done
This commit is contained in:
@ -0,0 +1,41 @@
|
||||
import numpy as np
|
||||
|
||||
from pandas.core.dtypes.common import is_scalar
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
|
||||
|
||||
class TestSearchsorted:
|
||||
def test_searchsorted_string(self, string_dtype):
|
||||
arr = pd.array(["a", "b", "c"], dtype=string_dtype)
|
||||
|
||||
result = arr.searchsorted("a", side="left")
|
||||
assert is_scalar(result)
|
||||
assert result == 0
|
||||
|
||||
result = arr.searchsorted("a", side="right")
|
||||
assert is_scalar(result)
|
||||
assert result == 1
|
||||
|
||||
def test_searchsorted_numeric_dtypes_scalar(self, any_real_numpy_dtype):
|
||||
arr = pd.array([1, 3, 90], dtype=any_real_numpy_dtype)
|
||||
result = arr.searchsorted(30)
|
||||
assert is_scalar(result)
|
||||
assert result == 2
|
||||
|
||||
result = arr.searchsorted([30])
|
||||
expected = np.array([2], dtype=np.intp)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
def test_searchsorted_numeric_dtypes_vector(self, any_real_numpy_dtype):
|
||||
arr = pd.array([1, 3, 90], dtype=any_real_numpy_dtype)
|
||||
result = arr.searchsorted([2, 30])
|
||||
expected = np.array([1, 2], dtype=np.intp)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
def test_searchsorted_sorter(self, any_real_numpy_dtype):
|
||||
arr = pd.array([3, 1, 2], dtype=any_real_numpy_dtype)
|
||||
result = arr.searchsorted([0, 3], sorter=np.argsort(arr))
|
||||
expected = np.array([0, 2], dtype=np.intp)
|
||||
tm.assert_numpy_array_equal(result, expected)
|
@ -0,0 +1,351 @@
|
||||
"""
|
||||
Additional tests for NumpyExtensionArray that aren't covered by
|
||||
the interface tests.
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from pandas.core.dtypes.dtypes import NumpyEADtype
|
||||
|
||||
import pandas as pd
|
||||
import pandas._testing as tm
|
||||
from pandas.arrays import NumpyExtensionArray
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
params=[
|
||||
np.array(["a", "b"], dtype=object),
|
||||
np.array([0, 1], dtype=float),
|
||||
np.array([0, 1], dtype=int),
|
||||
np.array([0, 1 + 2j], dtype=complex),
|
||||
np.array([True, False], dtype=bool),
|
||||
np.array([0, 1], dtype="datetime64[ns]"),
|
||||
np.array([0, 1], dtype="timedelta64[ns]"),
|
||||
],
|
||||
)
|
||||
def any_numpy_array(request):
|
||||
"""
|
||||
Parametrized fixture for NumPy arrays with different dtypes.
|
||||
|
||||
This excludes string and bytes.
|
||||
"""
|
||||
return request.param.copy()
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# NumpyEADtype
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype, expected",
|
||||
[
|
||||
("bool", True),
|
||||
("int", True),
|
||||
("uint", True),
|
||||
("float", True),
|
||||
("complex", True),
|
||||
("str", False),
|
||||
("bytes", False),
|
||||
("datetime64[ns]", False),
|
||||
("object", False),
|
||||
("void", False),
|
||||
],
|
||||
)
|
||||
def test_is_numeric(dtype, expected):
|
||||
dtype = NumpyEADtype(dtype)
|
||||
assert dtype._is_numeric is expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"dtype, expected",
|
||||
[
|
||||
("bool", True),
|
||||
("int", False),
|
||||
("uint", False),
|
||||
("float", False),
|
||||
("complex", False),
|
||||
("str", False),
|
||||
("bytes", False),
|
||||
("datetime64[ns]", False),
|
||||
("object", False),
|
||||
("void", False),
|
||||
],
|
||||
)
|
||||
def test_is_boolean(dtype, expected):
|
||||
dtype = NumpyEADtype(dtype)
|
||||
assert dtype._is_boolean is expected
|
||||
|
||||
|
||||
def test_repr():
|
||||
dtype = NumpyEADtype(np.dtype("int64"))
|
||||
assert repr(dtype) == "NumpyEADtype('int64')"
|
||||
|
||||
|
||||
def test_constructor_from_string():
|
||||
result = NumpyEADtype.construct_from_string("int64")
|
||||
expected = NumpyEADtype(np.dtype("int64"))
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_dtype_idempotent(any_numpy_dtype):
|
||||
dtype = NumpyEADtype(any_numpy_dtype)
|
||||
|
||||
result = NumpyEADtype(dtype)
|
||||
assert result == dtype
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Construction
|
||||
|
||||
|
||||
def test_constructor_no_coercion():
|
||||
with pytest.raises(ValueError, match="NumPy array"):
|
||||
NumpyExtensionArray([1, 2, 3])
|
||||
|
||||
|
||||
def test_series_constructor_with_copy():
|
||||
ndarray = np.array([1, 2, 3])
|
||||
ser = pd.Series(NumpyExtensionArray(ndarray), copy=True)
|
||||
|
||||
