done
This commit is contained in:
127
lib/python3.11/site-packages/pandas/io/excel/_pyxlsb.py
Normal file
127
lib/python3.11/site-packages/pandas/io/excel/_pyxlsb.py
Normal file
@ -0,0 +1,127 @@
|
||||
# pyright: reportMissingImports=false
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
from pandas.util._decorators import doc
|
||||
|
||||
from pandas.core.shared_docs import _shared_docs
|
||||
|
||||
from pandas.io.excel._base import BaseExcelReader
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pyxlsb import Workbook
|
||||
|
||||
from pandas._typing import (
|
||||
FilePath,
|
||||
ReadBuffer,
|
||||
Scalar,
|
||||
StorageOptions,
|
||||
)
|
||||
|
||||
|
||||
class PyxlsbReader(BaseExcelReader["Workbook"]):
|
||||
@doc(storage_options=_shared_docs["storage_options"])
|
||||
def __init__(
|
||||
self,
|
||||
filepath_or_buffer: FilePath | ReadBuffer[bytes],
|
||||
storage_options: StorageOptions | None = None,
|
||||
engine_kwargs: dict | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Reader using pyxlsb engine.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filepath_or_buffer : str, path object, or Workbook
|
||||
Object to be parsed.
|
||||
{storage_options}
|
||||
engine_kwargs : dict, optional
|
||||
Arbitrary keyword arguments passed to excel engine.
|
||||
"""
|
||||
import_optional_dependency("pyxlsb")
|
||||
# This will call load_workbook on the filepath or buffer
|
||||
# And set the result to the book-attribute
|
||||
super().__init__(
|
||||
filepath_or_buffer,
|
||||
storage_options=storage_options,
|
||||
engine_kwargs=engine_kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def _workbook_class(self) -> type[Workbook]:
|
||||
from pyxlsb import Workbook
|
||||
|
||||
return Workbook
|
||||
|
||||
def load_workbook(
|
||||
self, filepath_or_buffer: FilePath | ReadBuffer[bytes], engine_kwargs
|
||||
) -> Workbook:
|
||||
from pyxlsb import open_workbook
|
||||
|
||||
# TODO: hack in buffer capability
|
||||
# This might need some modifications to the Pyxlsb library
|
||||
# Actual work for opening it is in xlsbpackage.py, line 20-ish
|
||||
|
||||
return open_workbook(filepath_or_buffer, **engine_kwargs)
|
||||
|
||||
@property
|
||||
def sheet_names(self) -> list[str]:
|
||||
return self.book.sheets
|
||||
|
||||
def get_sheet_by_name(self, name: str):
|
||||
self.raise_if_bad_sheet_by_name(name)
|
||||
return self.book.get_sheet(name)
|
||||
|
||||
def get_sheet_by_index(self, index: int):
|
||||
self.raise_if_bad_sheet_by_index(index)
|
||||
# pyxlsb sheets are indexed from 1 onwards
|
||||
# There's a fix for this in the source, but the pypi package doesn't have it
|
||||
return self.book.get_sheet(index + 1)
|
||||
|
||||
def _convert_cell(self, cell) -> Scalar:
|
||||
# TODO: there is no way to distinguish between floats and datetimes in pyxlsb
|
||||
# This means that there is no way to read datetime types from an xlsb file yet
|
||||
if cell.v is None:
|
||||
return "" # Prevents non-named columns from not showing up as Unnamed: i
|
||||
if isinstance(cell.v, float):
|
||||
val = int(cell.v)
|
||||
if val == cell.v:
|
||||
return val
|
||||
else:
|
||||
return float(cell.v)
|
||||
|
||||
return cell.v
|
||||
|
||||
def get_sheet_data(
|
||||
self,
|
||||
sheet,
|
||||
file_rows_needed: int | None = None,
|
||||
) -> list[list[Scalar]]:
|
||||
data: list[list[Scalar]] = []
|
||||
previous_row_number = -1
|
||||
# When sparse=True the rows can have different lengths and empty rows are
|
||||
# not returned. The cells are namedtuples of row, col, value (r, c, v).
|
||||
for row in sheet.rows(sparse=True):
|
||||
row_number = row[0].r
|
||||
converted_row = [self._convert_cell(cell) for cell in row]
|
||||
while converted_row and converted_row[-1] == "":
|
||||
# trim trailing empty elements
|
||||
converted_row.pop()
|
||||
if converted_row:
|
||||
data.extend([[]] * (row_number - previous_row_number - 1))
|
||||
data.append(converted_row)
|
||||
previous_row_number = row_number
|
||||
if file_rows_needed is not None and len(data) >= file_rows_needed:
|
||||
break
|
||||
if data:
|
||||
# extend rows to max_width
|
||||
max_width = max(len(data_row) for data_row in data)
|
||||
if min(len(data_row) for data_row in data) < max_width:
|
||||
empty_cell: list[Scalar] = [""]
|
||||
data = [
|
||||
data_row + (max_width - len(data_row)) * empty_cell
|
||||
for data_row in data
|
||||
]
|
||||
return data
|
Reference in New Issue
Block a user