done
This commit is contained in:
856
lib/python3.11/site-packages/numpy/random/_generator.pyi
Normal file
856
lib/python3.11/site-packages/numpy/random/_generator.pyi
Normal file
@ -0,0 +1,856 @@
|
||||
from collections.abc import Callable
|
||||
from typing import Any, Literal, TypeAlias, TypeVar, overload
|
||||
|
||||
import numpy as np
|
||||
from numpy import dtype, float32, float64, int64
|
||||
from numpy._typing import (
|
||||
ArrayLike,
|
||||
DTypeLike,
|
||||
NDArray,
|
||||
_ArrayLikeFloat_co,
|
||||
_ArrayLikeInt_co,
|
||||
_BoolCodes,
|
||||
_DoubleCodes,
|
||||
_DTypeLike,
|
||||
_DTypeLikeBool,
|
||||
_Float32Codes,
|
||||
_Float64Codes,
|
||||
_FloatLike_co,
|
||||
_Int8Codes,
|
||||
_Int16Codes,
|
||||
_Int32Codes,
|
||||
_Int64Codes,
|
||||
_IntPCodes,
|
||||
_ShapeLike,
|
||||
_SingleCodes,
|
||||
_SupportsDType,
|
||||
_UInt8Codes,
|
||||
_UInt16Codes,
|
||||
_UInt32Codes,
|
||||
_UInt64Codes,
|
||||
_UIntPCodes,
|
||||
)
|
||||
from numpy.random import BitGenerator, RandomState, SeedSequence
|
||||
|
||||
_IntegerT = TypeVar("_IntegerT", bound=np.integer)
|
||||
|
||||
_DTypeLikeFloat32: TypeAlias = (
|
||||
dtype[float32]
|
||||
| _SupportsDType[dtype[float32]]
|
||||
| type[float32]
|
||||
| _Float32Codes
|
||||
| _SingleCodes
|
||||
)
|
||||
|
||||
_DTypeLikeFloat64: TypeAlias = (
|
||||
dtype[float64]
|
||||
| _SupportsDType[dtype[float64]]
|
||||
| type[float]
|
||||
| type[float64]
|
||||
| _Float64Codes
|
||||
| _DoubleCodes
|
||||
)
|
||||
|
||||
class Generator:
|
||||
def __init__(self, bit_generator: BitGenerator) -> None: ...
|
||||
def __repr__(self) -> str: ...
|
||||
def __str__(self) -> str: ...
|
||||
def __getstate__(self) -> None: ...
|
||||
def __setstate__(self, state: dict[str, Any] | None) -> None: ...
|
||||
def __reduce__(self) -> tuple[
|
||||
Callable[[BitGenerator], Generator],
|
||||
tuple[BitGenerator],
|
||||
None]: ...
|
||||
@property
|
||||
def bit_generator(self) -> BitGenerator: ...
|
||||
def spawn(self, n_children: int) -> list[Generator]: ...
|
||||
def bytes(self, length: int) -> bytes: ...
|
||||
@overload
|
||||
def standard_normal( # type: ignore[misc]
|
||||
self,
|
||||
size: None = ...,
|
||||
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
||||
out: None = ...,
|
||||
) -> float: ...
|
||||
@overload
|
||||
def standard_normal( # type: ignore[misc]
|
||||
self,
|
||||
size: _ShapeLike = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def standard_normal( # type: ignore[misc]
|
||||
self,
|
||||
*,
|
||||
out: NDArray[float64] = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def standard_normal( # type: ignore[misc]
|
||||
self,
|
||||
size: _ShapeLike = ...,
|
||||
dtype: _DTypeLikeFloat32 = ...,
|
||||
out: NDArray[float32] | None = ...,
|
||||
) -> NDArray[float32]: ...
|
||||
@overload
|
||||
def standard_normal( # type: ignore[misc]
|
||||
self,
|
||||
size: _ShapeLike = ...,
|
||||
dtype: _DTypeLikeFloat64 = ...,
|
||||
out: NDArray[float64] | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def permutation(self, x: int, axis: int = ...) -> NDArray[int64]: ...
|
||||
@overload
|
||||
def permutation(self, x: ArrayLike, axis: int = ...) -> NDArray[Any]: ...
|
||||
@overload
|
||||
def standard_exponential( # type: ignore[misc]
|
||||
self,
|
||||
size: None = ...,
|
||||
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
||||
method: Literal["zig", "inv"] = ...,
|
||||
out: None = ...,
|
||||
) -> float: ...
