done
This commit is contained in:
@ -0,0 +1,153 @@
|
||||
from typing import final
|
||||
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.api.types import is_numeric_dtype
|
||||
|
||||
|
||||
class BaseReduceTests:
|
||||
"""
|
||||
Reduction specific tests. Generally these only
|
||||
make sense for numeric/boolean operations.
|
||||
"""
|
||||
|
||||
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
|
||||
# Specify if we expect this reduction to succeed.
|
||||
return False
|
||||
|
||||
def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
|
||||
# We perform the same operation on the np.float64 data and check
|
||||
# that the results match. Override if you need to cast to something
|
||||
# other than float64.
|
||||
res_op = getattr(ser, op_name)
|
||||
|
||||
try:
|
||||
alt = ser.astype("float64")
|
||||
except (TypeError, ValueError):
|
||||
# e.g. Interval can't cast (TypeError), StringArray can't cast
|
||||
# (ValueError), so let's cast to object and do
|
||||
# the reduction pointwise
|
||||
alt = ser.astype(object)
|
||||
|
||||
exp_op = getattr(alt, op_name)
|
||||
if op_name == "count":
|
||||
result = res_op()
|
||||
expected = exp_op()
|
||||
else:
|
||||
result = res_op(skipna=skipna)
|
||||
expected = exp_op(skipna=skipna)
|
||||
tm.assert_almost_equal(result, expected)
|
||||
|
||||
def _get_expected_reduction_dtype(self, arr, op_name: str, skipna: bool):
|
||||
# Find the expected dtype when the given reduction is done on a DataFrame
|
||||
# column with this array. The default assumes float64-like behavior,
|
||||
# i.e. retains the dtype.
|
||||
return arr.dtype
|
||||
|
||||
# We anticipate that authors should not need to override check_reduce_frame,
|
||||
# but should be able to do any necessary overriding in
|
||||
# _get_expected_reduction_dtype. If you have a use case where this
|
||||
# does not hold, please let us know at github.com/pandas-dev/pandas/issues.
|
||||
@final
|
||||
def check_reduce_frame(self, ser: pd.Series, op_name: str, skipna: bool):
|
||||
# Check that the 2D reduction done in a DataFrame reduction "looks like"
|
||||
# a wrapped version of the 1D reduction done by Series.
|
||||
arr = ser.array
|
||||
df = pd.DataFrame({"a": arr})
|
||||
|
||||
kwargs = {"ddof": 1} if op_name in ["var", "std"] else {}
|
||||
|
||||
cmp_dtype = self._get_expected_reduction_dtype(arr, op_name, skipna)
|
||||
|
||||
# The DataFrame method just calls arr._reduce with keepdims=True,
|
||||
# so this first check is perfunctory.
|
||||
result1 = arr._reduce(op_name, skipna=skipna, keepdims=True, **kwargs)
|
||||
result2 = getattr(df, op_name)(skipna=skipna, **kwargs).array
|
||||
tm.assert_extension_array_equal(result1, result2)
|
||||
|
||||
# Check that the 2D reduction looks like a wrapped version of the
|
||||
# 1D reduction
|
||||
if not skipna and ser.isna().any():
|
||||
expected = pd.array([pd.NA], dtype=cmp_dtype)
|
||||
else:
|
||||
exp_value = getattr(ser.dropna(), op_name)()
|
||||
expected = pd.array([exp_value], dtype=cmp_dtype)
|
||||
|
||||
tm.assert_extension_array_equal(result1, expected)
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_reduce_series_boolean(self, data, all_boolean_reductions, skipna):
|
||||
op_name = all_boolean_reductions
|
||||
ser = pd.Series(data)
|
||||
|
||||
if not self._supports_reduction(ser, op_name):
|
||||
# TODO: the message being checked here isn't actually checking anything
|
||||
msg = (
|
||||
"[Cc]annot perform|Categorical is not ordered for operation|"
|
||||
"does not support reduction|"
|
||||
)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
getattr(ser, op_name)(skipna=skipna)
|
||||
|
||||
else:
|
||||
self.check_reduce(ser, op_name, skipna)
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna):
|
||||
op_name = all_numeric_reductions
|
||||
ser = pd.Series(data)
|
||||
|
||||
if not self._supports_reduction(ser, op_name):
|
||||
# TODO: the message being checked here isn't actually checking anything
|
||||
msg = (
|
||||
"[Cc]annot perform|Categorical is not ordered for operation|"
|
||||
"does not support reduction|"
|
||||
)
|
||||
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
getattr(ser, op_name)(skipna=skipna)
|
||||
|
||||
else:
|
||||
# min/max with empty produce numpy warnings
|
||||
self.check_reduce(ser, op_name, skipna)
|
||||
|
||||
@pytest.mark.parametrize("skipna", [True, False])
|
||||
def test_reduce_frame(self, data, all_numeric_reductions, skipna):
|
||||
op_name = all_numeric_reductions
|
||||
ser = pd.Series(data)
|
||||
if not is_numeric_dtype(ser.dtype):
|
||||
pytest.skip(f"{ser.dtype} is not numeric dtype")
|
||||
|
||||
if op_name in ["count", "kurt", "sem"]:
|
||||
pytest.skip(f"{op_name} not an array method")
|
||||
|
||||
if not self._supports_reduction(ser, op_name):
|
||||
pytest.skip(f"Reduction {op_name} not supported for this dtype")
|
||||
|
||||
self.check_reduce_frame(ser, op_name, skipna)
|
||||
|
||||
|
||||
# TODO(3.0): remove BaseNoReduceTests, BaseNumericReduceTests,
|
||||
# BaseBooleanReduceTests
|
||||
class BaseNoReduceTests(BaseReduceTests):
|
||||
"""we don't define any reductions"""
|
||||
|
||||
|
||||
class BaseNumericReduceTests(BaseReduceTests):
|
||||
# For backward compatibility only, this only runs the numeric reductions
|
||||
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
|
||||
if op_name in ["any", "all"]:
|
||||
pytest.skip("These are tested in BaseBooleanReduceTests")
|
||||
return True
|
||||
|
||||
|
||||
class BaseBooleanReduceTests(BaseReduceTests):
|
||||
# For backward compatibility only, this only runs the numeric reductions
|
||||
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
|
||||
if op_name not in ["any", "all"]:
|
||||
pytest.skip("These are tested in BaseNumericReduceTests")
|
||||
return True
|
Reference in New Issue
Block a user