 12, 1: 11, 2: 12, 3: 12, 4: 12}, | ||||
|         } | ||||
|         df = DataFrame(data) | ||||
|         df = df.astype({"col": dtype, "num": dtype}) | ||||
|         df = df.set_index(keys=["col", "num"]) | ||||
|         key = 4.0, 12 | ||||
|  | ||||
|         # emits a PerformanceWarning, ok | ||||
|         with tm.assert_produces_warning(PerformanceWarning): | ||||
|             tm.assert_frame_equal(df.loc[key], df.iloc[2:]) | ||||
|  | ||||
|         # this is ok | ||||
|         return_value = df.sort_index(inplace=True) | ||||
|         assert return_value is None | ||||
|         res = df.loc[key] | ||||
|  | ||||
|         # col has float dtype, result should be float64 Index | ||||
|         col_arr = np.array([4.0] * 3, dtype=dtype) | ||||
|         year_arr = np.array([12] * 3, dtype=dtype) | ||||
|         index = MultiIndex.from_arrays([col_arr, year_arr], names=["col", "num"]) | ||||
|         expected = DataFrame({"amount": [222, 333, 444]}, index=index) | ||||
|         tm.assert_frame_equal(res, expected) | ||||
|  | ||||
|     def test_loc_getitem_multiindex_missing_label_raises(self): | ||||
|         # GH#21593 | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 3)), | ||||
|             columns=[[2, 2, 4], [6, 8, 10]], | ||||
|             index=[[4, 4, 8], [8, 10, 12]], | ||||
|         ) | ||||
|  | ||||
|         with pytest.raises(KeyError, match=r"^2$"): | ||||
|             df.loc[2] | ||||
|  | ||||
|     def test_loc_getitem_list_of_tuples_with_multiindex( | ||||
|         self, multiindex_year_month_day_dataframe_random_data | ||||
|     ): | ||||
|         ser = multiindex_year_month_day_dataframe_random_data["A"] | ||||
|         expected = ser.reindex(ser.index[49:51]) | ||||
|         result = ser.loc[[(2000, 3, 10), (2000, 3, 13)]] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|     def test_loc_getitem_series(self): | ||||
|         # GH14730 | ||||
|         # passing a series as a key with a MultiIndex | ||||
|         index = MultiIndex.from_product([[1, 2, 3], ["A", "B", "C"]]) | ||||
|         x = Series(index=index, data=range(9), dtype=np.float64) | ||||
|         y = Series([1, 3]) | ||||
|         expected = Series( | ||||
|             data=[0, 1, 2, 6, 7, 8], | ||||
|             index=MultiIndex.from_product([[1, 3], ["A", "B", "C"]]), | ||||
|             dtype=np.float64, | ||||
|         ) | ||||
|         result = x.loc[y] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|         result = x.loc[[1, 3]] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|         # GH15424 | ||||
|         y1 = Series([1, 3], index=[1, 2]) | ||||
|         result = x.loc[y1] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|         empty = Series(data=[], dtype=np.float64) | ||||
|         expected = Series( | ||||
|             [], | ||||
|             index=MultiIndex(levels=index.levels, codes=[[], []], dtype=np.float64), | ||||
|             dtype=np.float64, | ||||
|         ) | ||||
|         result = x.loc[empty] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|     def test_loc_getitem_array(self): | ||||
|         # GH15434 | ||||
|         # passing an array as a key with a MultiIndex | ||||
|         index = MultiIndex.from_product([[1, 2, 3], ["A", "B", "C"]]) | ||||
|         x = Series(index=index, data=range(9), dtype=np.float64) | ||||
|         y = np.array([1, 3]) | ||||
|         expected = Series( | ||||
|             data=[0, 1, 2, 6, 7, 8], | ||||
|             index=MultiIndex.from_product([[1, 3], ["A", "B", "C"]]), | ||||
|             dtype=np.float64, | ||||
|         ) | ||||
|         result = x.loc[y] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|         # empty array: | ||||
|         empty = np.array([]) | ||||
|         expected = Series( | ||||
|             [], | ||||
|             index=MultiIndex(levels=index.levels, codes=[[], []], dtype=np.float64), | ||||
|             dtype="float64", | ||||
|         ) | ||||
|         result = x.loc[empty] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|         # 0-dim array (scalar): | ||||
|         scalar = np.int64(1) | ||||
|         expected = Series(data=[0, 1, 2], index=["A", "B", "C"], dtype=np.float64) | ||||
|         result = x.loc[scalar] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|     def test_loc_multiindex_labels(self): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 3)), | ||||
|             columns=[["i", "i", "j"], ["A", "A", "B"]], | ||||
|             index=[["i", "i", "j"], ["X", "X", "Y"]], | ||||
|         ) | ||||
|  | ||||
|         # the first 2 rows | ||||
|         expected = df.iloc[[0, 1]].droplevel(0) | ||||
|         result = df.loc["i"] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # 2nd (last) column | ||||
|         expected = df.iloc[:, [2]].droplevel(0, axis=1) | ||||
|         result = df.loc[:, "j"] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # bottom right corner | ||||
|         expected = df.iloc[[2], [2]].droplevel(0).droplevel(0, axis=1) | ||||
|         result = df.loc["j"].loc[:, "j"] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # with a tuple | ||||
|         expected = df.iloc[[0, 1]] | ||||
|         result = df.loc[("i", "X")] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_loc_multiindex_ints(self): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 3)), | ||||
|             columns=[[2, 2, 4], [6, 8, 10]], | ||||
|             index=[[4, 4, 8], [8, 10, 12]], | ||||
|         ) | ||||
|         expected = df.iloc[[0, 1]].droplevel(0) | ||||
|         result = df.loc[4] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_loc_multiindex_missing_label_raises(self): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 3)), | ||||
|             columns=[[2, 2, 4], [6, 8, 10]], | ||||
|             index=[[4, 4, 8], [8, 10, 12]], | ||||
|         ) | ||||
|  | ||||
|         with pytest.raises(KeyError, match=r"^2$"): | ||||
|             df.loc[2] | ||||
|  | ||||
|     @pytest.mark.parametrize("key, pos", [([2, 4], [0, 1]), ([2], []), ([2, 3], [])]) | ||||
|     def test_loc_multiindex_list_missing_label(self, key, pos): | ||||
|         # GH 27148 - lists with missing labels _do_ raise | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((3, 3)), | ||||
|             columns=[[2, 2, 4], [6, 8, 10]], | ||||
|             index=[[4, 4, 8], [8, 10, 12]], | ||||
|         ) | ||||
|  | ||||
|         with pytest.raises(KeyError, match="not in index"): | ||||
|             df.loc[key] | ||||
|  | ||||
|     def test_loc_multiindex_too_many_dims_raises(self): | ||||
|         # GH 14885 | ||||
|         s = Series( | ||||
|             range(8), | ||||
|             index=MultiIndex.from_product([["a", "b"], ["c", "d"], ["e", "f"]]), | ||||
|         ) | ||||
|  | ||||
|         with pytest.raises(KeyError, match=r"^\('a', 'b'\)$"): | ||||
|             s.loc["a", "b"] | ||||
|         with pytest.raises(KeyError, match=r"^\('a', 'd', 'g'\)$"): | ||||
|             s.loc["a", "d", "g"] | ||||
|         with pytest.raises(IndexingError, match="Too many indexers"): | ||||
|             s.loc["a", "d", "g", "j"] | ||||
|  | ||||
|     def test_loc_multiindex_indexer_none(self): | ||||
|         # GH6788 | ||||
|         # multi-index indexer is None (meaning take all) | ||||
|         attributes = ["Attribute" + str(i) for i in range(1)] | ||||
|         attribute_values = ["Value" + str(i) for i in range(5)] | ||||
|  | ||||
|         index = MultiIndex.from_product([attributes, attribute_values]) | ||||
|         df = 0.1 * np.random.default_rng(2).standard_normal((10, 1 * 5)) + 0.5 | ||||
|         df = DataFrame(df, columns=index) | ||||
|         result = df[attributes] | ||||
|         tm.assert_frame_equal(result, df) | ||||
|  | ||||
|         # GH 7349 | ||||
|         # loc with a multi-index seems to be doing fallback | ||||
|         df = DataFrame( | ||||
|             np.arange(12).reshape(-1, 1), | ||||
|             index=MultiIndex.from_product([[1, 2, 3, 4], [1, 2, 3]]), | ||||
|         ) | ||||
|  | ||||
|         expected = df.loc[([1, 2],), :] | ||||
|         result = df.loc[[1, 2]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_loc_multiindex_incomplete(self): | ||||
|         # GH 7399 | ||||
|         # incomplete indexers | ||||
|         s = Series( | ||||
|             np.arange(15, dtype="int64"), | ||||
|             MultiIndex.from_product([range(5), ["a", "b", "c"]]), | ||||
|         ) | ||||
|         expected = s.loc[:, "a":"c"] | ||||
|  | ||||
|         result = s.loc[0:4, "a":"c"] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|         result = s.loc[:4, "a":"c"] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|         result = s.loc[0:, "a":"c"] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|         # GH 7400 | ||||
|         # multiindexer getitem with list of indexers skips wrong element | ||||
|         s = Series( | ||||
|             np.arange(15, dtype="int64"), | ||||
|             MultiIndex.from_product([range(5), ["a", "b", "c"]]), | ||||
|         ) | ||||
|         expected = s.iloc[[6, 7, 8, 12, 13, 14]] | ||||
|         result = s.loc[2:4:2, "a":"c"] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|     def test_get_loc_single_level(self, single_level_multiindex): | ||||
|         single_level = single_level_multiindex | ||||
|         s = Series( | ||||
|             np.random.default_rng(2).standard_normal(len(single_level)), | ||||
|             index=single_level, | ||||
|         ) | ||||
|         for k in single_level.values: | ||||
|             s[k] | ||||
|  | ||||
|     def test_loc_getitem_int_slice(self): | ||||
|         # GH 3053 | ||||
|         # loc should treat integer slices like label slices | ||||
|  | ||||
|         index = MultiIndex.from_product([[6, 7, 8], ["a", "b"]]) | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((6, 6)), index, index) | ||||
|         result = df.loc[6:8, :] | ||||
|         expected = df | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         index = MultiIndex.from_product([[10, 20, 30], ["a", "b"]]) | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((6, 6)), index, index) | ||||
|         result = df.loc[20:30, :] | ||||
|         expected = df.iloc[2:] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # doc examples | ||||
|         result = df.loc[10, :] | ||||
|         expected = df.iloc[0:2] | ||||
|         expected.index = ["a", "b"] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         result = df.loc[:, 10] | ||||
|         expected = df[10] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "indexer_type_1", (list, tuple, set, slice, np.ndarray, Series, Index) | ||||
|     ) | ||||
|     @pytest.mark.parametrize( | ||||
|         "indexer_type_2", (list, tuple, set, slice, np.ndarray, Series, Index) | ||||
|     ) | ||||
|     def test_loc_getitem_nested_indexer(self, indexer_type_1, indexer_type_2): | ||||
|         # GH #19686 | ||||
|         # .loc should work with nested indexers which can be | ||||
|         # any list-like objects (see `is_list_like` (`pandas.api.types`)) or slices | ||||
|  | ||||
|         def convert_nested_indexer(indexer_type, keys): | ||||
|             if indexer_type == np.ndarray: | ||||
|                 return np.array(keys) | ||||
|             if indexer_type == slice: | ||||
|                 return slice(*keys) | ||||
|             return indexer_type(keys) | ||||
|  | ||||
|         a = [10, 20, 30] | ||||
|         b = [1, 2, 3] | ||||
|         index = MultiIndex.from_product([a, b]) | ||||
|         df = DataFrame( | ||||
|             np.arange(len(index), dtype="int64"), index=index, columns=["Data"] | ||||
|         ) | ||||
|  | ||||
|         keys = ([10, 20], [2, 3]) | ||||
|         types = (indexer_type_1, indexer_type_2) | ||||
|  | ||||
|         # check indexers with all the combinations of nested objects | ||||
|         # of all the valid types | ||||
|         indexer = tuple( | ||||
|             convert_nested_indexer(indexer_type, k) | ||||
|             for indexer_type, k in zip(types, keys) | ||||
|         ) | ||||
|         if indexer_type_1 is set or indexer_type_2 is set: | ||||
|             with pytest.raises(TypeError, match="as an indexer is not supported"): | ||||
|                 df.loc[indexer, "Data"] | ||||
|  | ||||
|             return | ||||
|         else: | ||||
|             result = df.loc[indexer, "Data"] | ||||
|         expected = Series( | ||||
|             [1, 2, 4, 5], name="Data", index=MultiIndex.from_product(keys) | ||||
|         ) | ||||
|  | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|     def test_multiindex_loc_one_dimensional_tuple(self, frame_or_series): | ||||
|         # GH#37711 | ||||
|         mi = MultiIndex.from_tuples([("a", "A"), ("b", "A")]) | ||||
|         obj = frame_or_series([1, 2], index=mi) | ||||
|         obj.loc[("a",)] = 0 | ||||
|         expected = frame_or_series([0, 2], index=mi) | ||||
|         tm.assert_equal(obj, expected) | ||||
|  | ||||
|     @pytest.mark.parametrize("indexer", [("a",), ("a")]) | ||||
|     def test_multiindex_one_dimensional_tuple_columns(self, indexer): | ||||
|         # GH#37711 | ||||
|         mi = MultiIndex.from_tuples([("a", "A"), ("b", "A")]) | ||||
|         obj = DataFrame([1, 2], index=mi) | ||||
|         obj.loc[indexer, :] = 0 | ||||
|         expected = DataFrame([0, 2], index=mi) | ||||
|         tm.assert_frame_equal(obj, expected) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "indexer, exp_value", [(slice(None), 1.0), ((1, 2), np.nan)] | ||||
|     ) | ||||
|     def test_multiindex_setitem_columns_enlarging(self, indexer, exp_value): | ||||
|         # GH#39147 | ||||
|         mi = MultiIndex.from_tuples([(1, 2), (3, 4)]) | ||||
|         df = DataFrame([[1, 2], [3, 4]], index=mi, columns=["a", "b"]) | ||||
|         df.loc[indexer, ["c", "d"]] = 1.0 | ||||
|         expected = DataFrame( | ||||
|             [[1, 2, 1.0, 1.0], [3, 4, exp_value, exp_value]], | ||||
|             index=mi, | ||||
|             columns=["a", "b", "c", "d"], | ||||
|         ) | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|     def test_sorted_multiindex_after_union(self): | ||||
|         # GH#44752 | ||||
|         midx = MultiIndex.from_product( | ||||
|             [pd.date_range("20110101", periods=2), Index(["a", "b"])] | ||||
|         ) | ||||
|         ser1 = Series(1, index=midx) | ||||
|         ser2 = Series(1, index=midx[:2]) | ||||
|         df = pd.concat([ser1, ser2], axis=1) | ||||
|         expected = df.copy() | ||||
|         result = df.loc["2011-01-01":"2011-01-02"] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         df = DataFrame({0: ser1, 1: ser2}) | ||||
|         result = df.loc["2011-01-01":"2011-01-02"] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         df = pd.concat([ser1, ser2.reindex(ser1.index)], axis=1) | ||||
|         result = df.loc["2011-01-01":"2011-01-02"] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_loc_no_second_level_index(self): | ||||
|         # GH#43599 | ||||
|         df = DataFrame( | ||||
|             index=MultiIndex.from_product([list("ab"), list("cd"), list("e")]), | ||||
