done
This commit is contained in:
		
										
											Binary file not shown.
										
									
								
							| @ -0,0 +1,127 @@ | ||||
| from typing import ( | ||||
|     Any, | ||||
|     Callable, | ||||
|     Literal, | ||||
| ) | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
| from pandas._typing import ( | ||||
|     WindowingRankType, | ||||
|     npt, | ||||
| ) | ||||
|  | ||||
| def roll_sum( | ||||
|     values: np.ndarray,  # const float64_t[:] | ||||
|     start: np.ndarray,  # np.ndarray[np.int64] | ||||
|     end: np.ndarray,  # np.ndarray[np.int64] | ||||
|     minp: int,  # int64_t | ||||
| ) -> np.ndarray: ...  # np.ndarray[float] | ||||
| def roll_mean( | ||||
|     values: np.ndarray,  # const float64_t[:] | ||||
|     start: np.ndarray,  # np.ndarray[np.int64] | ||||
|     end: np.ndarray,  # np.ndarray[np.int64] | ||||
|     minp: int,  # int64_t | ||||
| ) -> np.ndarray: ...  # np.ndarray[float] | ||||
| def roll_var( | ||||
|     values: np.ndarray,  # const float64_t[:] | ||||
|     start: np.ndarray,  # np.ndarray[np.int64] | ||||
|     end: np.ndarray,  # np.ndarray[np.int64] | ||||
|     minp: int,  # int64_t | ||||
|     ddof: int = ..., | ||||
| ) -> np.ndarray: ...  # np.ndarray[float] | ||||
| def roll_skew( | ||||
|     values: np.ndarray,  # np.ndarray[np.float64] | ||||
|     start: np.ndarray,  # np.ndarray[np.int64] | ||||
|     end: np.ndarray,  # np.ndarray[np.int64] | ||||
|     minp: int,  # int64_t | ||||
| ) -> np.ndarray: ...  # np.ndarray[float] | ||||
| def roll_kurt( | ||||
|     values: np.ndarray,  # np.ndarray[np.float64] | ||||
|     start: np.ndarray,  # np.ndarray[np.int64] | ||||
|     end: np.ndarray,  # np.ndarray[np.int64] | ||||
|     minp: int,  # int64_t | ||||
| ) -> np.ndarray: ...  # np.ndarray[float] | ||||
| def roll_median_c( | ||||
|     values: np.ndarray,  # np.ndarray[np.float64] | ||||
|     start: np.ndarray,  # np.ndarray[np.int64] | ||||
|     end: np.ndarray,  # np.ndarray[np.int64] | ||||
|     minp: int,  # int64_t | ||||
| ) -> np.ndarray: ...  # np.ndarray[float] | ||||
| def roll_max( | ||||
|     values: np.ndarray,  # np.ndarray[np.float64] | ||||
|     start: np.ndarray,  # np.ndarray[np.int64] | ||||
|     end: np.ndarray,  # np.ndarray[np.int64] | ||||
|     minp: int,  # int64_t | ||||
| ) -> np.ndarray: ...  # np.ndarray[float] | ||||
| def roll_min( | ||||
|     values: np.ndarray,  # np.ndarray[np.float64] | ||||
|     start: np.ndarray,  # np.ndarray[np.int64] | ||||
|     end: np.ndarray,  # np.ndarray[np.int64] | ||||
|     minp: int,  # int64_t | ||||
| ) -> np.ndarray: ...  # np.ndarray[float] | ||||
| def roll_quantile( | ||||
|     values: np.ndarray,  # const float64_t[:] | ||||
|     start: np.ndarray,  # np.ndarray[np.int64] | ||||
|     end: np.ndarray,  # np.ndarray[np.int64] | ||||
|     minp: int,  # int64_t | ||||
|     quantile: float,  # float64_t | ||||
|     interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"], | ||||
| ) -> np.ndarray: ...  # np.ndarray[float] | ||||
| def roll_rank( | ||||
|     values: np.ndarray, | ||||
|     start: np.ndarray, | ||||
|     end: np.ndarray, | ||||