|
||||
@overload
|
||||
def standard_exponential(
|
||||
self,
|
||||
size: _ShapeLike = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def standard_exponential(
|
||||
self,
|
||||
*,
|
||||
out: NDArray[float64] = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def standard_exponential(
|
||||
self,
|
||||
size: _ShapeLike = ...,
|
||||
*,
|
||||
method: Literal["zig", "inv"] = ...,
|
||||
out: NDArray[float64] | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def standard_exponential(
|
||||
self,
|
||||
size: _ShapeLike = ...,
|
||||
dtype: _DTypeLikeFloat32 = ...,
|
||||
method: Literal["zig", "inv"] = ...,
|
||||
out: NDArray[float32] | None = ...,
|
||||
) -> NDArray[float32]: ...
|
||||
@overload
|
||||
def standard_exponential(
|
||||
self,
|
||||
size: _ShapeLike = ...,
|
||||
dtype: _DTypeLikeFloat64 = ...,
|
||||
method: Literal["zig", "inv"] = ...,
|
||||
out: NDArray[float64] | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def random( # type: ignore[misc]
|
||||
self,
|
||||
size: None = ...,
|
||||
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
||||
out: None = ...,
|
||||
) -> float: ...
|
||||
@overload
|
||||
def random(
|
||||
self,
|
||||
*,
|
||||
out: NDArray[float64] = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def random(
|
||||
self,
|
||||
size: _ShapeLike = ...,
|
||||
*,
|
||||
out: NDArray[float64] | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def random(
|
||||
self,
|
||||
size: _ShapeLike = ...,
|
||||
dtype: _DTypeLikeFloat32 = ...,
|
||||
out: NDArray[float32] | None = ...,
|
||||
) -> NDArray[float32]: ...
|
||||
@overload
|
||||
def random(
|
||||
self,
|
||||
size: _ShapeLike = ...,
|
||||
dtype: _DTypeLikeFloat64 = ...,
|
||||
out: NDArray[float64] | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def beta(
|
||||
self,
|
||||
a: _FloatLike_co,
|
||||
b: _FloatLike_co,
|
||||
size: None = ...,
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def beta(
|
||||
self,
|
||||
a: _ArrayLikeFloat_co,
|
||||
b: _ArrayLikeFloat_co,
|
||||
size: _ShapeLike | None = ...
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def exponential(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def exponential(self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...) -> NDArray[float64]: ...
|
||||
|
||||
#
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
dtype: _DTypeLike[np.int64] | _Int64Codes = ...,
|
||||
endpoint: bool = False,
|
||||
) -> np.int64: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
*,
|
||||
dtype: type[bool],
|
||||
endpoint: bool = False,
|
||||
) -> bool: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
*,
|
||||
dtype: type[int],
|
||||
endpoint: bool = False,
|
||||
) -> int: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
*,
|
||||
dtype: _DTypeLike[np.bool] | _BoolCodes,
|
||||
endpoint: bool = False,
|
||||
) -> np.bool: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
*,
|
||||
dtype: _DTypeLike[_IntegerT],
|
||||
endpoint: bool = False,
|
||||
) -> _IntegerT: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: _ArrayLikeInt_co,
|
||||
high: _ArrayLikeInt_co | None = None,
|
||||
size: _ShapeLike | None = None,
|
||||
dtype: _DTypeLike[np.int64] | _Int64Codes = ...,
|
||||
endpoint: bool = False,
|
||||
) -> NDArray[np.int64]: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: _ArrayLikeInt_co,
|
||||
high: _ArrayLikeInt_co | None = None,
|
||||
size: _ShapeLike | None = None,
|
||||
*,
|
||||
dtype: _DTypeLikeBool,
|
||||
endpoint: bool = False,
|
||||
) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: _ArrayLikeInt_co,
|
||||
high: _ArrayLikeInt_co | None = None,
|
||||
size: _ShapeLike | None = None,
|
||||
*,
|
||||
dtype: _DTypeLike[_IntegerT],
|
||||
endpoint: bool = False,
|
||||
) -> NDArray[_IntegerT]: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
*,
|
||||
dtype: _Int8Codes,
|
||||
endpoint: bool = False,
|
||||
) -> np.int8: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: _ArrayLikeInt_co,
|
||||
high: _ArrayLikeInt_co | None = None,
|
||||
size: _ShapeLike | None = None,
|
||||
*,
|
||||
dtype: _Int8Codes,
|
||||
endpoint: bool = False,
|
||||
) -> NDArray[np.int8]: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
*,
|
||||
dtype: _UInt8Codes,
|
||||
endpoint: bool = False,
|
||||