|             columns=["Val"], | ||||
|         ) | ||||
|         res = df.loc[np.s_[:, "c", :]] | ||||
|         expected = DataFrame( | ||||
|             index=MultiIndex.from_product([list("ab"), list("e")]), columns=["Val"] | ||||
|         ) | ||||
|         tm.assert_frame_equal(res, expected) | ||||
|  | ||||
|     def test_loc_multi_index_key_error(self): | ||||
|         # GH 51892 | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 (1, 2): ["a", "b", "c"], | ||||
|                 (1, 3): ["d", "e", "f"], | ||||
|                 (2, 2): ["g", "h", "i"], | ||||
|                 (2, 4): ["j", "k", "l"], | ||||
|             } | ||||
|         ) | ||||
|         with pytest.raises(KeyError, match=r"(1, 4)"): | ||||
|             df.loc[0, (1, 4)] | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize( | ||||
|     "indexer, pos", | ||||
|     [ | ||||
|         ([], []),  # empty ok | ||||
|         (["A"], slice(3)), | ||||
|         (["A", "D"], []),  # "D" isn't present -> raise | ||||
|         (["D", "E"], []),  # no values found -> raise | ||||
|         (["D"], []),  # same, with single item list: GH 27148 | ||||
|         (pd.IndexSlice[:, ["foo"]], slice(2, None, 3)), | ||||
|         (pd.IndexSlice[:, ["foo", "bah"]], slice(2, None, 3)), | ||||
|     ], | ||||
| ) | ||||
| def test_loc_getitem_duplicates_multiindex_missing_indexers(indexer, pos): | ||||
|     # GH 7866 | ||||
|     # multi-index slicing with missing indexers | ||||
|     idx = MultiIndex.from_product( | ||||
|         [["A", "B", "C"], ["foo", "bar", "baz"]], names=["one", "two"] | ||||
|     ) | ||||
|     ser = Series(np.arange(9, dtype="int64"), index=idx).sort_index() | ||||
|     expected = ser.iloc[pos] | ||||
|  | ||||
|     if expected.size == 0 and indexer != []: | ||||
|         with pytest.raises(KeyError, match=str(indexer)): | ||||
|             ser.loc[indexer] | ||||
|     elif indexer == (slice(None), ["foo", "bah"]): | ||||
|         # "bah" is not in idx.levels[1], raising KeyError enforced in 2.0 | ||||
|         with pytest.raises(KeyError, match="'bah'"): | ||||
|             ser.loc[indexer] | ||||
|     else: | ||||
|         result = ser.loc[indexer] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize("columns_indexer", [([], slice(None)), (["foo"], [])]) | ||||
| def test_loc_getitem_duplicates_multiindex_empty_indexer(columns_indexer): | ||||
|     # GH 8737 | ||||
|     # empty indexer | ||||
|     multi_index = MultiIndex.from_product((["foo", "bar", "baz"], ["alpha", "beta"])) | ||||
|     df = DataFrame( | ||||
|         np.random.default_rng(2).standard_normal((5, 6)), | ||||
|         index=range(5), | ||||
|         columns=multi_index, | ||||
|     ) | ||||
|     df = df.sort_index(level=0, axis=1) | ||||
|  | ||||
|     expected = DataFrame(index=range(5), columns=multi_index.reindex([])[0]) | ||||
|     result = df.loc[:, columns_indexer] | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_loc_getitem_duplicates_multiindex_non_scalar_type_object(): | ||||
|     # regression from < 0.14.0 | ||||
|     # GH 7914 | ||||
|     df = DataFrame( | ||||
|         [[np.mean, np.median], ["mean", "median"]], | ||||
|         columns=MultiIndex.from_tuples([("functs", "mean"), ("functs", "median")]), | ||||
|         index=["function", "name"], | ||||
|     ) | ||||
|     result = df.loc["function", ("functs", "mean")] | ||||
|     expected = np.mean | ||||
|     assert result == expected | ||||
|  | ||||
|  | ||||
| def test_loc_getitem_tuple_plus_slice(): | ||||
|     # GH 671 | ||||
|     df = DataFrame( | ||||
|         { | ||||
|             "a": np.arange(10), | ||||
|             "b": np.arange(10), | ||||
|             "c": np.random.default_rng(2).standard_normal(10), | ||||
|             "d": np.random.default_rng(2).standard_normal(10), | ||||
|         } | ||||
|     ).set_index(["a", "b"]) | ||||
|     expected = df.loc[0, 0] | ||||
|     result = df.loc[(0, 0), :] | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_loc_getitem_int(frame_random_data_integer_multi_index): | ||||
|     df = frame_random_data_integer_multi_index | ||||
|     result = df.loc[1] | ||||
|     expected = df[-3:] | ||||
|     expected.index = expected.index.droplevel(0) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_loc_getitem_int_raises_exception(frame_random_data_integer_multi_index): | ||||
|     df = frame_random_data_integer_multi_index | ||||
|     with pytest.raises(KeyError, match=r"^3$"): | ||||
|         df.loc[3] | ||||
|  | ||||
|  | ||||
| def test_loc_getitem_lowerdim_corner(multiindex_dataframe_random_data): | ||||
|     df = multiindex_dataframe_random_data | ||||
|  | ||||
|     # test setup - check key not in dataframe | ||||
|     with pytest.raises(KeyError, match=r"^\('bar', 'three'\)$"): | ||||
|         df.loc[("bar", "three"), "B"] | ||||
|  | ||||
|     # in theory should be inserting in a sorted space???? | ||||
|     df.loc[("bar", "three"), "B"] = 0 | ||||
|     expected = 0 | ||||
|     result = df.sort_index().loc[("bar", "three"), "B"] | ||||
|     assert result == expected | ||||
|  | ||||
|  | ||||
| def test_loc_setitem_single_column_slice(): | ||||
|     # case from https://github.com/pandas-dev/pandas/issues/27841 | ||||
|     df = DataFrame( | ||||
|         "string", | ||||
|         index=list("abcd"), | ||||
|         columns=MultiIndex.from_product([["Main"], ("another", "one")]), | ||||
|     ) | ||||
|     df["labels"] = "a" | ||||
|     df.loc[:, "labels"] = df.index | ||||
|     tm.assert_numpy_array_equal(np.asarray(df["labels"]), np.asarray(df.index)) | ||||
|  | ||||
|     # test with non-object block | ||||
|     df = DataFrame( | ||||
|         np.nan, | ||||
|         index=range(4), | ||||
|         columns=MultiIndex.from_tuples([("A", "1"), ("A", "2"), ("B", "1")]), | ||||
|     ) | ||||
|     expected = df.copy() | ||||
|     df.loc[:, "B"] = np.arange(4) | ||||
|     expected.iloc[:, 2] = np.arange(4) | ||||
|     tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|  | ||||
| def test_loc_nan_multiindex(using_infer_string): | ||||
|     # GH 5286 | ||||
|     tups = [ | ||||
|         ("Good Things", "C", np.nan), | ||||
|         ("Good Things", "R", np.nan), | ||||
|         ("Bad Things", "C", np.nan), | ||||
|         ("Bad Things", "T", np.nan), | ||||
|         ("Okay Things", "N", "B"), | ||||
|         ("Okay Things", "N", "D"), | ||||
|         ("Okay Things", "B", np.nan), | ||||
|         ("Okay Things", "D", np.nan), | ||||
|     ] | ||||
|     df = DataFrame( | ||||
|         np.ones((8, 4)), | ||||
|         columns=Index(["d1", "d2", "d3", "d4"]), | ||||
|         index=MultiIndex.from_tuples(tups, names=["u1", "u2", "u3"]), | ||||
|     ) | ||||
|     result = df.loc["Good Things"].loc["C"] | ||||
|     expected = DataFrame( | ||||
|         np.ones((1, 4)), | ||||
|         index=Index( | ||||
|             [np.nan], | ||||
|             dtype="object" if not using_infer_string else "str", | ||||
|             name="u3", | ||||
|         ), | ||||
|         columns=Index(["d1", "d2", "d3", "d4"]), | ||||
|     ) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_loc_period_string_indexing(): | ||||
|     # GH 9892 | ||||
|     a = pd.period_range("2013Q1", "2013Q4", freq="Q") | ||||
|     i = (1111, 2222, 3333) | ||||
|     idx = MultiIndex.from_product((a, i), names=("Period", "CVR")) | ||||
|     df = DataFrame( | ||||
|         index=idx, | ||||
|         columns=( | ||||
|             "OMS", | ||||
|             "OMK", | ||||
|             "RES", | ||||
|             "DRIFT_IND", | ||||
|             "OEVRIG_IND", | ||||
|             "FIN_IND", | ||||
|             "VARE_UD", | ||||
|             "LOEN_UD", | ||||
|             "FIN_UD", | ||||
|         ), | ||||
|     ) | ||||
|     result = df.loc[("2013Q1", 1111), "OMS"] | ||||
|  | ||||
|     alt = df.loc[(a[0], 1111), "OMS"] | ||||
|     assert np.isnan(alt) | ||||
|  | ||||
|     # Because the resolution of the string matches, it is an exact lookup, | ||||
|     #  not a slice | ||||
|     assert np.isnan(result) | ||||
|  | ||||
|     alt = df.loc[("2013Q1", 1111), "OMS"] | ||||
|     assert np.isnan(alt) | ||||
|  | ||||
|  | ||||
| def test_loc_datetime_mask_slicing(): | ||||
|     # GH 16699 | ||||
|     dt_idx = pd.to_datetime(["2017-05-04", "2017-05-05"]) | ||||
|     m_idx = MultiIndex.from_product([dt_idx, dt_idx], names=["Idx1", "Idx2"]) | ||||
|     df = DataFrame( | ||||
|         data=[[1, 2], [3, 4], [5, 6], [7, 6]], index=m_idx, columns=["C1", "C2"] | ||||
|     ) | ||||
|     result = df.loc[(dt_idx[0], (df.index.get_level_values(1) > "2017-05-04")), "C1"] | ||||
|     expected = Series( | ||||
|         [3], | ||||
|         name="C1", | ||||
|         index=MultiIndex.from_tuples( | ||||
|             [(pd.Timestamp("2017-05-04"), pd.Timestamp("2017-05-05"))], | ||||
|             names=["Idx1", "Idx2"], | ||||
|         ), | ||||
|     ) | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_loc_datetime_series_tuple_slicing(): | ||||
|     # https://github.com/pandas-dev/pandas/issues/35858 | ||||
|     date = pd.Timestamp("2000") | ||||
|     ser = Series( | ||||
|         1, | ||||
|         index=MultiIndex.from_tuples([("a", date)], names=["a", "b"]), | ||||
|         name="c", | ||||
|     ) | ||||
|     result = ser.loc[:, [date]] | ||||
|     tm.assert_series_equal(result, ser) | ||||
|  | ||||
|  | ||||
| def test_loc_with_mi_indexer(): | ||||
|     # https://github.com/pandas-dev/pandas/issues/35351 | ||||
|     df = DataFrame( | ||||
|         data=[["a", 1], ["a", 0], ["b", 1], ["c", 2]], | ||||
|         index=MultiIndex.from_tuples( | ||||
|             [(0, 1), (1, 0), (1, 1), (1, 1)], names=["index", "date"] | ||||
|         ), | ||||
|         columns=["author", "price"], | ||||
|     ) | ||||
|     idx = MultiIndex.from_tuples([(0, 1), (1, 1)], names=["index", "date"]) | ||||
|     result = df.loc[idx, :] | ||||
|     expected = DataFrame( | ||||
|         [["a", 1], ["b", 1], ["c", 2]], | ||||
|         index=MultiIndex.from_tuples([(0, 1), (1, 1), (1, 1)], names=["index", "date"]), | ||||
|         columns=["author", "price"], | ||||
|     ) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_loc_mi_with_level1_named_0(): | ||||
|     # GH#37194 | ||||
|     dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific") | ||||
|  | ||||
|     ser = Series(range(3), index=dti) | ||||
|     df = ser.to_frame() | ||||
|     df[1] = dti | ||||
|  | ||||
|     df2 = df.set_index(0, append=True) | ||||
|     assert df2.index.names == (None, 0) | ||||
|     df2.index.get_loc(dti[0])  # smoke test | ||||
|  | ||||
|     result = df2.loc[dti[0]] | ||||
|     expected = df2.iloc[[0]].droplevel(None) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     ser2 = df2[1] | ||||
|     assert ser2.index.names == (None, 0) | ||||
|  | ||||
|     result = ser2.loc[dti[0]] | ||||
|     expected = ser2.iloc[[0]].droplevel(None) | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_getitem_str_slice(): | ||||
|     # GH#15928 | ||||
|     df = DataFrame( | ||||
|         [ | ||||
|             ["20160525 13:30:00.023", "MSFT", "51.95", "51.95"], | ||||
|             ["20160525 13:30:00.048", "GOOG", "720.50", "720.93"], | ||||
|             ["20160525 13:30:00.076", "AAPL", "98.55", "98.56"], | ||||
|             ["20160525 13:30:00.131", "AAPL", "98.61", "98.62"], | ||||
|             ["20160525 13:30:00.135", "MSFT", "51.92", "51.95"], | ||||
|             ["20160525 13:30:00.135", "AAPL", "98.61", "98.62"], | ||||
|         ], | ||||
|         columns="time,ticker,bid,ask".split(","), | ||||
|     ) | ||||
|     df2 = df.set_index(["ticker", "time"]).sort_index() | ||||
|  | ||||
|     res = df2.loc[("AAPL", slice("2016-05-25 13:30:00")), :].droplevel(0) | ||||
|     expected = df2.loc["AAPL"].loc[slice("2016-05-25 13:30:00"), :] | ||||
|     tm.assert_frame_equal(res, expected) | ||||
|  | ||||
|  | ||||
| def test_3levels_leading_period_index(): | ||||
|     # GH#24091 | ||||
|     pi = pd.PeriodIndex( | ||||
|         ["20181101 1100", "20181101 1200", "20181102 1300", "20181102 1400"], | ||||
|         name="datetime", | ||||
|         freq="D", | ||||
|     ) | ||||
|     lev2 = ["A", "A", "Z", "W"] | ||||
|     lev3 = ["B", "C", "Q", "F"] | ||||
|     mi = MultiIndex.from_arrays([pi, lev2, lev3]) | ||||
|  | ||||
|     ser = Series(range(4), index=mi, dtype=np.float64) | ||||
|     result = ser.loc[(pi[0], "A", "B")] | ||||
|     assert result == 0.0 | ||||
|  | ||||
|  | ||||
| class TestKeyErrorsWithMultiIndex: | ||||
|     def test_missing_keys_raises_keyerror(self): | ||||
|         # GH#27420 KeyError, not TypeError | ||||
|         df = DataFrame(np.arange(12).reshape(4, 3), columns=["A", "B", "C"]) | ||||
|         df2 = df.set_index(["A", "B"]) | ||||
|  | ||||
|         with pytest.raises(KeyError, match="1"): | ||||
|             df2.loc[(1, 6)] | ||||
|  | ||||
|     def test_missing_key_raises_keyerror2(self): | ||||
|         # GH#21168 KeyError, not "IndexingError: Too many indexers" | ||||
|         ser = Series(-1, index=MultiIndex.from_product([[0, 1]] * 2)) | ||||
|  | ||||
|         with pytest.raises(KeyError, match=r"\(0, 3\)"): | ||||
|             ser.loc[0, 3] | ||||
|  | ||||
|     def test_missing_key_combination(self): | ||||
|         # GH: 19556 | ||||
|         mi = MultiIndex.from_arrays( | ||||
|             [ | ||||
|                 np.array(["a", "a", "b", "b"]), | ||||
|                 np.array(["1", "2", "2", "3"]), | ||||
|                 np.array(["c", "d", "c", "d"]), | ||||
|             ], | ||||
|             names=["one", "two", "three"], | ||||
|         ) | ||||
|         df = DataFrame(np.random.default_rng(2).random((4, 3)), index=mi) | ||||
|         msg = r"\('b', '1', slice\(None, None, None\)\)" | ||||
|         with pytest.raises(KeyError, match=msg): | ||||
|             df.loc[("b", "1", slice(None)), :] | ||||
|         with pytest.raises(KeyError, match=msg): | ||||
|             df.index.get_locs(("b", "1", slice(None))) | ||||
|         with pytest.raises(KeyError, match=r"\('b', '1'\)"): | ||||
|             df.loc[("b", "1"), :] | ||||
|  | ||||
|  | ||||
| def test_getitem_loc_commutability(multiindex_year_month_day_dataframe_random_data): | ||||
|     df = multiindex_year_month_day_dataframe_random_data | ||||
|     ser = df["A"] | ||||
|     result = ser[2000, 5] | ||||
|     expected = df.loc[2000, 5]["A"] | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_loc_with_nan(): | ||||
|     # GH: 27104 | ||||
|     df = DataFrame( | ||||
|         {"col": [1, 2, 5], "ind1": ["a", "d", np.nan], "ind2": [1, 4, 5]} | ||||
|     ).set_index(["ind1", "ind2"]) | ||||
|     result = df.loc[["a"]] | ||||
|     expected = DataFrame( | ||||
|         {"col": [1]}, index=MultiIndex.from_tuples([("a", 1)], names=["ind1", "ind2"]) | ||||
|     ) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     result = df.loc["a"] | ||||
|     expected = DataFrame({"col": [1]}, index=Index([1], name="ind2")) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_getitem_non_found_tuple(): | ||||
|     # GH: 25236 | ||||
|     df = DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"]).set_index( | ||||