|     minp: int, | ||||
|     percentile: bool, | ||||
|     method: WindowingRankType, | ||||
|     ascending: bool, | ||||
| ) -> np.ndarray: ...  # np.ndarray[float] | ||||
| def roll_apply( | ||||
|     obj: object, | ||||
|     start: np.ndarray,  # np.ndarray[np.int64] | ||||
|     end: np.ndarray,  # np.ndarray[np.int64] | ||||
|     minp: int,  # int64_t | ||||
|     function: Callable[..., Any], | ||||
|     raw: bool, | ||||
|     args: tuple[Any, ...], | ||||
|     kwargs: dict[str, Any], | ||||
| ) -> npt.NDArray[np.float64]: ... | ||||
| def roll_weighted_sum( | ||||
|     values: np.ndarray,  # const float64_t[:] | ||||
|     weights: np.ndarray,  # const float64_t[:] | ||||
|     minp: int, | ||||
| ) -> np.ndarray: ...  # np.ndarray[np.float64] | ||||
| def roll_weighted_mean( | ||||
|     values: np.ndarray,  # const float64_t[:] | ||||
|     weights: np.ndarray,  # const float64_t[:] | ||||
|     minp: int, | ||||
| ) -> np.ndarray: ...  # np.ndarray[np.float64] | ||||
| def roll_weighted_var( | ||||
|     values: np.ndarray,  # const float64_t[:] | ||||
|     weights: np.ndarray,  # const float64_t[:] | ||||
|     minp: int,  # int64_t | ||||
|     ddof: int,  # unsigned int | ||||
| ) -> np.ndarray: ...  # np.ndarray[np.float64] | ||||
| def ewm( | ||||
|     vals: np.ndarray,  # const float64_t[:] | ||||
|     start: np.ndarray,  # const int64_t[:] | ||||
|     end: np.ndarray,  # const int64_t[:] | ||||
|     minp: int, | ||||
|     com: float,  # float64_t | ||||
|     adjust: bool, | ||||
|     ignore_na: bool, | ||||
|     deltas: np.ndarray | None = None,  # const float64_t[:] | ||||
|     normalize: bool = True, | ||||
| ) -> np.ndarray: ...  # np.ndarray[np.float64] | ||||
| def ewmcov( | ||||
|     input_x: np.ndarray,  # const float64_t[:] | ||||
|     start: np.ndarray,  # const int64_t[:] | ||||
|     end: np.ndarray,  # const int64_t[:] | ||||
|     minp: int, | ||||
|     input_y: np.ndarray,  # const float64_t[:] | ||||
|     com: float,  # float64_t | ||||
|     adjust: bool, | ||||
|     ignore_na: bool, | ||||
|     bias: bool, | ||||
| ) -> np.ndarray: ...  # np.ndarray[np.float64] | ||||
							
								
								
									
										
											BIN
										
									
								
								lib/python3.11/site-packages/pandas/_libs/window/indexers.cpython-311-darwin.so
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								lib/python3.11/site-packages/pandas/_libs/window/indexers.cpython-311-darwin.so
									
									
									
									
									
										Executable file
									
								
							
										
											Binary file not shown.
										
									
								
							| @ -0,0 +1,12 @@ | ||||
| import numpy as np | ||||
|  | ||||
| from pandas._typing import npt | ||||
|  | ||||
| def calculate_variable_window_bounds( | ||||
|     num_values: int,  # int64_t | ||||
|     window_size: int,  # int64_t | ||||
|     min_periods, | ||||
|     center: bool, | ||||
|     closed: str | None, | ||||
|     index: np.ndarray,  # const int64_t[:] | ||||
| ) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]: ... | ||||
		Reference in New Issue
	
	Block a user