) -> np.uint8: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: _ArrayLikeInt_co,
|
||||
high: _ArrayLikeInt_co | None = None,
|
||||
size: _ShapeLike | None = None,
|
||||
*,
|
||||
dtype: _UInt8Codes,
|
||||
endpoint: bool = False,
|
||||
) -> NDArray[np.uint8]: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
*,
|
||||
dtype: _Int16Codes,
|
||||
endpoint: bool = False,
|
||||
) -> np.int16: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: _ArrayLikeInt_co,
|
||||
high: _ArrayLikeInt_co | None = None,
|
||||
size: _ShapeLike | None = None,
|
||||
*,
|
||||
dtype: _Int16Codes,
|
||||
endpoint: bool = False,
|
||||
) -> NDArray[np.int16]: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
*,
|
||||
dtype: _UInt16Codes,
|
||||
endpoint: bool = False,
|
||||
) -> np.uint16: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: _ArrayLikeInt_co,
|
||||
high: _ArrayLikeInt_co | None = None,
|
||||
size: _ShapeLike | None = None,
|
||||
*,
|
||||
dtype: _UInt16Codes,
|
||||
endpoint: bool = False,
|
||||
) -> NDArray[np.uint16]: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
*,
|
||||
dtype: _Int32Codes,
|
||||
endpoint: bool = False,
|
||||
) -> np.int32: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: _ArrayLikeInt_co,
|
||||
high: _ArrayLikeInt_co | None = None,
|
||||
size: _ShapeLike | None = None,
|
||||
*,
|
||||
dtype: _Int32Codes,
|
||||
endpoint: bool = False,
|
||||
) -> NDArray[np.int32]: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
*,
|
||||
dtype: _UInt32Codes,
|
||||
endpoint: bool = False,
|
||||
) -> np.uint32: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: _ArrayLikeInt_co,
|
||||
high: _ArrayLikeInt_co | None = None,
|
||||
size: _ShapeLike | None = None,
|
||||
*,
|
||||
dtype: _UInt32Codes,
|
||||
endpoint: bool = False,
|
||||
) -> NDArray[np.uint32]: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
*,
|
||||
dtype: _UInt64Codes,
|
||||
endpoint: bool = False,
|
||||
) -> np.uint64: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: _ArrayLikeInt_co,
|
||||
high: _ArrayLikeInt_co | None = None,
|
||||
size: _ShapeLike | None = None,
|
||||
*,
|
||||
dtype: _UInt64Codes,
|
||||
endpoint: bool = False,
|
||||
) -> NDArray[np.uint64]: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
*,
|
||||
dtype: _IntPCodes,
|
||||
endpoint: bool = False,
|
||||
) -> np.intp: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: _ArrayLikeInt_co,
|
||||
high: _ArrayLikeInt_co | None = None,
|
||||
size: _ShapeLike | None = None,
|
||||
*,
|
||||
dtype: _IntPCodes,
|
||||
endpoint: bool = False,
|
||||
) -> NDArray[np.intp]: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
*,
|
||||
dtype: _UIntPCodes,
|
||||
endpoint: bool = False,
|
||||
) -> np.uintp: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: _ArrayLikeInt_co,
|
||||
high: _ArrayLikeInt_co | None = None,
|
||||
size: _ShapeLike | None = None,
|
||||
*,
|
||||
dtype: _UIntPCodes,
|
||||
endpoint: bool = False,
|
||||
) -> NDArray[np.uintp]: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: int,
|
||||
high: int | None = None,
|
||||
size: None = None,
|
||||
dtype: DTypeLike = ...,
|
||||
endpoint: bool = False,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def integers(
|
||||
self,
|
||||
low: _ArrayLikeInt_co,
|
||||
high: _ArrayLikeInt_co | None = None,
|
||||
size: _ShapeLike | None = None,
|
||||
dtype: DTypeLike = ...,
|
||||
endpoint: bool = False,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
# TODO: Use a TypeVar _T here to get away from Any output?
|
||||
# Should be int->NDArray[int64], ArrayLike[_T] -> _T | NDArray[Any]
|
||||
@overload
|
||||
def choice(
|
||||
self,
|
||||
a: int,
|
||||
size: None = ...,
|
||||
replace: bool = ...,
|
||||
p: _ArrayLikeFloat_co | None = ...,
|
||||
axis: int = ...,
|
||||
shuffle: bool = ...,
|
||||
) -> int: ...
|
||||
@overload
|
||||
def choice(
|
||||
self,
|
||||
a: int,
|
||||
size: _ShapeLike = ...,
|
||||
replace: bool = ...,
|
||||
p: _ArrayLikeFloat_co | None = ...,
|
||||
axis: int = ...,
|
||||
shuffle: bool = ...,
|
||||
) -> NDArray[int64]: ...
|
||||
@overload
|
||||
def choice(
|
||||
self,
|
||||
a: ArrayLike,
|
||||
size: None = ...,
|
||||
replace: bool = ...,
|
||||
p: _ArrayLikeFloat_co | None = ...,
|
||||
axis: int = ...,
|
||||
shuffle: bool = ...,
|
||||
) -> Any: ...