|         ["a", "b", "c"] | ||||
|     ) | ||||
|     with pytest.raises(KeyError, match=r"\(2\.0, 2\.0, 3\.0\)"): | ||||
|         df.loc[(2.0, 2.0, 3.0)] | ||||
|  | ||||
|  | ||||
| def test_get_loc_datetime_index(): | ||||
|     # GH#24263 | ||||
|     index = pd.date_range("2001-01-01", periods=100) | ||||
|     mi = MultiIndex.from_arrays([index]) | ||||
|     # Check if get_loc matches for Index and MultiIndex | ||||
|     assert mi.get_loc("2001-01") == slice(0, 31, None) | ||||
|     assert index.get_loc("2001-01") == slice(0, 31, None) | ||||
|  | ||||
|     loc = mi[::2].get_loc("2001-01") | ||||
|     expected = index[::2].get_loc("2001-01") | ||||
|     assert loc == expected | ||||
|  | ||||
|     loc = mi.repeat(2).get_loc("2001-01") | ||||
|     expected = index.repeat(2).get_loc("2001-01") | ||||
|     assert loc == expected | ||||
|  | ||||
|     loc = mi.append(mi).get_loc("2001-01") | ||||
|     expected = index.append(index).get_loc("2001-01") | ||||
|     # TODO: standardize return type for MultiIndex.get_loc | ||||
|     tm.assert_numpy_array_equal(loc.nonzero()[0], expected) | ||||
|  | ||||
|  | ||||
| def test_loc_setitem_indexer_differently_ordered(): | ||||
|     # GH#34603 | ||||
|     mi = MultiIndex.from_product([["a", "b"], [0, 1]]) | ||||
|     df = DataFrame([[1, 2], [3, 4], [5, 6], [7, 8]], index=mi) | ||||
|  | ||||
|     indexer = ("a", [1, 0]) | ||||
|     df.loc[indexer, :] = np.array([[9, 10], [11, 12]]) | ||||
|     expected = DataFrame([[11, 12], [9, 10], [5, 6], [7, 8]], index=mi) | ||||
|     tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|  | ||||
| def test_loc_getitem_index_differently_ordered_slice_none(): | ||||
|     # GH#31330 | ||||
|     df = DataFrame( | ||||
|         [[1, 2], [3, 4], [5, 6], [7, 8]], | ||||
|         index=[["a", "a", "b", "b"], [1, 2, 1, 2]], | ||||
|         columns=["a", "b"], | ||||
|     ) | ||||
|     result = df.loc[(slice(None), [2, 1]), :] | ||||
|     expected = DataFrame( | ||||
|         [[3, 4], [7, 8], [1, 2], [5, 6]], | ||||
|         index=[["a", "b", "a", "b"], [2, 2, 1, 1]], | ||||
|         columns=["a", "b"], | ||||
|     ) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize("indexer", [[1, 2, 7, 6, 2, 3, 8, 7], [1, 2, 7, 6, 3, 8]]) | ||||
| def test_loc_getitem_index_differently_ordered_slice_none_duplicates(indexer): | ||||
|     # GH#40978 | ||||
|     df = DataFrame( | ||||
|         [1] * 8, | ||||
|         index=MultiIndex.from_tuples( | ||||
|             [(1, 1), (1, 2), (1, 7), (1, 6), (2, 2), (2, 3), (2, 8), (2, 7)] | ||||
|         ), | ||||
|         columns=["a"], | ||||
|     ) | ||||
|     result = df.loc[(slice(None), indexer), :] | ||||
|     expected = DataFrame( | ||||
|         [1] * 8, | ||||
|         index=[[1, 1, 2, 1, 2, 1, 2, 2], [1, 2, 2, 7, 7, 6, 3, 8]], | ||||
|         columns=["a"], | ||||
|     ) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     result = df.loc[df.index.isin(indexer, level=1), :] | ||||
|     tm.assert_frame_equal(result, df) | ||||
|  | ||||
|  | ||||
| def test_loc_getitem_drops_levels_for_one_row_dataframe(): | ||||
|     # GH#10521 "x" and "z" are both scalar indexing, so those levels are dropped | ||||
|     mi = MultiIndex.from_arrays([["x"], ["y"], ["z"]], names=["a", "b", "c"]) | ||||
|     df = DataFrame({"d": [0]}, index=mi) | ||||
|     expected = df.droplevel([0, 2]) | ||||
|     result = df.loc["x", :, "z"] | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     ser = Series([0], index=mi) | ||||
|     result = ser.loc["x", :, "z"] | ||||
|     expected = Series([0], index=Index(["y"], name="b")) | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_mi_columns_loc_list_label_order(): | ||||
|     # GH 10710 | ||||
|     cols = MultiIndex.from_product([["A", "B", "C"], [1, 2]]) | ||||
|     df = DataFrame(np.zeros((5, 6)), columns=cols) | ||||
|     result = df.loc[:, ["B", "A"]] | ||||
|     expected = DataFrame( | ||||
|         np.zeros((5, 4)), | ||||
|         columns=MultiIndex.from_tuples([("B", 1), ("B", 2), ("A", 1), ("A", 2)]), | ||||
|     ) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_mi_partial_indexing_list_raises(): | ||||
|     # GH 13501 | ||||
|     frame = DataFrame( | ||||
|         np.arange(12).reshape((4, 3)), | ||||
|         index=[["a", "a", "b", "b"], [1, 2, 1, 2]], | ||||
|         columns=[["Ohio", "Ohio", "Colorado"], ["Green", "Red", "Green"]], | ||||
|     ) | ||||
|     frame.index.names = ["key1", "key2"] | ||||
|     frame.columns.names = ["state", "color"] | ||||
|     with pytest.raises(KeyError, match="\\[2\\] not in index"): | ||||
|         frame.loc[["b", 2], "Colorado"] | ||||
|  | ||||
|  | ||||
| def test_mi_indexing_list_nonexistent_raises(): | ||||
|     # GH 15452 | ||||
|     s = Series(range(4), index=MultiIndex.from_product([[1, 2], ["a", "b"]])) | ||||
|     with pytest.raises(KeyError, match="\\['not' 'found'\\] not in index"): | ||||
|         s.loc[["not", "found"]] | ||||
|  | ||||
|  | ||||
| def test_mi_add_cell_missing_row_non_unique(): | ||||
|     # GH 16018 | ||||
|     result = DataFrame( | ||||
|         [[1, 2, 5, 6], [3, 4, 7, 8]], | ||||
|         index=["a", "a"], | ||||
|         columns=MultiIndex.from_product([[1, 2], ["A", "B"]]), | ||||
|     ) | ||||
|     result.loc["c"] = -1 | ||||
|     result.loc["c", (1, "A")] = 3 | ||||
|     result.loc["d", (1, "A")] = 3 | ||||
|     expected = DataFrame( | ||||
|         [ | ||||
|             [1.0, 2.0, 5.0, 6.0], | ||||
|             [3.0, 4.0, 7.0, 8.0], | ||||
|             [3.0, -1.0, -1, -1], | ||||
|             [3.0, np.nan, np.nan, np.nan], | ||||
|         ], | ||||
|         index=["a", "a", "c", "d"], | ||||
|         columns=MultiIndex.from_product([[1, 2], ["A", "B"]]), | ||||
|     ) | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_loc_get_scalar_casting_to_float(): | ||||
|     # GH#41369 | ||||
|     df = DataFrame( | ||||
|         {"a": 1.0, "b": 2}, index=MultiIndex.from_arrays([[3], [4]], names=["c", "d"]) | ||||
|     ) | ||||
|     result = df.loc[(3, 4), "b"] | ||||
|     assert result == 2 | ||||
|     assert isinstance(result, np.int64) | ||||
|     result = df.loc[[(3, 4)], "b"].iloc[0] | ||||
|     assert result == 2 | ||||
|     assert isinstance(result, np.int64) | ||||
|  | ||||
|  | ||||
| def test_loc_empty_single_selector_with_names(): | ||||
|     # GH 19517 | ||||
|     idx = MultiIndex.from_product([["a", "b"], ["A", "B"]], names=[1, 0]) | ||||
|     s2 = Series(index=idx, dtype=np.float64) | ||||
|     result = s2.loc["a"] | ||||
|     expected = Series([np.nan, np.nan], index=Index(["A", "B"], name=0)) | ||||
|     tm.assert_series_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_loc_keyerror_rightmost_key_missing(): | ||||
|     # GH 20951 | ||||
|  | ||||
|     df = DataFrame( | ||||
|         { | ||||
|             "A": [100, 100, 200, 200, 300, 300], | ||||
|             "B": [10, 10, 20, 21, 31, 33], | ||||
|             "C": range(6), | ||||
|         } | ||||
|     ) | ||||
|     df = df.set_index(["A", "B"]) | ||||
|     with pytest.raises(KeyError, match="^1$"): | ||||
|         df.loc[(100, 1)] | ||||
|  | ||||
|  | ||||
| def test_multindex_series_loc_with_tuple_label(): | ||||
|     # GH#43908 | ||||
|     mi = MultiIndex.from_tuples([(1, 2), (3, (4, 5))]) | ||||
|     ser = Series([1, 2], index=mi) | ||||
|     result = ser.loc[(3, (4, 5))] | ||||
|     assert result == 2 | ||||
| @ -0,0 +1,235 @@ | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| import pandas._libs.index as libindex | ||||
| from pandas.errors import PerformanceWarning | ||||
|  | ||||
| import pandas as pd | ||||
| from pandas import ( | ||||
|     CategoricalDtype, | ||||
|     DataFrame, | ||||
|     Index, | ||||
|     MultiIndex, | ||||
|     Series, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
| from pandas.core.arrays.boolean import BooleanDtype | ||||
|  | ||||
|  | ||||
| class TestMultiIndexBasic: | ||||
|     def test_multiindex_perf_warn(self): | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "jim": [0, 0, 1, 1], | ||||
|                 "joe": ["x", "x", "z", "y"], | ||||
|                 "jolie": np.random.default_rng(2).random(4), | ||||
|             } | ||||
|         ).set_index(["jim", "joe"]) | ||||
|  | ||||
|         with tm.assert_produces_warning(PerformanceWarning): | ||||
|             df.loc[(1, "z")] | ||||
|  | ||||
|         df = df.iloc[[2, 1, 3, 0]] | ||||
|         with tm.assert_produces_warning(PerformanceWarning): | ||||
|             df.loc[(0,)] | ||||
|  | ||||
|     @pytest.mark.parametrize("offset", [-5, 5]) | ||||
|     def test_indexing_over_hashtable_size_cutoff(self, monkeypatch, offset): | ||||
|         size_cutoff = 20 | ||||
|         n = size_cutoff + offset | ||||
|  | ||||
|         with monkeypatch.context(): | ||||
|             monkeypatch.setattr(libindex, "_SIZE_CUTOFF", size_cutoff) | ||||
|             s = Series(np.arange(n), MultiIndex.from_arrays((["a"] * n, np.arange(n)))) | ||||
|  | ||||
|             # hai it works! | ||||
|             assert s[("a", 5)] == 5 | ||||
|             assert s[("a", 6)] == 6 | ||||
|             assert s[("a", 7)] == 7 | ||||
|  | ||||
|     def test_multi_nan_indexing(self): | ||||
|         # GH 3588 | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "a": ["R1", "R2", np.nan, "R4"], | ||||
|                 "b": ["C1", "C2", "C3", "C4"], | ||||
|                 "c": [10, 15, np.nan, 20], | ||||
|             } | ||||
|         ) | ||||
|         result = df.set_index(["a", "b"], drop=False) | ||||
|         expected = DataFrame( | ||||
|             { | ||||
|                 "a": ["R1", "R2", np.nan, "R4"], | ||||
|                 "b": ["C1", "C2", "C3", "C4"], | ||||
|                 "c": [10, 15, np.nan, 20], | ||||
|             }, | ||||
|             index=[ | ||||
|                 Index(["R1", "R2", np.nan, "R4"], name="a"), | ||||
|                 Index(["C1", "C2", "C3", "C4"], name="b"), | ||||
|             ], | ||||
|         ) | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_exclusive_nat_column_indexing(self): | ||||
|         # GH 38025 | ||||
|         # test multi indexing when one column exclusively contains NaT values | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "a": [pd.NaT, pd.NaT, pd.NaT, pd.NaT], | ||||
|                 "b": ["C1", "C2", "C3", "C4"], | ||||
|                 "c": [10, 15, np.nan, 20], | ||||
|             } | ||||
|         ) | ||||
|         df = df.set_index(["a", "b"]) | ||||
|         expected = DataFrame( | ||||
|             { | ||||
|                 "c": [10, 15, np.nan, 20], | ||||
|             }, | ||||
|             index=[ | ||||
|                 Index([pd.NaT, pd.NaT, pd.NaT, pd.NaT], name="a"), | ||||
|                 Index(["C1", "C2", "C3", "C4"], name="b"), | ||||
|             ], | ||||
|         ) | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|     def test_nested_tuples_duplicates(self): | ||||
|         # GH#30892 | ||||
|  | ||||
|         dti = pd.to_datetime(["20190101", "20190101", "20190102"]) | ||||
|         idx = Index(["a", "a", "c"]) | ||||
|         mi = MultiIndex.from_arrays([dti, idx], names=["index1", "index2"]) | ||||
|  | ||||
|         df = DataFrame({"c1": [1, 2, 3], "c2": [np.nan, np.nan, np.nan]}, index=mi) | ||||
|  | ||||
|         expected = DataFrame({"c1": df["c1"], "c2": [1.0, 1.0, np.nan]}, index=mi) | ||||
|  | ||||
|         df2 = df.copy(deep=True) | ||||
|         df2.loc[(dti[0], "a"), "c2"] = 1.0 | ||||
|         tm.assert_frame_equal(df2, expected) | ||||
|  | ||||
|         df3 = df.copy(deep=True) | ||||
|         df3.loc[[(dti[0], "a")], "c2"] = 1.0 | ||||
|         tm.assert_frame_equal(df3, expected) | ||||
|  | ||||
|     def test_multiindex_with_datatime_level_preserves_freq(self): | ||||
|         # https://github.com/pandas-dev/pandas/issues/35563 | ||||
|         idx = Index(range(2), name="A") | ||||
|         dti = pd.date_range("2020-01-01", periods=7, freq="D", name="B") | ||||
|         mi = MultiIndex.from_product([idx, dti]) | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((14, 2)), index=mi) | ||||
|         result = df.loc[0].index | ||||
|         tm.assert_index_equal(result, dti) | ||||
|         assert result.freq == dti.freq | ||||
|  | ||||
|     def test_multiindex_complex(self): | ||||
|         # GH#42145 | ||||
|         complex_data = [1 + 2j, 4 - 3j, 10 - 1j] | ||||
|         non_complex_data = [3, 4, 5] | ||||
|         result = DataFrame( | ||||
|             { | ||||
|                 "x": complex_data, | ||||
|                 "y": non_complex_data, | ||||
|                 "z": non_complex_data, | ||||
|             } | ||||
|         ) | ||||
|         result.set_index(["x", "y"], inplace=True) | ||||
|         expected = DataFrame( | ||||
|             {"z": non_complex_data}, | ||||
|             index=MultiIndex.from_arrays( | ||||
|                 [complex_data, non_complex_data], | ||||
|                 names=("x", "y"), | ||||
|             ), | ||||
|         ) | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_rename_multiindex_with_duplicates(self): | ||||
|         # GH 38015 | ||||
|         mi = MultiIndex.from_tuples([("A", "cat"), ("B", "cat"), ("B", "cat")]) | ||||
|         df = DataFrame(index=mi) | ||||
|         df = df.rename(index={"A": "Apple"}, level=0) | ||||
|  | ||||
|         mi2 = MultiIndex.from_tuples([("Apple", "cat"), ("B", "cat"), ("B", "cat")]) | ||||
|         expected = DataFrame(index=mi2) | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|     def test_series_align_multiindex_with_nan_overlap_only(self): | ||||
|         # GH 38439 | ||||
|         mi1 = MultiIndex.from_arrays([[81.0, np.nan], [np.nan, np.nan]]) | ||||
|         mi2 = MultiIndex.from_arrays([[np.nan, 82.0], [np.nan, np.nan]]) | ||||
|         ser1 = Series([1, 2], index=mi1) | ||||
|         ser2 = Series([1, 2], index=mi2) | ||||
|         result1, result2 = ser1.align(ser2) | ||||
|  | ||||
|         mi = MultiIndex.from_arrays([[81.0, 82.0, np.nan], [np.nan, np.nan, np.nan]]) | ||||
|         expected1 = Series([1.0, np.nan, 2.0], index=mi) | ||||
|         expected2 = Series([np.nan, 2.0, 1.0], index=mi) | ||||
|  | ||||
|         tm.assert_series_equal(result1, expected1) | ||||
|         tm.assert_series_equal(result2, expected2) | ||||
|  | ||||
|     def test_series_align_multiindex_with_nan(self): | ||||
|         # GH 38439 | ||||
|         mi1 = MultiIndex.from_arrays([[81.0, np.nan], [np.nan, np.nan]]) | ||||
|         mi2 = MultiIndex.from_arrays([[np.nan, 81.0], [np.nan, np.nan]]) | ||||
|         ser1 = Series([1, 2], index=mi1) | ||||
|         ser2 = Series([1, 2], index=mi2) | ||||
|         result1, result2 = ser1.align(ser2) | ||||
|  | ||||
|         mi = MultiIndex.from_arrays([[81.0, np.nan], [np.nan, np.nan]]) | ||||
|         expected1 = Series([1, 2], index=mi) | ||||
|         expected2 = Series([2, 1], index=mi) | ||||
|  | ||||
|         tm.assert_series_equal(result1, expected1) | ||||
|         tm.assert_series_equal(result2, expected2) | ||||
|  | ||||
|     def test_nunique_smoke(self): | ||||
|         # GH 34019 | ||||