assert ser.values is not ndarray
|
||||
|
||||
|
||||
def test_series_constructor_with_astype():
|
||||
ndarray = np.array([1, 2, 3])
|
||||
result = pd.Series(NumpyExtensionArray(ndarray), dtype="float64")
|
||||
expected = pd.Series([1.0, 2.0, 3.0], dtype="float64")
|
||||
tm.assert_series_equal(result, expected)
|
||||
|
||||
|
||||
def test_from_sequence_dtype():
|
||||
arr = np.array([1, 2, 3], dtype="int64")
|
||||
result = NumpyExtensionArray._from_sequence(arr, dtype="uint64")
|
||||
expected = NumpyExtensionArray(np.array([1, 2, 3], dtype="uint64"))
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_constructor_copy():
|
||||
arr = np.array([0, 1])
|
||||
result = NumpyExtensionArray(arr, copy=True)
|
||||
|
||||
assert not tm.shares_memory(result, arr)
|
||||
|
||||
|
||||
def test_constructor_with_data(any_numpy_array):
|
||||
nparr = any_numpy_array
|
||||
arr = NumpyExtensionArray(nparr)
|
||||
assert arr.dtype.numpy_dtype == nparr.dtype
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Conversion
|
||||
|
||||
|
||||
def test_to_numpy():
|
||||
arr = NumpyExtensionArray(np.array([1, 2, 3]))
|
||||
result = arr.to_numpy()
|
||||
assert result is arr._ndarray
|
||||
|
||||
result = arr.to_numpy(copy=True)
|
||||
assert result is not arr._ndarray
|
||||
|
||||
result = arr.to_numpy(dtype="f8")
|
||||
expected = np.array([1, 2, 3], dtype="f8")
|
||||
tm.assert_numpy_array_equal(result, expected)
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Setitem
|
||||
|
||||
|
||||
def test_setitem_series():
|
||||
ser = pd.Series([1, 2, 3])
|
||||
ser.array[0] = 10
|
||||
expected = pd.Series([10, 2, 3])
|
||||
tm.assert_series_equal(ser, expected)
|
||||
|
||||
|
||||
def test_setitem(any_numpy_array):
|
||||
nparr = any_numpy_array
|
||||
arr = NumpyExtensionArray(nparr, copy=True)
|
||||
|
||||
arr[0] = arr[1]
|
||||
nparr[0] = nparr[1]
|
||||
|
||||
tm.assert_numpy_array_equal(arr.to_numpy(), nparr)
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Reductions
|
||||
|
||||
|
||||
def test_bad_reduce_raises():
|
||||
arr = np.array([1, 2, 3], dtype="int64")
|
||||
arr = NumpyExtensionArray(arr)
|
||||
msg = "cannot perform not_a_method with type int"
|
||||
with pytest.raises(TypeError, match=msg):
|
||||
arr._reduce(msg)
|
||||
|
||||
|
||||
def test_validate_reduction_keyword_args():
|
||||
arr = NumpyExtensionArray(np.array([1, 2, 3]))
|
||||
msg = "the 'keepdims' parameter is not supported .*all"
|
||||
with pytest.raises(ValueError, match=msg):
|
||||
arr.all(keepdims=True)
|
||||
|
||||
|
||||
def test_np_max_nested_tuples():
|
||||
# case where checking in ufunc.nout works while checking for tuples
|
||||
# does not
|
||||
vals = [
|
||||
(("j", "k"), ("l", "m")),
|
||||
(("l", "m"), ("o", "p")),
|
||||
(("o", "p"), ("j", "k")),
|
||||
]
|
||||
ser = pd.Series(vals)
|
||||
arr = ser.array
|
||||
|
||||
assert arr.max() is arr[2]
|
||||
assert ser.max() is arr[2]
|
||||
|
||||
result = np.maximum.reduce(arr)
|
||||
assert result == arr[2]
|
||||
|
||||
result = np.maximum.reduce(ser)
|
||||
assert result == arr[2]
|
||||
|
||||
|
||||
def test_np_reduce_2d():
|
||||
raw = np.arange(12).reshape(4, 3)
|
||||
arr = NumpyExtensionArray(raw)
|
||||
|
||||
res = np.maximum.reduce(arr, axis=0)
|
||||
tm.assert_extension_array_equal(res, arr[-1])
|
||||
|
||||
alt = arr.max(axis=0)
|
||||
tm.assert_extension_array_equal(alt, arr[-1])
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Ops
|
||||
|
||||
|
||||
@pytest.mark.parametrize("ufunc", [np.abs, np.negative, np.positive])
|
||||
def test_ufunc_unary(ufunc):
|
||||
arr = NumpyExtensionArray(np.array([-1.0, 0.0, 1.0]))
|
||||
result = ufunc(arr)
|
||||
expected = NumpyExtensionArray(ufunc(arr._ndarray))
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
# same thing but with the 'out' keyword
|
||||
out = NumpyExtensionArray(np.array([-9.0, -9.0, -9.0]))
|
||||
ufunc(arr, out=out)
|
||||
tm.assert_extension_array_equal(out, expected)
|
||||
|
||||
|
||||
def test_ufunc():
|
||||
arr = NumpyExtensionArray(np.array([-1.0, 0.0, 1.0]))
|
||||
|
||||
r1, r2 = np.divmod(arr, np.add(arr, 2))
|
||||
e1, e2 = np.divmod(arr._ndarray, np.add(arr._ndarray, 2))
|
||||
e1 = NumpyExtensionArray(e1)
|
||||
e2 = NumpyExtensionArray(e2)
|
||||
tm.assert_extension_array_equal(r1, e1)
|
||||
tm.assert_extension_array_equal(r2, e2)
|
||||
|
||||
|
||||
def test_basic_binop():
