done
This commit is contained in:
@ -0,0 +1,190 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class BaseMissingTests:
|
||||
def test_isna(self, data_missing):
|
||||
expected = np.array([True, False])
|
||||
|
||||
result = pd.isna(data_missing)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
result = pd.Series(data_missing).isna()
|
||||
expected = pd.Series(expected)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# GH 21189
|
||||
result = pd.Series(data_missing).drop([0, 1]).isna()
|
||||
expected = pd.Series([], dtype=bool)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize("na_func", ["isna", "notna"])
|
||||
def test_isna_returns_copy(self, data_missing, na_func):
|
||||
result = pd.Series(data_missing)
|
||||
expected = result.copy()
|
||||
mask = getattr(result, na_func)()
|
||||
if isinstance(mask.dtype, pd.SparseDtype):
|
||||
# TODO: GH 57739
|
||||
mask = np.array(mask)
|
||||
mask.flags.writeable = True
|
||||
|
||||
mask[:] = True
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_dropna_array(self, data_missing):
|
||||
result = data_missing.dropna()
|
||||
expected = data_missing[[1]]
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
def test_dropna_series(self, data_missing):
|
||||
ser = pd.Series(data_missing)
|
||||
result = ser.dropna()
|
||||
expected = ser.iloc[[1]]
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_dropna_frame(self, data_missing):
|
||||
df = pd.DataFrame({"A": data_missing}, columns=pd.Index(["A"], dtype=object))
|
||||
|
||||
# defaults
|
||||
result = df.dropna()
|
||||
expected = df.iloc[[1]]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# axis = 1
|
||||
result = df.dropna(axis="columns")
|
||||
expected = pd.DataFrame(index=pd.RangeIndex(2), columns=pd.Index([]))
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
# multiple
|
||||
df = pd.DataFrame({"A": data_missing, "B": [1, np.nan]})
|
||||
result = df.dropna()
|
||||
expected = df.iloc[:0]
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_fillna_scalar(self, data_missing):
|
||||
valid = data_missing[1]
|
||||
result = data_missing.fillna(valid)
|
||||
expected = data_missing.fillna(valid)
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
@pytest.mark.filterwarnings(
|
||||
"ignore:Series.fillna with 'method' is deprecated:FutureWarning"
|
||||
)
|
||||
def test_fillna_limit_pad(self, data_missing):
|
||||
arr = data_missing.take([1, 0, 0, 0, 1])
|
||||
result = pd.Series(arr).ffill(limit=2)
|
||||
expected = pd.Series(data_missing.take([1, 1, 1, 0, 1]))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"limit_area, input_ilocs, expected_ilocs",
|
||||
[
|
||||
("outside", [1, 0, 0, 0, 1], [1, 0, 0, 0, 1]),
|
||||
("outside", [1, 0, 1, 0, 1], [1, 0, 1, 0, 1]),
|
||||
("outside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 1]),
|
||||
("outside", [0, 1, 0, 1, 0], [0, 1, 0, 1, 1]),
|
||||
("inside", [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]),
|
||||
("inside", [1, 0, 1, 0, 1], [1, 1, 1, 1, 1]),
|
||||
("inside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 0]),
|
||||
("inside", [0, 1, 0, 1, 0], [0, 1, 1, 1, 0]),
|
||||
],
|
||||
)
|
||||
def test_ffill_limit_area(
|
||||
self, data_missing, limit_area, input_ilocs, expected_ilocs
|
||||
):
|
||||
# GH#56616
|
||||
arr = data_missing.take(input_ilocs)
|
||||
result = pd.Series(arr).ffill(limit_area=limit_area)
|
||||
expected = pd.Series(data_missing.take(expected_ilocs))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
@pytest.mark.filterwarnings(
|
||||
"ignore:Series.fillna with 'method' is deprecated:FutureWarning"
|
||||
)
|
||||
def test_fillna_limit_backfill(self, data_missing):
|
||||
arr = data_missing.take([1, 0, 0, 0, 1])
|
||||
result = pd.Series(arr).fillna(method="backfill", limit=2)
|
||||
expected = pd.Series(data_missing.take([1, 0, 1, 1, 1]))
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_fillna_no_op_returns_copy(self, data):
|
||||
data = data[~data.isna()]
|
||||
|
||||
valid = data[0]
|
||||
result = data.fillna(valid)
|
||||
assert result is not data
|
||||
tm.assert_extension_array_equal(result, data)
|
||||
|
||||
result = data._pad_or_backfill(method="backfill")
|
||||
assert result is not data
|
||||
tm.assert_extension_array_equal(result, data)
|
||||
|
||||
def test_fillna_series(self, data_missing):
|
||||
fill_value = data_missing[1]
|
||||
ser = pd.Series(data_missing)
|
||||
|
||||
result = ser.fillna(fill_value)
|
||||
expected = pd.Series(
|
||||
data_missing._from_sequence(
|
||||
[fill_value, fill_value], dtype=data_missing.dtype
|
||||
)
|
||||
)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# Fill with a series
|
||||
result = ser.fillna(expected)
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
# Fill with a series not affecting the missing values
|
||||
result = ser.fillna(ser)
|
||||
tm.assert_series_equal(result, ser)
|
||||
|
||||
def test_fillna_series_method(self, data_missing, fillna_method):
|
||||
fill_value = data_missing[1]
|
||||
|
||||
if fillna_method == "ffill":
|
||||
data_missing = data_missing[::-1]
|
||||
|
||||
result = getattr(pd.Series(data_missing), fillna_method)()
|
||||
expected = pd.Series(
|
||||
data_missing._from_sequence(
|
||||
[fill_value, fill_value], dtype=data_missing.dtype
|
||||
)
|
||||
)
|
||||
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
def test_fillna_frame(self, data_missing):
|
||||
fill_value = data_missing[1]
|
||||
|
||||
result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value)
|
||||
|
||||
expected = pd.DataFrame(
|
||||
{
|
||||
"A": data_missing._from_sequence(
|
||||
[fill_value, fill_value], dtype=data_missing.dtype
|
||||
),
|
||||
"B": [1, 2],
|
||||
}
|
||||
)
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_fillna_fill_other(self, data):
|
||||
result = pd.DataFrame({"A": data, "B": [np.nan] * len(data)}).fillna({"B": 0.0})
|
||||
|
||||
expected = pd.DataFrame({"A": data, "B": [0.0] * len(result)})
|
||||
|
||||
tm.assert_frame_equal(result, expected)
|
||||
|
||||
def test_use_inf_as_na_no_effect(self, data_missing):
|
||||
ser = pd.Series(data_missing)
|
||||
expected = ser.isna()
|
||||
msg = "use_inf_as_na option is deprecated"
|
||||
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||||
with pd.option_context("mode.use_inf_as_na", True):
|
||||
result = ser.isna()
|
||||
tm.assert_series_equal(result, expected)
|
Reference in New Issue
Block a user