|         n = DataFrame([[1, 2], [1, 2]]).set_index([0, 1]).index.nunique() | ||||
|         assert n == 1 | ||||
|  | ||||
|     def test_multiindex_repeated_keys(self): | ||||
|         # GH19414 | ||||
|         tm.assert_series_equal( | ||||
|             Series([1, 2], MultiIndex.from_arrays([["a", "b"]])).loc[ | ||||
|                 ["a", "a", "b", "b"] | ||||
|             ], | ||||
|             Series([1, 1, 2, 2], MultiIndex.from_arrays([["a", "a", "b", "b"]])), | ||||
|         ) | ||||
|  | ||||
|     def test_multiindex_with_na_missing_key(self): | ||||
|         # GH46173 | ||||
|         df = DataFrame.from_dict( | ||||
|             { | ||||
|                 ("foo",): [1, 2, 3], | ||||
|                 ("bar",): [5, 6, 7], | ||||
|                 (None,): [8, 9, 0], | ||||
|             } | ||||
|         ) | ||||
|         with pytest.raises(KeyError, match="missing_key"): | ||||
|             df[[("missing_key",)]] | ||||
|  | ||||
|     def test_multiindex_dtype_preservation(self): | ||||
|         # GH51261 | ||||
|         columns = MultiIndex.from_tuples([("A", "B")], names=["lvl1", "lvl2"]) | ||||
|         df = DataFrame(["value"], columns=columns).astype("category") | ||||
|         df_no_multiindex = df["A"] | ||||
|         assert isinstance(df_no_multiindex["B"].dtype, CategoricalDtype) | ||||
|  | ||||
|         # geopandas 1763 analogue | ||||
|         df = DataFrame( | ||||
|             [[1, 0], [0, 1]], | ||||
|             columns=[ | ||||
|                 ["foo", "foo"], | ||||
|                 ["location", "location"], | ||||
|                 ["x", "y"], | ||||
|             ], | ||||
|         ).assign(bools=Series([True, False], dtype="boolean")) | ||||
|         assert isinstance(df["bools"].dtype, BooleanDtype) | ||||
|  | ||||
|     def test_multiindex_from_tuples_with_nan(self): | ||||
|         # GH#23578 | ||||
|         result = MultiIndex.from_tuples([("a", "b", "c"), np.nan, ("d", "", "")]) | ||||
|         expected = MultiIndex.from_tuples( | ||||
|             [("a", "b", "c"), (np.nan, np.nan, np.nan), ("d", "", "")] | ||||
|         ) | ||||
|         tm.assert_index_equal(result, expected) | ||||
| @ -0,0 +1,269 @@ | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| import pandas.util._test_decorators as td | ||||
|  | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     DatetimeIndex, | ||||
|     MultiIndex, | ||||
|     date_range, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
|  | ||||
|  | ||||
| class TestMultiIndexPartial: | ||||
|     def test_getitem_partial_int(self): | ||||
|         # GH 12416 | ||||
|         # with single item | ||||
|         l1 = [10, 20] | ||||
|         l2 = ["a", "b"] | ||||
|         df = DataFrame(index=range(2), columns=MultiIndex.from_product([l1, l2])) | ||||
|         expected = DataFrame(index=range(2), columns=l2) | ||||
|         result = df[20] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # with list | ||||
|         expected = DataFrame( | ||||
|             index=range(2), columns=MultiIndex.from_product([l1[1:], l2]) | ||||
|         ) | ||||
|         result = df[[20]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # missing item: | ||||
|         with pytest.raises(KeyError, match="1"): | ||||
|             df[1] | ||||
|         with pytest.raises(KeyError, match=r"'\[1\] not in index'"): | ||||
|             df[[1]] | ||||
|  | ||||
|     def test_series_slice_partial(self): | ||||
|         pass | ||||
|  | ||||
|     def test_xs_partial( | ||||
|         self, | ||||
|         multiindex_dataframe_random_data, | ||||
|         multiindex_year_month_day_dataframe_random_data, | ||||
|     ): | ||||
|         frame = multiindex_dataframe_random_data | ||||
|         ymd = multiindex_year_month_day_dataframe_random_data | ||||
|         result = frame.xs("foo") | ||||
|         result2 = frame.loc["foo"] | ||||
|         expected = frame.T["foo"].T | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|         tm.assert_frame_equal(result, result2) | ||||
|  | ||||
|         result = ymd.xs((2000, 4)) | ||||
|         expected = ymd.loc[2000, 4] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # ex from #1796 | ||||
|         index = MultiIndex( | ||||
|             levels=[["foo", "bar"], ["one", "two"], [-1, 1]], | ||||
|             codes=[ | ||||
|                 [0, 0, 0, 0, 1, 1, 1, 1], | ||||
|                 [0, 0, 1, 1, 0, 0, 1, 1], | ||||
|                 [0, 1, 0, 1, 0, 1, 0, 1], | ||||
|             ], | ||||
|         ) | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((8, 4)), | ||||
|             index=index, | ||||
|             columns=list("abcd"), | ||||
|         ) | ||||
|  | ||||
|         result = df.xs(("foo", "one")) | ||||
|         expected = df.loc["foo", "one"] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_getitem_partial(self, multiindex_year_month_day_dataframe_random_data): | ||||
|         ymd = multiindex_year_month_day_dataframe_random_data | ||||
|         ymd = ymd.T | ||||
|         result = ymd[2000, 2] | ||||
|  | ||||
|         expected = ymd.reindex(columns=ymd.columns[ymd.columns.codes[1] == 1]) | ||||
|         expected.columns = expected.columns.droplevel(0).droplevel(0) | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_fancy_slice_partial( | ||||
|         self, | ||||
|         multiindex_dataframe_random_data, | ||||
|         multiindex_year_month_day_dataframe_random_data, | ||||
|     ): | ||||
|         frame = multiindex_dataframe_random_data | ||||
|         result = frame.loc["bar":"baz"] | ||||
|         expected = frame[3:7] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         ymd = multiindex_year_month_day_dataframe_random_data | ||||
|         result = ymd.loc[(2000, 2):(2000, 4)] | ||||
|         lev = ymd.index.codes[1] | ||||
|         expected = ymd[(lev >= 1) & (lev <= 3)] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_getitem_partial_column_select(self): | ||||
|         idx = MultiIndex( | ||||
|             codes=[[0, 0, 0], [0, 1, 1], [1, 0, 1]], | ||||
|             levels=[["a", "b"], ["x", "y"], ["p", "q"]], | ||||
|         ) | ||||
|         df = DataFrame(np.random.default_rng(2).random((3, 2)), index=idx) | ||||
|  | ||||
|         result = df.loc[("a", "y"), :] | ||||
|         expected = df.loc[("a", "y")] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         result = df.loc[("a", "y"), [1, 0]] | ||||
|         expected = df.loc[("a", "y")][[1, 0]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         with pytest.raises(KeyError, match=r"\('a', 'foo'\)"): | ||||
|             df.loc[("a", "foo"), :] | ||||
|  | ||||
|     # TODO(ArrayManager) rewrite test to not use .values | ||||
|     # exp.loc[2000, 4].values[:] select multiple columns -> .values is not a view | ||||
|     @td.skip_array_manager_invalid_test | ||||
|     def test_partial_set( | ||||
|         self, | ||||
|         multiindex_year_month_day_dataframe_random_data, | ||||
|         using_copy_on_write, | ||||
|         warn_copy_on_write, | ||||
|     ): | ||||
|         # GH #397 | ||||
|         ymd = multiindex_year_month_day_dataframe_random_data | ||||
|         df = ymd.copy() | ||||
|         exp = ymd.copy() | ||||
|         df.loc[2000, 4] = 0 | ||||
|         exp.iloc[65:85] = 0 | ||||
|         tm.assert_frame_equal(df, exp) | ||||
|  | ||||
|         if using_copy_on_write: | ||||
|             with tm.raises_chained_assignment_error(): | ||||
|                 df["A"].loc[2000, 4] = 1 | ||||
|             df.loc[(2000, 4), "A"] = 1 | ||||
|         else: | ||||
|             with tm.raises_chained_assignment_error(): | ||||
|                 df["A"].loc[2000, 4] = 1 | ||||
|         exp.iloc[65:85, 0] = 1 | ||||
|         tm.assert_frame_equal(df, exp) | ||||
|  | ||||
|         df.loc[2000] = 5 | ||||
|         exp.iloc[:100] = 5 | ||||
|         tm.assert_frame_equal(df, exp) | ||||
|  | ||||
|         # this works...for now | ||||
|         with tm.raises_chained_assignment_error(): | ||||
|             df["A"].iloc[14] = 5 | ||||
|         if using_copy_on_write: | ||||
|             assert df["A"].iloc[14] == exp["A"].iloc[14] | ||||
|         else: | ||||
|             assert df["A"].iloc[14] == 5 | ||||
|  | ||||
|     @pytest.mark.parametrize("dtype", [int, float]) | ||||
|     def test_getitem_intkey_leading_level( | ||||
|         self, multiindex_year_month_day_dataframe_random_data, dtype | ||||
|     ): | ||||
|         # GH#33355 dont fall-back to positional when leading level is int | ||||
|         ymd = multiindex_year_month_day_dataframe_random_data | ||||
|         levels = ymd.index.levels | ||||
|         ymd.index = ymd.index.set_levels([levels[0].astype(dtype)] + levels[1:]) | ||||
|         ser = ymd["A"] | ||||
|         mi = ser.index | ||||
|         assert isinstance(mi, MultiIndex) | ||||
|         if dtype is int: | ||||
|             assert mi.levels[0].dtype == np.dtype(int) | ||||
|         else: | ||||
|             assert mi.levels[0].dtype == np.float64 | ||||
|  | ||||
|         assert 14 not in mi.levels[0] | ||||
|         assert not mi.levels[0]._should_fallback_to_positional | ||||
|         assert not mi._should_fallback_to_positional | ||||
|  | ||||
|         with pytest.raises(KeyError, match="14"): | ||||
|             ser[14] | ||||
|  | ||||
|     # --------------------------------------------------------------------- | ||||
|  | ||||
|     def test_setitem_multiple_partial(self, multiindex_dataframe_random_data): | ||||
|         frame = multiindex_dataframe_random_data | ||||
|         expected = frame.copy() | ||||
|         result = frame.copy() | ||||
|         result.loc[["foo", "bar"]] = 0 | ||||
|         expected.loc["foo"] = 0 | ||||
|         expected.loc["bar"] = 0 | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         expected = frame.copy() | ||||
|         result = frame.copy() | ||||
|         result.loc["foo":"bar"] = 0 | ||||
|         expected.loc["foo"] = 0 | ||||
|         expected.loc["bar"] = 0 | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         expected = frame["A"].copy() | ||||
|         result = frame["A"].copy() | ||||
|         result.loc[["foo", "bar"]] = 0 | ||||
|         expected.loc["foo"] = 0 | ||||
|         expected.loc["bar"] = 0 | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|         expected = frame["A"].copy() | ||||
|         result = frame["A"].copy() | ||||
|         result.loc["foo":"bar"] = 0 | ||||
|         expected.loc["foo"] = 0 | ||||
|         expected.loc["bar"] = 0 | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "indexer, exp_idx, exp_values", | ||||
|         [ | ||||
|             ( | ||||
|                 slice("2019-2", None), | ||||
|                 DatetimeIndex(["2019-02-01"], dtype="M8[ns]"), | ||||
|                 [2, 3], | ||||
|             ), | ||||
|             ( | ||||
|                 slice(None, "2019-2"), | ||||
|                 date_range("2019", periods=2, freq="MS"), | ||||
|                 [0, 1, 2, 3], | ||||
|             ), | ||||
|         ], | ||||
|     ) | ||||
|     def test_partial_getitem_loc_datetime(self, indexer, exp_idx, exp_values): | ||||
|         # GH: 25165 | ||||
|         date_idx = date_range("2019", periods=2, freq="MS") | ||||
|         df = DataFrame( | ||||
|             list(range(4)), | ||||
|             index=MultiIndex.from_product([date_idx, [0, 1]], names=["x", "y"]), | ||||
|         ) | ||||
|         expected = DataFrame( | ||||
|             exp_values, | ||||
|             index=MultiIndex.from_product([exp_idx, [0, 1]], names=["x", "y"]), | ||||
|         ) | ||||
|         result = df[indexer] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|         result = df.loc[indexer] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         result = df.loc(axis=0)[indexer] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         result = df.loc[indexer, :] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         df2 = df.swaplevel(0, 1).sort_index() | ||||
|         expected = expected.swaplevel(0, 1).sort_index() | ||||
|  | ||||
|         result = df2.loc[:, indexer, :] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_loc_getitem_partial_both_axis(): | ||||
|     # gh-12660 | ||||
|     iterables = [["a", "b"], [2, 1]] | ||||
|     columns = MultiIndex.from_product(iterables, names=["col1", "col2"]) | ||||
|     rows = MultiIndex.from_product(iterables, names=["row1", "row2"]) | ||||
|     df = DataFrame( | ||||
|         np.random.default_rng(2).standard_normal((4, 4)), index=rows, columns=columns | ||||
|     ) | ||||
|     expected = df.iloc[:2, 2:].droplevel("row1").droplevel("col1", axis=1) | ||||
|     result = df.loc["a", "b"] | ||||
|     tm.assert_frame_equal(result, expected) | ||||
| @ -0,0 +1,589 @@ | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas.errors import SettingWithCopyError | ||||
| import pandas.util._test_decorators as td | ||||
|  | ||||
| import pandas as pd | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     MultiIndex, | ||||
|     Series, | ||||
|     date_range, | ||||
|     isna, | ||||
|     notna, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
|  | ||||
|  | ||||
| def assert_equal(a, b): | ||||
|     assert a == b | ||||
|  | ||||
|  | ||||
| class TestMultiIndexSetItem: | ||||
|     def check(self, target, indexers, value, compare_fn=assert_equal, expected=None): | ||||
|         target.loc[indexers] = value | ||||
|         result = target.loc[indexers] | ||||
|         if expected is None: | ||||
|             expected = value | ||||
|         compare_fn(result, expected) | ||||
|  | ||||
|     def test_setitem_multiindex(self): | ||||
|         # GH#7190 | ||||
|         cols = ["A", "w", "l", "a", "x", "X", "d", "profit"] | ||||
|         index = MultiIndex.from_product( | ||||
|             [np.arange(0, 100), np.arange(0, 80)], names=["time", "firm"] | ||||
|         ) | ||||
|         t, n = 0, 2 | ||||
|  | ||||
|         df = DataFrame( | ||||
|             np.nan, | ||||
|             columns=cols, | ||||
|             index=index, | ||||
|         ) | ||||
|         self.check(target=df, indexers=((t, n), "X"), value=0) | ||||
|  | ||||
|         df = DataFrame(-999, columns=cols, index=index) | ||||
|         self.check(target=df, indexers=((t, n), "X"), value=1) | ||||
|  | ||||
|         df = DataFrame(columns=cols, index=index) | ||||
|         self.check(target=df, indexers=((t, n), "X"), value=2) | ||||
|  | ||||
|         # gh-7218: assigning with 0-dim arrays | ||||
|         df = DataFrame(-999, columns=cols, index=index) | ||||
|         self.check( | ||||
|             target=df, | ||||
|             indexers=((t, n), "X"), | ||||
|             value=np.array(3), | ||||
|             expected=3, | ||||
|         ) | ||||
|  | ||||
|     def test_setitem_multiindex2(self): | ||||
|         # GH#5206 | ||||
|         df = DataFrame( | ||||
|             np.arange(25).reshape(5, 5), columns="A,B,C,D,E".split(","), dtype=float | ||||
|         ) | ||||
|         df["F"] = 99 | ||||
|         row_selection = df["A"] % 2 == 0 | ||||
|         col_selection = ["B", "C"] | ||||
|         df.loc[row_selection, col_selection] = df["F"] | ||||