|
||||
# Just a basic smoke test. The EA interface tests exercise this
|
||||
# more thoroughly.
|
||||
x = NumpyExtensionArray(np.array([1, 2, 3]))
|
||||
result = x + x
|
||||
expected = NumpyExtensionArray(np.array([2, 4, 6]))
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dtype", [None, object])
|
||||
def test_setitem_object_typecode(dtype):
|
||||
arr = NumpyExtensionArray(np.array(["a", "b", "c"], dtype=dtype))
|
||||
arr[0] = "t"
|
||||
expected = NumpyExtensionArray(np.array(["t", "b", "c"], dtype=dtype))
|
||||
tm.assert_extension_array_equal(arr, expected)
|
||||
|
||||
|
||||
def test_setitem_no_coercion():
|
||||
# https://github.com/pandas-dev/pandas/issues/28150
|
||||
arr = NumpyExtensionArray(np.array([1, 2, 3]))
|
||||
with pytest.raises(ValueError, match="int"):
|
||||
arr[0] = "a"
|
||||
|
||||
# With a value that we do coerce, check that we coerce the value
|
||||
# and not the underlying array.
|
||||
arr[0] = 2.5
|
||||
assert isinstance(arr[0], (int, np.integer)), type(arr[0])
|
||||
|
||||
|
||||
def test_setitem_preserves_views():
|
||||
# GH#28150, see also extension test of the same name
|
||||
arr = NumpyExtensionArray(np.array([1, 2, 3]))
|
||||
view1 = arr.view()
|
||||
view2 = arr[:]
|
||||
view3 = np.asarray(arr)
|
||||
|
||||
arr[0] = 9
|
||||
assert view1[0] == 9
|
||||
assert view2[0] == 9
|
||||
assert view3[0] == 9
|
||||
|
||||
arr[-1] = 2.5
|
||||
view1[-1] = 5
|
||||
assert arr[-1] == 5
|
||||
|
||||
|
||||
@pytest.mark.parametrize("dtype", [np.int64, np.uint64])
|
||||
def test_quantile_empty(dtype):
|
||||
# we should get back np.nans, not -1s
|
||||
arr = NumpyExtensionArray(np.array([], dtype=dtype))
|
||||
idx = pd.Index([0.0, 0.5])
|
||||
|
||||
result = arr._quantile(idx, interpolation="linear")
|
||||
expected = NumpyExtensionArray(np.array([np.nan, np.nan]))
|
||||
tm.assert_extension_array_equal(result, expected)
|
||||
|
||||
|
||||
def test_factorize_unsigned():
|
||||
# don't raise when calling factorize on unsigned int NumpyExtensionArray
|
||||
arr = np.array([1, 2, 3], dtype=np.uint64)
|
||||
obj = NumpyExtensionArray(arr)
|
||||
|
||||
res_codes, res_unique = obj.factorize()
|
||||
exp_codes, exp_unique = pd.factorize(arr)
|
||||
|
||||
tm.assert_numpy_array_equal(res_codes, exp_codes)
|
||||
|
||||
tm.assert_extension_array_equal(res_unique, NumpyExtensionArray(exp_unique))
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# Output formatting
|
||||
|
||||
|
||||
def test_array_repr(any_numpy_array):
|
||||
# GH#61085
|
||||
nparray = any_numpy_array
|
||||
arr = NumpyExtensionArray(nparray)
|
||||
if nparray.dtype == "object":
|
||||
values = "['a', 'b']"
|
||||
elif nparray.dtype == "float64":
|
||||
values = "[0.0, 1.0]"
|
||||
elif str(nparray.dtype).startswith("int"):
|
||||
values = "[0, 1]"
|
||||
elif nparray.dtype == "complex128":
|
||||
values = "[0j, (1+2j)]"
|
||||
elif nparray.dtype == "bool":
|
||||
values = "[True, False]"
|
||||
elif nparray.dtype == "datetime64[ns]":
|
||||
values = "[1970-01-01T00:00:00.000000000, 1970-01-01T00:00:00.000000001]"
|
||||
elif nparray.dtype == "timedelta64[ns]":
|
||||
values = "[0 nanoseconds, 1 nanoseconds]"
|
||||
expected = f"<NumpyExtensionArray>\n{values}\nLength: 2, dtype: {nparray.dtype}"
|
||||
result = repr(arr)
|
||||
assert result == expected, f"{result} vs {expected}"
|
Reference in New Issue
Block a user