|         output = DataFrame(99.0, index=[0, 2, 4], columns=["B", "C"]) | ||||
|         tm.assert_frame_equal(df.loc[row_selection, col_selection], output) | ||||
|         self.check( | ||||
|             target=df, | ||||
|             indexers=(row_selection, col_selection), | ||||
|             value=df["F"], | ||||
|             compare_fn=tm.assert_frame_equal, | ||||
|             expected=output, | ||||
|         ) | ||||
|  | ||||
|     def test_setitem_multiindex3(self): | ||||
|         # GH#11372 | ||||
|         idx = MultiIndex.from_product( | ||||
|             [["A", "B", "C"], date_range("2015-01-01", "2015-04-01", freq="MS")] | ||||
|         ) | ||||
|         cols = MultiIndex.from_product( | ||||
|             [["foo", "bar"], date_range("2016-01-01", "2016-02-01", freq="MS")] | ||||
|         ) | ||||
|  | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).random((12, 4)), index=idx, columns=cols | ||||
|         ) | ||||
|  | ||||
|         subidx = MultiIndex.from_arrays( | ||||
|             [["A", "A"], date_range("2015-01-01", "2015-02-01", freq="MS")] | ||||
|         ) | ||||
|         subcols = MultiIndex.from_arrays( | ||||
|             [["foo", "foo"], date_range("2016-01-01", "2016-02-01", freq="MS")] | ||||
|         ) | ||||
|  | ||||
|         vals = DataFrame( | ||||
|             np.random.default_rng(2).random((2, 2)), index=subidx, columns=subcols | ||||
|         ) | ||||
|         self.check( | ||||
|             target=df, | ||||
|             indexers=(subidx, subcols), | ||||
|             value=vals, | ||||
|             compare_fn=tm.assert_frame_equal, | ||||
|         ) | ||||
|         # set all columns | ||||
|         vals = DataFrame( | ||||
|             np.random.default_rng(2).random((2, 4)), index=subidx, columns=cols | ||||
|         ) | ||||
|         self.check( | ||||
|             target=df, | ||||
|             indexers=(subidx, slice(None, None, None)), | ||||
|             value=vals, | ||||
|             compare_fn=tm.assert_frame_equal, | ||||
|         ) | ||||
|         # identity | ||||
|         copy = df.copy() | ||||
|         self.check( | ||||
|             target=df, | ||||
|             indexers=(df.index, df.columns), | ||||
|             value=df, | ||||
|             compare_fn=tm.assert_frame_equal, | ||||
|             expected=copy, | ||||
|         ) | ||||
|  | ||||
|     # TODO(ArrayManager) df.loc["bar"] *= 2 doesn't raise an error but results in | ||||
|     # all NaNs -> doesn't work in the "split" path (also for BlockManager actually) | ||||
|     @td.skip_array_manager_not_yet_implemented | ||||
|     def test_multiindex_setitem(self): | ||||
|         # GH 3738 | ||||
|         # setting with a multi-index right hand side | ||||
|         arrays = [ | ||||
|             np.array(["bar", "bar", "baz", "qux", "qux", "bar"]), | ||||
|             np.array(["one", "two", "one", "one", "two", "one"]), | ||||
|             np.arange(0, 6, 1), | ||||
|         ] | ||||
|  | ||||
|         df_orig = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((6, 3)), | ||||
|             index=arrays, | ||||
|             columns=["A", "B", "C"], | ||||
|         ).sort_index() | ||||
|  | ||||
|         expected = df_orig.loc[["bar"]] * 2 | ||||
|         df = df_orig.copy() | ||||
|         df.loc[["bar"]] *= 2 | ||||
|         tm.assert_frame_equal(df.loc[["bar"]], expected) | ||||
|  | ||||
|         # raise because these have differing levels | ||||
|         msg = "cannot align on a multi-index with out specifying the join levels" | ||||
|         with pytest.raises(TypeError, match=msg): | ||||
|             df.loc["bar"] *= 2 | ||||
|  | ||||
|     def test_multiindex_setitem2(self): | ||||
|         # from SO | ||||
|         # https://stackoverflow.com/questions/24572040/pandas-access-the-level-of-multiindex-for-inplace-operation | ||||
|         df_orig = DataFrame.from_dict( | ||||
|             { | ||||
|                 "price": { | ||||
|                     ("DE", "Coal", "Stock"): 2, | ||||
|                     ("DE", "Gas", "Stock"): 4, | ||||
|                     ("DE", "Elec", "Demand"): 1, | ||||
|                     ("FR", "Gas", "Stock"): 5, | ||||
|                     ("FR", "Solar", "SupIm"): 0, | ||||
|                     ("FR", "Wind", "SupIm"): 0, | ||||
|                 } | ||||
|             } | ||||
|         ) | ||||
|         df_orig.index = MultiIndex.from_tuples( | ||||
|             df_orig.index, names=["Sit", "Com", "Type"] | ||||
|         ) | ||||
|  | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[[0, 1, 3]] *= 2 | ||||
|  | ||||
|         idx = pd.IndexSlice | ||||
|         df = df_orig.copy() | ||||
|         df.loc[idx[:, :, "Stock"], :] *= 2 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         df = df_orig.copy() | ||||
|         df.loc[idx[:, :, "Stock"], "price"] *= 2 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|     def test_multiindex_assignment(self): | ||||
|         # GH3777 part 2 | ||||
|  | ||||
|         # mixed dtype | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).integers(5, 10, size=9).reshape(3, 3), | ||||
|             columns=list("abc"), | ||||
|             index=[[4, 4, 8], [8, 10, 12]], | ||||
|         ) | ||||
|         df["d"] = np.nan | ||||
|         arr = np.array([0.0, 1.0]) | ||||
|  | ||||
|         df.loc[4, "d"] = arr | ||||
|         tm.assert_series_equal(df.loc[4, "d"], Series(arr, index=[8, 10], name="d")) | ||||
|  | ||||
|     def test_multiindex_assignment_single_dtype( | ||||
|         self, using_copy_on_write, warn_copy_on_write | ||||
|     ): | ||||
|         # GH3777 part 2b | ||||
|         # single dtype | ||||
|         arr = np.array([0.0, 1.0]) | ||||
|  | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).integers(5, 10, size=9).reshape(3, 3), | ||||
|             columns=list("abc"), | ||||
|             index=[[4, 4, 8], [8, 10, 12]], | ||||
|             dtype=np.int64, | ||||
|         ) | ||||
|         view = df["c"].iloc[:2].values | ||||
|  | ||||
|         # arr can be losslessly cast to int, so this setitem is inplace | ||||
|         # INFO(CoW-warn) this does not warn because we directly took .values | ||||
|         # above, so no reference to a pandas object is alive for `view` | ||||
|         df.loc[4, "c"] = arr | ||||
|         exp = Series(arr, index=[8, 10], name="c", dtype="int64") | ||||
|         result = df.loc[4, "c"] | ||||
|         tm.assert_series_equal(result, exp) | ||||
|  | ||||
|         # extra check for inplace-ness | ||||
|         if not using_copy_on_write: | ||||
|             tm.assert_numpy_array_equal(view, exp.values) | ||||
|  | ||||
|         # arr + 0.5 cannot be cast losslessly to int, so we upcast | ||||
|         with tm.assert_produces_warning( | ||||
|             FutureWarning, match="item of incompatible dtype" | ||||
|         ): | ||||
|             df.loc[4, "c"] = arr + 0.5 | ||||
|         result = df.loc[4, "c"] | ||||
|         exp = exp + 0.5 | ||||
|         tm.assert_series_equal(result, exp) | ||||
|  | ||||
|         # scalar ok | ||||
|         with tm.assert_cow_warning(warn_copy_on_write): | ||||
|             df.loc[4, "c"] = 10 | ||||
|         exp = Series(10, index=[8, 10], name="c", dtype="float64") | ||||
|         tm.assert_series_equal(df.loc[4, "c"], exp) | ||||
|  | ||||
|         # invalid assignments | ||||
|         msg = "Must have equal len keys and value when setting with an iterable" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.loc[4, "c"] = [0, 1, 2, 3] | ||||
|  | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.loc[4, "c"] = [0] | ||||
|  | ||||
|         # But with a length-1 listlike column indexer this behaves like | ||||
|         #  `df.loc[4, "c"] = 0 | ||||
|         with tm.assert_cow_warning(warn_copy_on_write): | ||||
|             df.loc[4, ["c"]] = [0] | ||||
|         assert (df.loc[4, "c"] == 0).all() | ||||
|  | ||||
|     def test_groupby_example(self): | ||||
|         # groupby example | ||||
|         NUM_ROWS = 100 | ||||
|         NUM_COLS = 10 | ||||
|         col_names = ["A" + num for num in map(str, np.arange(NUM_COLS).tolist())] | ||||
|         index_cols = col_names[:5] | ||||
|  | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).integers(5, size=(NUM_ROWS, NUM_COLS)), | ||||
|             dtype=np.int64, | ||||
|             columns=col_names, | ||||
|         ) | ||||
|         df = df.set_index(index_cols).sort_index() | ||||
|         grp = df.groupby(level=index_cols[:4]) | ||||
|         df["new_col"] = np.nan | ||||
|  | ||||
|         # we are actually operating on a copy here | ||||
|         # but in this case, that's ok | ||||
|         for name, df2 in grp: | ||||
|             new_vals = np.arange(df2.shape[0]) | ||||
|             df.loc[name, "new_col"] = new_vals | ||||
|  | ||||
|     def test_series_setitem( | ||||
|         self, multiindex_year_month_day_dataframe_random_data, warn_copy_on_write | ||||
|     ): | ||||
|         ymd = multiindex_year_month_day_dataframe_random_data | ||||
|         s = ymd["A"] | ||||
|  | ||||
|         with tm.assert_cow_warning(warn_copy_on_write): | ||||
|             s[2000, 3] = np.nan | ||||
|         assert isna(s.values[42:65]).all() | ||||
|         assert notna(s.values[:42]).all() | ||||
|         assert notna(s.values[65:]).all() | ||||
|  | ||||
|         with tm.assert_cow_warning(warn_copy_on_write): | ||||
|             s[2000, 3, 10] = np.nan | ||||
|         assert isna(s.iloc[49]) | ||||
|  | ||||
|         with pytest.raises(KeyError, match="49"): | ||||
|             # GH#33355 dont fall-back to positional when leading level is int | ||||
|             s[49] | ||||
|  | ||||
|     def test_frame_getitem_setitem_boolean(self, multiindex_dataframe_random_data): | ||||
|         frame = multiindex_dataframe_random_data | ||||
|         df = frame.T.copy() | ||||
|         values = df.values.copy() | ||||
|  | ||||
|         result = df[df > 0] | ||||
|         expected = df.where(df > 0) | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         df[df > 0] = 5 | ||||
|         values[values > 0] = 5 | ||||
|         tm.assert_almost_equal(df.values, values) | ||||
|  | ||||
|         df[df == 5] = 0 | ||||
|         values[values == 5] = 0 | ||||
|         tm.assert_almost_equal(df.values, values) | ||||
|  | ||||
|         # a df that needs alignment first | ||||
|         df[df[:-1] < 0] = 2 | ||||
|         np.putmask(values[:-1], values[:-1] < 0, 2) | ||||
|         tm.assert_almost_equal(df.values, values) | ||||
|  | ||||
|         with pytest.raises(TypeError, match="boolean values only"): | ||||
|             df[df * 0] = 2 | ||||
|  | ||||
|     def test_frame_getitem_setitem_multislice(self): | ||||
|         levels = [["t1", "t2"], ["a", "b", "c"]] | ||||
|         codes = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] | ||||
|         midx = MultiIndex(codes=codes, levels=levels, names=[None, "id"]) | ||||
|         df = DataFrame({"value": [1, 2, 3, 7, 8]}, index=midx) | ||||
|  | ||||
|         result = df.loc[:, "value"] | ||||
|         tm.assert_series_equal(df["value"], result) | ||||
|  | ||||
|         result = df.loc[df.index[1:3], "value"] | ||||
|         tm.assert_series_equal(df["value"][1:3], result) | ||||
|  | ||||
|         result = df.loc[:, :] | ||||
|         tm.assert_frame_equal(df, result) | ||||
|  | ||||
|         result = df | ||||
|         df.loc[:, "value"] = 10 | ||||
|         result["value"] = 10 | ||||
|         tm.assert_frame_equal(df, result) | ||||
|  | ||||
|         df.loc[:, :] = 10 | ||||
|         tm.assert_frame_equal(df, result) | ||||
|  | ||||
|     def test_frame_setitem_multi_column(self): | ||||
|         df = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((10, 4)), | ||||
|             columns=[["a", "a", "b", "b"], [0, 1, 0, 1]], | ||||
|         ) | ||||
|  | ||||
|         cp = df.copy() | ||||
|         cp["a"] = cp["b"] | ||||
|         tm.assert_frame_equal(cp["a"], cp["b"]) | ||||
|  | ||||
|         # set with ndarray | ||||
|         cp = df.copy() | ||||
|         cp["a"] = cp["b"].values | ||||
|         tm.assert_frame_equal(cp["a"], cp["b"]) | ||||
|  | ||||
|     def test_frame_setitem_multi_column2(self): | ||||
|         # --------------------------------------- | ||||
|         # GH#1803 | ||||
|         columns = MultiIndex.from_tuples([("A", "1"), ("A", "2"), ("B", "1")]) | ||||
|         df = DataFrame(index=[1, 3, 5], columns=columns) | ||||
|  | ||||
|         # Works, but adds a column instead of updating the two existing ones | ||||
|         df["A"] = 0.0  # Doesn't work | ||||
|         assert (df["A"].values == 0).all() | ||||
|  | ||||
|         # it broadcasts | ||||
|         df["B", "1"] = [1, 2, 3] | ||||
|         df["A"] = df["B", "1"] | ||||
|  | ||||
|         sliced_a1 = df["A", "1"] | ||||
|         sliced_a2 = df["A", "2"] | ||||
|         sliced_b1 = df["B", "1"] | ||||
|         tm.assert_series_equal(sliced_a1, sliced_b1, check_names=False) | ||||
|         tm.assert_series_equal(sliced_a2, sliced_b1, check_names=False) | ||||
|         assert sliced_a1.name == ("A", "1") | ||||
|         assert sliced_a2.name == ("A", "2") | ||||
|         assert sliced_b1.name == ("B", "1") | ||||
|  | ||||
|     def test_loc_getitem_tuple_plus_columns( | ||||
|         self, multiindex_year_month_day_dataframe_random_data | ||||
|     ): | ||||
|         # GH #1013 | ||||
|         ymd = multiindex_year_month_day_dataframe_random_data | ||||
|         df = ymd[:5] | ||||
|  | ||||
|         result = df.loc[(2000, 1, 6), ["A", "B", "C"]] | ||||
|         expected = df.loc[2000, 1, 6][["A", "B", "C"]] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|     @pytest.mark.filterwarnings("ignore:Setting a value on a view:FutureWarning") | ||||
|     def test_loc_getitem_setitem_slice_integers(self, frame_or_series): | ||||
|         index = MultiIndex( | ||||
|             levels=[[0, 1, 2], [0, 2]], codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]] | ||||
|         ) | ||||
|  | ||||
|         obj = DataFrame( | ||||
|             np.random.default_rng(2).standard_normal((len(index), 4)), | ||||
|             index=index, | ||||
|             columns=["a", "b", "c", "d"], | ||||
|         ) | ||||
|         obj = tm.get_obj(obj, frame_or_series) | ||||
|  | ||||
|         res = obj.loc[1:2] | ||||
|         exp = obj.reindex(obj.index[2:]) | ||||
|         tm.assert_equal(res, exp) | ||||
|  | ||||
|         obj.loc[1:2] = 7 | ||||
|         assert (obj.loc[1:2] == 7).values.all() | ||||
|  | ||||
|     def test_setitem_change_dtype(self, multiindex_dataframe_random_data): | ||||
|         frame = multiindex_dataframe_random_data | ||||
|         dft = frame.T | ||||
|         s = dft["foo", "two"] | ||||
|         dft["foo", "two"] = s > s.median() | ||||
|         tm.assert_series_equal(dft["foo", "two"], s > s.median()) | ||||
|         # assert isinstance(dft._data.blocks[1].items, MultiIndex) | ||||
|  | ||||
|         reindexed = dft.reindex(columns=[("foo", "two")]) | ||||
|         tm.assert_series_equal(reindexed["foo", "two"], s > s.median()) | ||||
|  | ||||
|     def test_set_column_scalar_with_loc( | ||||
|         self, multiindex_dataframe_random_data, using_copy_on_write, warn_copy_on_write | ||||
|     ): | ||||
|         frame = multiindex_dataframe_random_data | ||||
|         subset = frame.index[[1, 4, 5]] | ||||
|  | ||||
|         frame.loc[subset] = 99 | ||||
|         assert (frame.loc[subset].values == 99).all() | ||||
|  | ||||
|         frame_original = frame.copy() | ||||
|         col = frame["B"] | ||||
|         with tm.assert_cow_warning(warn_copy_on_write): | ||||
|             col[subset] = 97 | ||||
|         if using_copy_on_write: | ||||
|             # chained setitem doesn't work with CoW | ||||
|             tm.assert_frame_equal(frame, frame_original) | ||||
|         else: | ||||
|             assert (frame.loc[subset, "B"] == 97).all() | ||||
|  | ||||
|     def test_nonunique_assignment_1750(self): | ||||
|         df = DataFrame( | ||||
|             [[1, 1, "x", "X"], [1, 1, "y", "Y"], [1, 2, "z", "Z"]], columns=list("ABCD") | ||||
|         ) | ||||
|  | ||||
|         df = df.set_index(["A", "B"]) | ||||
|         mi = MultiIndex.from_tuples([(1, 1)]) | ||||
|  | ||||
|         df.loc[mi, "C"] = "_" | ||||
|  | ||||
|         assert (df.xs((1, 1))["C"] == "_").all() | ||||
|  | ||||
|     def test_astype_assignment_with_dups(self): | ||||
|         # GH 4686 | ||||
|         # assignment with dups that has a dtype change | ||||
|         cols = MultiIndex.from_tuples([("A", "1"), ("B", "1"), ("A", "2")]) | ||||
|         df = DataFrame(np.arange(3).reshape((1, 3)), columns=cols, dtype=object) | ||||
|         index = df.index.copy() | ||||
|  | ||||
|         df["A"] = df["A"].astype(np.float64) | ||||
|         tm.assert_index_equal(df.index, index) | ||||
|  | ||||
|     def test_setitem_nonmonotonic(self): | ||||
|         # https://github.com/pandas-dev/pandas/issues/31449 | ||||
|         index = MultiIndex.from_tuples( | ||||
|             [("a", "c"), ("b", "x"), ("a", "d")], names=["l1", "l2"] | ||||
|         ) | ||||
|         df = DataFrame(data=[0, 1, 2], index=index, columns=["e"]) | ||||
|         df.loc["a", "e"] = np.arange(99, 101, dtype="int64") | ||||
|         expected = DataFrame({"e": [99, 1, 100]}, index=index) | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|  | ||||
| class TestSetitemWithExpansionMultiIndex: | ||||
|     def test_setitem_new_column_mixed_depth(self): | ||||
|         arrays = [ | ||||
|             ["a", "top", "top", "routine1", "routine1", "routine2"], | ||||
|             ["", "OD", "OD", "result1", "result2", "result1"], | ||||
|             ["", "wx", "wy", "", "", ""], | ||||
|         ] | ||||
|  | ||||
|         tuples = sorted(zip(*arrays)) | ||||
|         index = MultiIndex.from_tuples(tuples) | ||||
|         df = DataFrame(np.random.default_rng(2).standard_normal((4, 6)), columns=index) | ||||
|  | ||||
|         result = df.copy() | ||||
|         expected = df.copy() | ||||
|         result["b"] = [1, 2, 3, 4] | ||||
|         expected["b", "", ""] = [1, 2, 3, 4] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_setitem_new_column_all_na(self): | ||||
|         # GH#1534 | ||||
|         mix = MultiIndex.from_tuples([("1a", "2a"), ("1a", "2b"), ("1a", "2c")]) | ||||
|         df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mix) | ||||
|         s = Series({(1, 1): 1, (1, 2): 2}) | ||||
|         df["new"] = s | ||||
|         assert df["new"].isna().all() | ||||
|  | ||||
|     def test_setitem_enlargement_keep_index_names(self): | ||||
|         # GH#53053 | ||||
|         mi = MultiIndex.from_tuples([(1, 2, 3)], names=["i1", "i2", "i3"]) | ||||
|         df = DataFrame(data=[[10, 20, 30]], index=mi, columns=["A", "B", "C"]) | ||||
|         df.loc[(0, 0, 0)] = df.loc[(1, 2, 3)] | ||||
|         mi_expected = MultiIndex.from_tuples( | ||||
|             [(1, 2, 3), (0, 0, 0)], names=["i1", "i2", "i3"] | ||||
|         ) | ||||
|         expected = DataFrame( | ||||
|             data=[[10, 20, 30], [10, 20, 30]], | ||||
|             index=mi_expected, | ||||
|             columns=["A", "B", "C"], | ||||
|         ) | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|  | ||||
| @td.skip_array_manager_invalid_test  # df["foo"] select multiple columns -> .values | ||||
| # is not a view | ||||
| def test_frame_setitem_view_direct( | ||||
|     multiindex_dataframe_random_data, using_copy_on_write | ||||
| ): | ||||
|     # this works because we are modifying the underlying array | ||||
|     # really a no-no | ||||
|     df = multiindex_dataframe_random_data.T | ||||
|     if using_copy_on_write: | ||||
|         with pytest.raises(ValueError, match="read-only"): | ||||
|             df["foo"].values[:] = 0 | ||||
|         assert (df["foo"].values != 0).all() | ||||
|     else: | ||||
|         df["foo"].values[:] = 0 | ||||
|         assert (df["foo"].values == 0).all() | ||||
|  | ||||
|  | ||||
| def test_frame_setitem_copy_raises( | ||||
|     multiindex_dataframe_random_data, using_copy_on_write, warn_copy_on_write | ||||
| ): | ||||
|     # will raise/warn as its chained assignment | ||||
|     df = multiindex_dataframe_random_data.T | ||||
|     if using_copy_on_write or warn_copy_on_write: | ||||
|         with tm.raises_chained_assignment_error(): | ||||
|             df["foo"]["one"] = 2 | ||||
|     else: | ||||
|         msg = "A value is trying to be set on a copy of a slice from a DataFrame" | ||||
|         with pytest.raises(SettingWithCopyError, match=msg): | ||||
|             with tm.raises_chained_assignment_error(): | ||||
|                 df["foo"]["one"] = 2 | ||||
|  | ||||
|  | ||||
| def test_frame_setitem_copy_no_write( | ||||
|     multiindex_dataframe_random_data, using_copy_on_write, warn_copy_on_write | ||||
| ): | ||||
|     frame = multiindex_dataframe_random_data.T | ||||
|     expected = frame | ||||
|     df = frame.copy() | ||||
|     if using_copy_on_write or warn_copy_on_write: | ||||
|         with tm.raises_chained_assignment_error(): | ||||
|             df["foo"]["one"] = 2 | ||||
|     else: | ||||
|         msg = "A value is trying to be set on a copy of a slice from a DataFrame" | ||||
|         with pytest.raises(SettingWithCopyError, match=msg): | ||||
|             with tm.raises_chained_assignment_error(): | ||||
|                 df["foo"]["one"] = 2 | ||||
|  | ||||
|     result = df | ||||
|     tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|  | ||||
| def test_frame_setitem_partial_multiindex(): | ||||
|     # GH 54875 | ||||
|     df = DataFrame( | ||||
|         { | ||||
|             "a": [1, 2, 3], | ||||
|             "b": [3, 4, 5], | ||||
|             "c": 6, | ||||
|             "d": 7, | ||||
|         } | ||||
|     ).set_index(["a", "b", "c"]) | ||||
|     ser = Series(8, index=df.index.droplevel("c")) | ||||
|     result = df.copy() | ||||
|     result["d"] = ser | ||||
|     expected = df.copy() | ||||
|     expected["d"] = 8 | ||||
|     tm.assert_frame_equal(result, expected) | ||||
| @ -0,0 +1,796 @@ | ||||
| from datetime import ( | ||||
|     datetime, | ||||
|     timedelta, | ||||
| ) | ||||
|  | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas.errors import UnsortedIndexError | ||||
|  | ||||
| import pandas as pd | ||||
| from pandas import ( | ||||
|     DataFrame, | ||||
|     Index, | ||||
|     MultiIndex, | ||||
|     Series, | ||||
|     Timestamp, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
| from pandas.tests.indexing.common import _mklbl | ||||
|  | ||||
|  | ||||
| class TestMultiIndexSlicers: | ||||
|     def test_per_axis_per_level_getitem(self): | ||||
|         # GH6134 | ||||
|         # example test case | ||||
|         ix = MultiIndex.from_product( | ||||
|             [_mklbl("A", 5), _mklbl("B", 7), _mklbl("C", 4), _mklbl("D", 2)] | ||||
|         ) | ||||
|         df = DataFrame(np.arange(len(ix.to_numpy())), index=ix) | ||||
|  | ||||
|         result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :] | ||||
|         expected = df.loc[ | ||||
|             [ | ||||
|                 ( | ||||
|                     a, | ||||
|                     b, | ||||
|                     c, | ||||
|                     d, | ||||
|                 ) | ||||
|                 for a, b, c, d in df.index.values | ||||
|                 if a in ("A1", "A2", "A3") and c in ("C1", "C3") | ||||
|             ] | ||||
|         ] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         expected = df.loc[ | ||||
|             [ | ||||
|                 ( | ||||
|                     a, | ||||
|                     b, | ||||
|                     c, | ||||
|                     d, | ||||
|                 ) | ||||
|                 for a, b, c, d in df.index.values | ||||
|                 if a in ("A1", "A2", "A3") and c in ("C1", "C2", "C3") | ||||
|             ] | ||||
|         ] | ||||
|         result = df.loc[(slice("A1", "A3"), slice(None), slice("C1", "C3")), :] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # test multi-index slicing with per axis and per index controls | ||||
|         index = MultiIndex.from_tuples( | ||||
|             [("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"] | ||||
|         ) | ||||
|         columns = MultiIndex.from_tuples( | ||||
|             [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], | ||||
|             names=["lvl0", "lvl1"], | ||||
|         ) | ||||
|  | ||||
|         df = DataFrame( | ||||
|             np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns | ||||
|         ) | ||||
|         df = df.sort_index(axis=0).sort_index(axis=1) | ||||
|  | ||||
|         # identity | ||||
|         result = df.loc[(slice(None), slice(None)), :] | ||||
|         tm.assert_frame_equal(result, df) | ||||
|         result = df.loc[(slice(None), slice(None)), (slice(None), slice(None))] | ||||
|         tm.assert_frame_equal(result, df) | ||||
|         result = df.loc[:, (slice(None), slice(None))] | ||||
|         tm.assert_frame_equal(result, df) | ||||
|  | ||||
|         # index | ||||
|         result = df.loc[(slice(None), [1]), :] | ||||
|         expected = df.iloc[[0, 3]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         result = df.loc[(slice(None), 1), :] | ||||
|         expected = df.iloc[[0, 3]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # columns | ||||
|         result = df.loc[:, (slice(None), ["foo"])] | ||||
|         expected = df.iloc[:, [1, 3]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # both | ||||
|         result = df.loc[(slice(None), 1), (slice(None), ["foo"])] | ||||
|         expected = df.iloc[[0, 3], [1, 3]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         result = df.loc["A", "a"] | ||||
|         expected = DataFrame( | ||||
|             {"bar": [1, 5, 9], "foo": [0, 4, 8]}, | ||||
|             index=Index([1, 2, 3], name="two"), | ||||
|             columns=Index(["bar", "foo"], name="lvl1"), | ||||
|         ) | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         result = df.loc[(slice(None), [1, 2]), :] | ||||
|         expected = df.iloc[[0, 1, 3]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # multi-level series | ||||
|         s = Series(np.arange(len(ix.to_numpy())), index=ix) | ||||
|         result = s.loc["A1":"A3", :, ["C1", "C3"]] | ||||
|         expected = s.loc[ | ||||
|             [ | ||||
|                 ( | ||||
|                     a, | ||||
|                     b, | ||||
|                     c, | ||||
|                     d, | ||||
|                 ) | ||||
|                 for a, b, c, d in s.index.values | ||||
|                 if a in ("A1", "A2", "A3") and c in ("C1", "C3") | ||||
|             ] | ||||
|         ] | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|         # boolean indexers | ||||
|         result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :] | ||||
|         expected = df.iloc[[2, 3]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         msg = ( | ||||
|             "cannot index with a boolean indexer " | ||||
|             "that is not the same length as the index" | ||||
|         ) | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.loc[(slice(None), np.array([True, False])), :] | ||||
|  | ||||
|         with pytest.raises(KeyError, match=r"\[1\] not in index"): | ||||
|             # slice(None) is on the index, [1] is on the columns, but 1 is | ||||
|             #  not in the columns, so we raise | ||||
|             #  This used to treat [1] as positional GH#16396 | ||||
|             df.loc[slice(None), [1]] | ||||
|  | ||||
|         # not lexsorted | ||||
|         assert df.index._lexsort_depth == 2 | ||||
|         df = df.sort_index(level=1, axis=0) | ||||
|         assert df.index._lexsort_depth == 0 | ||||
|  | ||||
|         msg = ( | ||||
|             "MultiIndex slicing requires the index to be " | ||||
|             r"lexsorted: slicing on levels \[1\], lexsort depth 0" | ||||
|         ) | ||||
|         with pytest.raises(UnsortedIndexError, match=msg): | ||||
|             df.loc[(slice(None), slice("bar")), :] | ||||
|  | ||||
|         # GH 16734: not sorted, but no real slicing | ||||
|         result = df.loc[(slice(None), df.loc[:, ("a", "bar")] > 5), :] | ||||
|         tm.assert_frame_equal(result, df.iloc[[1, 3], :]) | ||||
|  | ||||
|     def test_multiindex_slicers_non_unique(self): | ||||
|         # GH 7106 | ||||
|         # non-unique mi index support | ||||
|         df = ( | ||||
|             DataFrame( | ||||
|                 { | ||||
|                     "A": ["foo", "foo", "foo", "foo"], | ||||
|                     "B": ["a", "a", "a", "a"], | ||||
|                     "C": [1, 2, 1, 3], | ||||
|                     "D": [1, 2, 3, 4], | ||||
|                 } | ||||
|             ) | ||||
|             .set_index(["A", "B", "C"]) | ||||
|             .sort_index() | ||||
|         ) | ||||
|         assert not df.index.is_unique | ||||
|         expected = ( | ||||
|             DataFrame({"A": ["foo", "foo"], "B": ["a", "a"], "C": [1, 1], "D": [1, 3]}) | ||||
|             .set_index(["A", "B", "C"]) | ||||
|             .sort_index() | ||||
|         ) | ||||
|         result = df.loc[(slice(None), slice(None), 1), :] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # this is equivalent of an xs expression | ||||
|         result = df.xs(1, level=2, drop_level=False) | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         df = ( | ||||
|             DataFrame( | ||||
|                 { | ||||
|                     "A": ["foo", "foo", "foo", "foo"], | ||||
|                     "B": ["a", "a", "a", "a"], | ||||
|                     "C": [1, 2, 1, 2], | ||||
|                     "D": [1, 2, 3, 4], | ||||
|                 } | ||||
|             ) | ||||
|             .set_index(["A", "B", "C"]) | ||||
|             .sort_index() | ||||
|         ) | ||||
|         assert not df.index.is_unique | ||||
|         expected = ( | ||||
|             DataFrame({"A": ["foo", "foo"], "B": ["a", "a"], "C": [1, 1], "D": [1, 3]}) | ||||
|             .set_index(["A", "B", "C"]) | ||||
|             .sort_index() | ||||
|         ) | ||||
|         result = df.loc[(slice(None), slice(None), 1), :] | ||||
|         assert not result.index.is_unique | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # GH12896 | ||||
|         # numpy-implementation dependent bug | ||||
|         ints = [ | ||||
|             1, | ||||
|             2, | ||||
|             3, | ||||
|             4, | ||||
|             5, | ||||
|             6, | ||||
|             7, | ||||
|             8, | ||||
|             9, | ||||
|             10, | ||||
|             11, | ||||
|             12, | ||||
|             12, | ||||
|             13, | ||||
|             14, | ||||
|             14, | ||||
|             16, | ||||
|             17, | ||||
|             18, | ||||
|             19, | ||||
|             200000, | ||||
|             200000, | ||||
|         ] | ||||
|         n = len(ints) | ||||
|         idx = MultiIndex.from_arrays([["a"] * n, ints]) | ||||
|         result = Series([1] * n, index=idx) | ||||
|         result = result.sort_index() | ||||
|         result = result.loc[(slice(None), slice(100000))] | ||||
|         expected = Series([1] * (n - 2), index=idx[:-2]).sort_index() | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|     def test_multiindex_slicers_datetimelike(self): | ||||
|         # GH 7429 | ||||
|         # buggy/inconsistent behavior when slicing with datetime-like | ||||
|         dates = [datetime(2012, 1, 1, 12, 12, 12) + timedelta(days=i) for i in range(6)] | ||||
|         freq = [1, 2] | ||||
|         index = MultiIndex.from_product([dates, freq], names=["date", "frequency"]) | ||||
|  | ||||
|         df = DataFrame( | ||||
|             np.arange(6 * 2 * 4, dtype="int64").reshape(-1, 4), | ||||
|             index=index, | ||||
|             columns=list("ABCD"), | ||||
|         ) | ||||
|  | ||||
|         # multi-axis slicing | ||||
|         idx = pd.IndexSlice | ||||
|         expected = df.iloc[[0, 2, 4], [0, 1]] | ||||
|         result = df.loc[ | ||||
|             ( | ||||
|                 slice( | ||||
|                     Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12") | ||||
|                 ), | ||||
|                 slice(1, 1), | ||||
|             ), | ||||
|             slice("A", "B"), | ||||
|         ] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         result = df.loc[ | ||||
|             ( | ||||
|                 idx[ | ||||
|                     Timestamp("2012-01-01 12:12:12") : Timestamp("2012-01-03 12:12:12") | ||||
|                 ], | ||||
|                 idx[1:1], | ||||
|             ), | ||||
|             slice("A", "B"), | ||||
|         ] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         result = df.loc[ | ||||
|             ( | ||||
|                 slice( | ||||
|                     Timestamp("2012-01-01 12:12:12"), Timestamp("2012-01-03 12:12:12") | ||||
|                 ), | ||||
|                 1, | ||||
|             ), | ||||
|             slice("A", "B"), | ||||
|         ] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # with strings | ||||
|         result = df.loc[ | ||||
|             (slice("2012-01-01 12:12:12", "2012-01-03 12:12:12"), slice(1, 1)), | ||||
|             slice("A", "B"), | ||||
|         ] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         result = df.loc[ | ||||
|             (idx["2012-01-01 12:12:12":"2012-01-03 12:12:12"], 1), idx["A", "B"] | ||||
|         ] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_multiindex_slicers_edges(self): | ||||
|         # GH 8132 | ||||
|         # various edge cases | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "A": ["A0"] * 5 + ["A1"] * 5 + ["A2"] * 5, | ||||
|                 "B": ["B0", "B0", "B1", "B1", "B2"] * 3, | ||||
|                 "DATE": [ | ||||
|                     "2013-06-11", | ||||
|                     "2013-07-02", | ||||
|                     "2013-07-09", | ||||
|                     "2013-07-30", | ||||
|                     "2013-08-06", | ||||
|                     "2013-06-11", | ||||
|                     "2013-07-02", | ||||
|                     "2013-07-09", | ||||
|                     "2013-07-30", | ||||
|                     "2013-08-06", | ||||
|                     "2013-09-03", | ||||
|                     "2013-10-01", | ||||
|                     "2013-07-09", | ||||
|                     "2013-08-06", | ||||
|                     "2013-09-03", | ||||
|                 ], | ||||
|                 "VALUES": [22, 35, 14, 9, 4, 40, 18, 4, 2, 5, 1, 2, 3, 4, 2], | ||||
|             } | ||||
|         ) | ||||
|  | ||||
|         df["DATE"] = pd.to_datetime(df["DATE"]) | ||||
|         df1 = df.set_index(["A", "B", "DATE"]) | ||||
|         df1 = df1.sort_index() | ||||
|  | ||||
|         # A1 - Get all values under "A0" and "A1" | ||||
|         result = df1.loc[(slice("A1")), :] | ||||
|         expected = df1.iloc[0:10] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # A2 - Get all values from the start to "A2" | ||||
|         result = df1.loc[(slice("A2")), :] | ||||
|         expected = df1 | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # A3 - Get all values under "B1" or "B2" | ||||
|         result = df1.loc[(slice(None), slice("B1", "B2")), :] | ||||
|         expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13, 14]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # A4 - Get all values between 2013-07-02 and 2013-07-09 | ||||
|         result = df1.loc[(slice(None), slice(None), slice("20130702", "20130709")), :] | ||||
|         expected = df1.iloc[[1, 2, 6, 7, 12]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # B1 - Get all values in B0 that are also under A0, A1 and A2 | ||||
|         result = df1.loc[(slice("A2"), slice("B0")), :] | ||||
|         expected = df1.iloc[[0, 1, 5, 6, 10, 11]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # B2 - Get all values in B0, B1 and B2 (similar to what #2 is doing for | ||||
|         # the As) | ||||
|         result = df1.loc[(slice(None), slice("B2")), :] | ||||
|         expected = df1 | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # B3 - Get all values from B1 to B2 and up to 2013-08-06 | ||||
|         result = df1.loc[(slice(None), slice("B1", "B2"), slice("2013-08-06")), :] | ||||
|         expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # B4 - Same as A4 but the start of the date slice is not a key. | ||||
|         #      shows indexing on a partial selection slice | ||||
|         result = df1.loc[(slice(None), slice(None), slice("20130701", "20130709")), :] | ||||
|         expected = df1.iloc[[1, 2, 6, 7, 12]] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_per_axis_per_level_doc_examples(self): | ||||
|         # test index maker | ||||
|         idx = pd.IndexSlice | ||||
|  | ||||
|         # from indexing.rst / advanced | ||||
|         index = MultiIndex.from_product( | ||||
|             [_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)] | ||||
|         ) | ||||
|         columns = MultiIndex.from_tuples( | ||||
|             [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], | ||||
|             names=["lvl0", "lvl1"], | ||||
|         ) | ||||
|         df = DataFrame( | ||||
|             np.arange(len(index) * len(columns), dtype="int64").reshape( | ||||
|                 (len(index), len(columns)) | ||||
|             ), | ||||
|             index=index, | ||||
|             columns=columns, | ||||
|         ) | ||||
|         result = df.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :] | ||||
|         expected = df.loc[ | ||||
|             [ | ||||
|                 ( | ||||
|                     a, | ||||
|                     b, | ||||
|                     c, | ||||
|                     d, | ||||
|                 ) | ||||
|                 for a, b, c, d in df.index.values | ||||
|                 if a in ("A1", "A2", "A3") and c in ("C1", "C3") | ||||
|             ] | ||||
|         ] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|         result = df.loc[idx["A1":"A3", :, ["C1", "C3"]], :] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         result = df.loc[(slice(None), slice(None), ["C1", "C3"]), :] | ||||
|         expected = df.loc[ | ||||
|             [ | ||||
|                 ( | ||||
|                     a, | ||||
|                     b, | ||||
|                     c, | ||||
|                     d, | ||||
|                 ) | ||||
|                 for a, b, c, d in df.index.values | ||||
|                 if c in ("C1", "C3") | ||||
|             ] | ||||
|         ] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|         result = df.loc[idx[:, :, ["C1", "C3"]], :] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # not sorted | ||||
|         msg = ( | ||||
|             "MultiIndex slicing requires the index to be lexsorted: " | ||||
|             r"slicing on levels \[1\], lexsort depth 1" | ||||
|         ) | ||||
|         with pytest.raises(UnsortedIndexError, match=msg): | ||||
|             df.loc["A1", ("a", slice("foo"))] | ||||
|  | ||||
|         # GH 16734: not sorted, but no real slicing | ||||
|         tm.assert_frame_equal( | ||||
|             df.loc["A1", (slice(None), "foo")], df.loc["A1"].iloc[:, [0, 2]] | ||||
|         ) | ||||
|  | ||||
|         df = df.sort_index(axis=1) | ||||
|  | ||||
|         # slicing | ||||
|         df.loc["A1", (slice(None), "foo")] | ||||
|         df.loc[(slice(None), slice(None), ["C1", "C3"]), (slice(None), "foo")] | ||||
|  | ||||
|         # setitem | ||||
|         df.loc(axis=0)[:, :, ["C1", "C3"]] = -10 | ||||
|  | ||||
|     def test_loc_axis_arguments(self): | ||||
|         index = MultiIndex.from_product( | ||||
|             [_mklbl("A", 4), _mklbl("B", 2), _mklbl("C", 4), _mklbl("D", 2)] | ||||
|         ) | ||||
|         columns = MultiIndex.from_tuples( | ||||
|             [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], | ||||
|             names=["lvl0", "lvl1"], | ||||
|         ) | ||||
|         df = ( | ||||
|             DataFrame( | ||||
|                 np.arange(len(index) * len(columns), dtype="int64").reshape( | ||||
|                     (len(index), len(columns)) | ||||
|                 ), | ||||
|                 index=index, | ||||
|                 columns=columns, | ||||
|             ) | ||||
|             .sort_index() | ||||
|             .sort_index(axis=1) | ||||
|         ) | ||||
|  | ||||
|         # axis 0 | ||||
|         result = df.loc(axis=0)["A1":"A3", :, ["C1", "C3"]] | ||||
|         expected = df.loc[ | ||||
|             [ | ||||
|                 ( | ||||
|                     a, | ||||
|                     b, | ||||
|                     c, | ||||
|                     d, | ||||
|                 ) | ||||
|                 for a, b, c, d in df.index.values | ||||
|                 if a in ("A1", "A2", "A3") and c in ("C1", "C3") | ||||
|             ] | ||||
|         ] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         result = df.loc(axis="index")[:, :, ["C1", "C3"]] | ||||
|         expected = df.loc[ | ||||
|             [ | ||||
|                 ( | ||||
|                     a, | ||||
|                     b, | ||||
|                     c, | ||||
|                     d, | ||||
|                 ) | ||||
|                 for a, b, c, d in df.index.values | ||||
|                 if c in ("C1", "C3") | ||||
|             ] | ||||
|         ] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # axis 1 | ||||
|         result = df.loc(axis=1)[:, "foo"] | ||||
|         expected = df.loc[:, (slice(None), "foo")] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         result = df.loc(axis="columns")[:, "foo"] | ||||
|         expected = df.loc[:, (slice(None), "foo")] | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|         # invalid axis | ||||
|         for i in [-1, 2, "foo"]: | ||||
|             msg = f"No axis named {i} for object type DataFrame" | ||||
|             with pytest.raises(ValueError, match=msg): | ||||
|                 df.loc(axis=i)[:, :, ["C1", "C3"]] | ||||
|  | ||||
|     def test_loc_axis_single_level_multi_col_indexing_multiindex_col_df(self): | ||||
|         # GH29519 | ||||
|         df = DataFrame( | ||||
|             np.arange(27).reshape(3, 9), | ||||
|             columns=MultiIndex.from_product([["a1", "a2", "a3"], ["b1", "b2", "b3"]]), | ||||
|         ) | ||||
|         result = df.loc(axis=1)["a1":"a2"] | ||||
|         expected = df.iloc[:, :-3] | ||||
|  | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_loc_axis_single_level_single_col_indexing_multiindex_col_df(self): | ||||
|         # GH29519 | ||||
|         df = DataFrame( | ||||
|             np.arange(27).reshape(3, 9), | ||||
|             columns=MultiIndex.from_product([["a1", "a2", "a3"], ["b1", "b2", "b3"]]), | ||||
|         ) | ||||
|         result = df.loc(axis=1)["a1"] | ||||
|         expected = df.iloc[:, :3] | ||||
|         expected.columns = ["b1", "b2", "b3"] | ||||
|  | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_loc_ax_single_level_indexer_simple_df(self): | ||||
|         # GH29519 | ||||
|         # test single level indexing on single index column data frame | ||||
|         df = DataFrame(np.arange(9).reshape(3, 3), columns=["a", "b", "c"]) | ||||
|         result = df.loc(axis=1)["a"] | ||||
|         expected = Series(np.array([0, 3, 6]), name="a") | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|     def test_per_axis_per_level_setitem(self): | ||||
|         # test index maker | ||||
|         idx = pd.IndexSlice | ||||
|  | ||||
|         # test multi-index slicing with per axis and per index controls | ||||
|         index = MultiIndex.from_tuples( | ||||
|             [("A", 1), ("A", 2), ("A", 3), ("B", 1)], names=["one", "two"] | ||||
|         ) | ||||
|         columns = MultiIndex.from_tuples( | ||||
|             [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], | ||||
|             names=["lvl0", "lvl1"], | ||||
|         ) | ||||
|  | ||||
|         df_orig = DataFrame( | ||||
|             np.arange(16, dtype="int64").reshape(4, 4), index=index, columns=columns | ||||
|         ) | ||||
|         df_orig = df_orig.sort_index(axis=0).sort_index(axis=1) | ||||
|  | ||||
|         # identity | ||||
|         df = df_orig.copy() | ||||
|         df.loc[(slice(None), slice(None)), :] = 100 | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[:, :] = 100 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         df = df_orig.copy() | ||||
|         df.loc(axis=0)[:, :] = 100 | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[:, :] = 100 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         df = df_orig.copy() | ||||
|         df.loc[(slice(None), slice(None)), (slice(None), slice(None))] = 100 | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[:, :] = 100 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         df = df_orig.copy() | ||||
|         df.loc[:, (slice(None), slice(None))] = 100 | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[:, :] = 100 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         # index | ||||
|         df = df_orig.copy() | ||||
|         df.loc[(slice(None), [1]), :] = 100 | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[[0, 3]] = 100 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         df = df_orig.copy() | ||||
|         df.loc[(slice(None), 1), :] = 100 | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[[0, 3]] = 100 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         df = df_orig.copy() | ||||
|         df.loc(axis=0)[:, 1] = 100 | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[[0, 3]] = 100 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         # columns | ||||
|         df = df_orig.copy() | ||||
|         df.loc[:, (slice(None), ["foo"])] = 100 | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[:, [1, 3]] = 100 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         # both | ||||
|         df = df_orig.copy() | ||||
|         df.loc[(slice(None), 1), (slice(None), ["foo"])] = 100 | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[[0, 3], [1, 3]] = 100 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         df = df_orig.copy() | ||||
|         df.loc[idx[:, 1], idx[:, ["foo"]]] = 100 | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[[0, 3], [1, 3]] = 100 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         df = df_orig.copy() | ||||
|         df.loc["A", "a"] = 100 | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[0:3, 0:2] = 100 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         # setting with a list-like | ||||
|         df = df_orig.copy() | ||||
|         df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array( | ||||
|             [[100, 100], [100, 100]], dtype="int64" | ||||
|         ) | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[[0, 3], [1, 3]] = 100 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         # not enough values | ||||
|         df = df_orig.copy() | ||||
|  | ||||
|         msg = "setting an array element with a sequence." | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array( | ||||
|                 [[100], [100, 100]], dtype="int64" | ||||
|             ) | ||||
|  | ||||
|         msg = "Must have equal len keys and value when setting with an iterable" | ||||
|         with pytest.raises(ValueError, match=msg): | ||||
|             df.loc[(slice(None), 1), (slice(None), ["foo"])] = np.array( | ||||
|                 [100, 100, 100, 100], dtype="int64" | ||||
|             ) | ||||
|  | ||||
|         # with an alignable rhs | ||||
|         df = df_orig.copy() | ||||
|         df.loc[(slice(None), 1), (slice(None), ["foo"])] = ( | ||||
|             df.loc[(slice(None), 1), (slice(None), ["foo"])] * 5 | ||||
|         ) | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[[0, 3], [1, 3]] = expected.iloc[[0, 3], [1, 3]] * 5 | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         df = df_orig.copy() | ||||
|         df.loc[(slice(None), 1), (slice(None), ["foo"])] *= df.loc[ | ||||
|             (slice(None), 1), (slice(None), ["foo"]) | ||||
|         ] | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]] | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|         rhs = df_orig.loc[(slice(None), 1), (slice(None), ["foo"])].copy() | ||||
|         rhs.loc[:, ("c", "bah")] = 10 | ||||
|         df = df_orig.copy() | ||||
|         df.loc[(slice(None), 1), (slice(None), ["foo"])] *= rhs | ||||
|         expected = df_orig.copy() | ||||
|         expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]] | ||||
|         tm.assert_frame_equal(df, expected) | ||||
|  | ||||
|     def test_multiindex_label_slicing_with_negative_step(self): | ||||
|         ser = Series( | ||||
|             np.arange(20), MultiIndex.from_product([list("abcde"), np.arange(4)]) | ||||
|         ) | ||||
|         SLC = pd.IndexSlice | ||||
|  | ||||
|         tm.assert_indexing_slices_equivalent(ser, SLC[::-1], SLC[::-1]) | ||||
|  | ||||
|         tm.assert_indexing_slices_equivalent(ser, SLC["d"::-1], SLC[15::-1]) | ||||
|         tm.assert_indexing_slices_equivalent(ser, SLC[("d",)::-1], SLC[15::-1]) | ||||
|  | ||||
|         tm.assert_indexing_slices_equivalent(ser, SLC[:"d":-1], SLC[:11:-1]) | ||||
|         tm.assert_indexing_slices_equivalent(ser, SLC[:("d",):-1], SLC[:11:-1]) | ||||
|  | ||||
|         tm.assert_indexing_slices_equivalent(ser, SLC["d":"b":-1], SLC[15:3:-1]) | ||||
|         tm.assert_indexing_slices_equivalent(ser, SLC[("d",):"b":-1], SLC[15:3:-1]) | ||||
|         tm.assert_indexing_slices_equivalent(ser, SLC["d":("b",):-1], SLC[15:3:-1]) | ||||
|         tm.assert_indexing_slices_equivalent(ser, SLC[("d",):("b",):-1], SLC[15:3:-1]) | ||||
|         tm.assert_indexing_slices_equivalent(ser, SLC["b":"d":-1], SLC[:0]) | ||||
|  | ||||
|         tm.assert_indexing_slices_equivalent(ser, SLC[("c", 2)::-1], SLC[10::-1]) | ||||
|         tm.assert_indexing_slices_equivalent(ser, SLC[:("c", 2):-1], SLC[:9:-1]) | ||||
|         tm.assert_indexing_slices_equivalent( | ||||
|             ser, SLC[("e", 0):("c", 2):-1], SLC[16:9:-1] | ||||
|         ) | ||||
|  | ||||
|     def test_multiindex_slice_first_level(self): | ||||
|         # GH 12697 | ||||
|         freq = ["a", "b", "c", "d"] | ||||
|         idx = MultiIndex.from_product([freq, range(500)]) | ||||
|         df = DataFrame(list(range(2000)), index=idx, columns=["Test"]) | ||||
|         df_slice = df.loc[pd.IndexSlice[:, 30:70], :] | ||||
|         result = df_slice.loc["a"] | ||||
|         expected = DataFrame(list(range(30, 71)), columns=["Test"], index=range(30, 71)) | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|         result = df_slice.loc["d"] | ||||
|         expected = DataFrame( | ||||
|             list(range(1530, 1571)), columns=["Test"], index=range(30, 71) | ||||
|         ) | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_int_series_slicing(self, multiindex_year_month_day_dataframe_random_data): | ||||
|         ymd = multiindex_year_month_day_dataframe_random_data | ||||
|         s = ymd["A"] | ||||
|         result = s[5:] | ||||
|         expected = s.reindex(s.index[5:]) | ||||
|         tm.assert_series_equal(result, expected) | ||||
|  | ||||
|         s = ymd["A"].copy() | ||||
|         exp = ymd["A"].copy() | ||||
|         s[5:] = 0 | ||||
|         exp.iloc[5:] = 0 | ||||
|         tm.assert_numpy_array_equal(s.values, exp.values) | ||||
|  | ||||
|         result = ymd[5:] | ||||
|         expected = ymd.reindex(s.index[5:]) | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     @pytest.mark.parametrize( | ||||
|         "dtype, loc, iloc", | ||||
|         [ | ||||
|             # dtype = int, step = -1 | ||||
|             ("int", slice(None, None, -1), slice(None, None, -1)), | ||||
|             ("int", slice(3, None, -1), slice(3, None, -1)), | ||||
|             ("int", slice(None, 1, -1), slice(None, 0, -1)), | ||||
|             ("int", slice(3, 1, -1), slice(3, 0, -1)), | ||||
|             # dtype = int, step = -2 | ||||
|             ("int", slice(None, None, -2), slice(None, None, -2)), | ||||
|             ("int", slice(3, None, -2), slice(3, None, -2)), | ||||
|             ("int", slice(None, 1, -2), slice(None, 0, -2)), | ||||
|             ("int", slice(3, 1, -2), slice(3, 0, -2)), | ||||
|             # dtype = str, step = -1 | ||||
|             ("str", slice(None, None, -1), slice(None, None, -1)), | ||||
|             ("str", slice("d", None, -1), slice(3, None, -1)), | ||||
|             ("str", slice(None, "b", -1), slice(None, 0, -1)), | ||||
|             ("str", slice("d", "b", -1), slice(3, 0, -1)), | ||||
|             # dtype = str, step = -2 | ||||
|             ("str", slice(None, None, -2), slice(None, None, -2)), | ||||
|             ("str", slice("d", None, -2), slice(3, None, -2)), | ||||
|             ("str", slice(None, "b", -2), slice(None, 0, -2)), | ||||
|             ("str", slice("d", "b", -2), slice(3, 0, -2)), | ||||
|         ], | ||||
|     ) | ||||
|     def test_loc_slice_negative_stepsize(self, dtype, loc, iloc): | ||||
|         # GH#38071 | ||||
|         labels = { | ||||
|             "str": list("abcde"), | ||||
|             "int": range(5), | ||||
|         }[dtype] | ||||
|  | ||||
|         mi = MultiIndex.from_arrays([labels] * 2) | ||||
|         df = DataFrame(1.0, index=mi, columns=["A"]) | ||||
|  | ||||
|         SLC = pd.IndexSlice | ||||
|  | ||||
|         expected = df.iloc[iloc, :] | ||||
|         result_get_loc = df.loc[SLC[loc], :] | ||||
|         result_get_locs_level_0 = df.loc[SLC[loc, :], :] | ||||
|         result_get_locs_level_1 = df.loc[SLC[:, loc], :] | ||||
|  | ||||
|         tm.assert_frame_equal(result_get_loc, expected) | ||||
|         tm.assert_frame_equal(result_get_locs_level_0, expected) | ||||
|         tm.assert_frame_equal(result_get_locs_level_1, expected) | ||||
| @ -0,0 +1,153 @@ | ||||
| import numpy as np | ||||
| import pytest | ||||
|  | ||||
| from pandas import ( | ||||
|     NA, | ||||
|     DataFrame, | ||||
|     MultiIndex, | ||||
|     Series, | ||||
|     array, | ||||
| ) | ||||
| import pandas._testing as tm | ||||
|  | ||||
|  | ||||
| class TestMultiIndexSorted: | ||||
|     def test_getitem_multilevel_index_tuple_not_sorted(self): | ||||
|         index_columns = list("abc") | ||||
|         df = DataFrame( | ||||
|             [[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"] | ||||
|         ) | ||||
|         df = df.set_index(index_columns) | ||||
|         query_index = df.index[:1] | ||||
|         rs = df.loc[query_index, "data"] | ||||
|  | ||||
|         xp_idx = MultiIndex.from_tuples([(0, 1, 0)], names=["a", "b", "c"]) | ||||
|         xp = Series(["x"], index=xp_idx, name="data") | ||||
|         tm.assert_series_equal(rs, xp) | ||||
|  | ||||
|     def test_getitem_slice_not_sorted(self, multiindex_dataframe_random_data): | ||||
|         frame = multiindex_dataframe_random_data | ||||
|         df = frame.sort_index(level=1).T | ||||
|  | ||||
|         # buglet with int typechecking | ||||
|         result = df.iloc[:, : np.int32(3)] | ||||
|         expected = df.reindex(columns=df.columns[:3]) | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     @pytest.mark.parametrize("key", [None, lambda x: x]) | ||||
|     def test_frame_getitem_not_sorted2(self, key): | ||||
|         # 13431 | ||||
|         df = DataFrame( | ||||
|             { | ||||
|                 "col1": ["b", "d", "b", "a"], | ||||
|                 "col2": [3, 1, 1, 2], | ||||
|                 "data": ["one", "two", "three", "four"], | ||||
|             } | ||||
|         ) | ||||
|  | ||||
|         df2 = df.set_index(["col1", "col2"]) | ||||
|         df2_original = df2.copy() | ||||
|  | ||||
|         df2.index = df2.index.set_levels(["b", "d", "a"], level="col1") | ||||
|         df2.index = df2.index.set_codes([0, 1, 0, 2], level="col1") | ||||
|         assert not df2.index.is_monotonic_increasing | ||||
|  | ||||
|         assert df2_original.index.equals(df2.index) | ||||
|         expected = df2.sort_index(key=key) | ||||
|         assert expected.index.is_monotonic_increasing | ||||
|  | ||||
|         result = df2.sort_index(level=0, key=key) | ||||
|         assert result.index.is_monotonic_increasing | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_sort_values_key(self): | ||||
|         arrays = [ | ||||
|             ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"], | ||||
|             ["one", "two", "one", "two", "one", "two", "one", "two"], | ||||
|         ] | ||||
|         tuples = zip(*arrays) | ||||
|         index = MultiIndex.from_tuples(tuples) | ||||
|         index = index.sort_values(  # sort by third letter | ||||
|             key=lambda x: x.map(lambda entry: entry[2]) | ||||
|         ) | ||||
|         result = DataFrame(range(8), index=index) | ||||
|  | ||||
|         arrays = [ | ||||
|             ["foo", "foo", "bar", "bar", "qux", "qux", "baz", "baz"], | ||||
|             ["one", "two", "one", "two", "one", "two", "one", "two"], | ||||
|         ] | ||||
|         tuples = zip(*arrays) | ||||
|         index = MultiIndex.from_tuples(tuples) | ||||
|         expected = DataFrame(range(8), index=index) | ||||
|  | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_argsort_with_na(self): | ||||
|         # GH48495 | ||||
|         arrays = [ | ||||
|             array([2, NA, 1], dtype="Int64"), | ||||
|             array([1, 2, 3], dtype="Int64"), | ||||
|         ] | ||||
|         index = MultiIndex.from_arrays(arrays) | ||||
|         result = index.argsort() | ||||
|         expected = np.array([2, 0, 1], dtype=np.intp) | ||||
|         tm.assert_numpy_array_equal(result, expected) | ||||
|  | ||||
|     def test_sort_values_with_na(self): | ||||
|         # GH48495 | ||||
|         arrays = [ | ||||
|             array([2, NA, 1], dtype="Int64"), | ||||
|             array([1, 2, 3], dtype="Int64"), | ||||
|         ] | ||||
|         index = MultiIndex.from_arrays(arrays) | ||||
|         index = index.sort_values() | ||||
|         result = DataFrame(range(3), index=index) | ||||
|  | ||||
|         arrays = [ | ||||
|             array([1, 2, NA], dtype="Int64"), | ||||
|             array([3, 1, 2], dtype="Int64"), | ||||
|         ] | ||||
|         index = MultiIndex.from_arrays(arrays) | ||||
|         expected = DataFrame(range(3), index=index) | ||||
|  | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|  | ||||
|     def test_frame_getitem_not_sorted(self, multiindex_dataframe_random_data): | ||||
|         frame = multiindex_dataframe_random_data | ||||
|         df = frame.T | ||||
|         df["foo", "four"] = "foo" | ||||
|  | ||||
|         arrays = [np.array(x) for x in zip(*df.columns.values)] | ||||
|  | ||||
|         result = df["foo"] | ||||
|         result2 = df.loc[:, "foo"] | ||||
|         expected = df.reindex(columns=df.columns[arrays[0] == "foo"]) | ||||
|         expected.columns = expected.columns.droplevel(0) | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|         tm.assert_frame_equal(result2, expected) | ||||
|  | ||||
|         df = df.T | ||||
|         result = df.xs("foo") | ||||
|         result2 = df.loc["foo"] | ||||
|         expected = df.reindex(df.index[arrays[0] == "foo"]) | ||||
|         expected.index = expected.index.droplevel(0) | ||||
|         tm.assert_frame_equal(result, expected) | ||||
|         tm.assert_frame_equal(result2, expected) | ||||
|  | ||||
|     def test_series_getitem_not_sorted(self): | ||||
|         arrays = [ | ||||
|             ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"], | ||||
|             ["one", "two", "one", "two", "one", "two", "one", "two"], | ||||
|         ] | ||||
|         tuples = zip(*arrays) | ||||
|         index = MultiIndex.from_tuples(tuples) | ||||
|         s = Series(np.random.default_rng(2).standard_normal(8), index=index) | ||||
|  | ||||
|         arrays = [np.array(x) for x in zip(*index.values)] | ||||
|  | ||||
|         result = s["qux"] | ||||
|         result2 = s.loc["qux"] | ||||
|         expected = s[arrays[0] == "qux"] | ||||
|         expected.index = expected.index.droplevel(0) | ||||
|         tm.assert_series_equal(result, expected) | ||||
|         tm.assert_series_equal(result2, expected) | ||||
		Reference in New Issue
	
	Block a user