|
||||
@overload
|
||||
def choice(
|
||||
self,
|
||||
a: ArrayLike,
|
||||
size: _ShapeLike = ...,
|
||||
replace: bool = ...,
|
||||
p: _ArrayLikeFloat_co | None = ...,
|
||||
axis: int = ...,
|
||||
shuffle: bool = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
@overload
|
||||
def uniform(
|
||||
self,
|
||||
low: _FloatLike_co = ...,
|
||||
high: _FloatLike_co = ...,
|
||||
size: None = ...,
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def uniform(
|
||||
self,
|
||||
low: _ArrayLikeFloat_co = ...,
|
||||
high: _ArrayLikeFloat_co = ...,
|
||||
size: _ShapeLike | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def normal(
|
||||
self,
|
||||
loc: _FloatLike_co = ...,
|
||||
scale: _FloatLike_co = ...,
|
||||
size: None = ...,
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def normal(
|
||||
self,
|
||||
loc: _ArrayLikeFloat_co = ...,
|
||||
scale: _ArrayLikeFloat_co = ...,
|
||||
size: _ShapeLike | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def standard_gamma( # type: ignore[misc]
|
||||
self,
|
||||
shape: _FloatLike_co,
|
||||
size: None = ...,
|
||||
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
||||
out: None = ...,
|
||||
) -> float: ...
|
||||
@overload
|
||||
def standard_gamma(
|
||||
self,
|
||||
shape: _ArrayLikeFloat_co,
|
||||
size: _ShapeLike | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def standard_gamma(
|
||||
self,
|
||||
shape: _ArrayLikeFloat_co,
|
||||
*,
|
||||
out: NDArray[float64] = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def standard_gamma(
|
||||
self,
|
||||
shape: _ArrayLikeFloat_co,
|
||||
size: _ShapeLike | None = ...,
|
||||
dtype: _DTypeLikeFloat32 = ...,
|
||||
out: NDArray[float32] | None = ...,
|
||||
) -> NDArray[float32]: ...
|
||||
@overload
|
||||
def standard_gamma(
|
||||
self,
|
||||
shape: _ArrayLikeFloat_co,
|
||||
size: _ShapeLike | None = ...,
|
||||
dtype: _DTypeLikeFloat64 = ...,
|
||||
out: NDArray[float64] | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def gamma(
|
||||
self, shape: _FloatLike_co, scale: _FloatLike_co = ..., size: None = ...
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def gamma(
|
||||
self,
|
||||
shape: _ArrayLikeFloat_co,
|
||||
scale: _ArrayLikeFloat_co = ...,
|
||||
size: _ShapeLike | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def f(
|
||||
self, dfnum: _FloatLike_co, dfden: _FloatLike_co, size: None = ...
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def f(
|
||||
self,
|
||||
dfnum: _ArrayLikeFloat_co,
|
||||
dfden: _ArrayLikeFloat_co,
|
||||
size: _ShapeLike | None = ...
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def noncentral_f(
|
||||
self,
|
||||
dfnum: _FloatLike_co,
|
||||
dfden: _FloatLike_co,
|
||||
nonc: _FloatLike_co, size: None = ...
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def noncentral_f(
|
||||
self,
|
||||
dfnum: _ArrayLikeFloat_co,
|
||||
dfden: _ArrayLikeFloat_co,
|
||||
nonc: _ArrayLikeFloat_co,
|
||||
size: _ShapeLike | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def chisquare(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def chisquare(
|
||||
self, df: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def noncentral_chisquare(
|
||||
self, df: _FloatLike_co, nonc: _FloatLike_co, size: None = ...
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def noncentral_chisquare(
|
||||
self,
|
||||
df: _ArrayLikeFloat_co,
|
||||
nonc: _ArrayLikeFloat_co,
|
||||
size: _ShapeLike | None = ...
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def standard_t(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def standard_t(
|
||||
self, df: _ArrayLikeFloat_co, size: None = ...
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def standard_t(
|
||||
self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def vonmises(
|
||||
self, mu: _FloatLike_co, kappa: _FloatLike_co, size: None = ...
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def vonmises(
|
||||
self,
|
||||
mu: _ArrayLikeFloat_co,
|
||||
kappa: _ArrayLikeFloat_co,
|
||||
size: _ShapeLike | None = ...
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def pareto(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def pareto(
|
||||
self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def weibull(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def weibull(
|
||||
self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def power(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def power(
|
||||
self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def standard_cauchy(self, size: _ShapeLike = ...) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def laplace(
|
||||
self,
|
||||
loc: _FloatLike_co = ...,
|
||||
scale: _FloatLike_co = ...,
|
||||
size: None = ...,
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def laplace(
|
||||
self,
|
||||
loc: _ArrayLikeFloat_co = ...,
|
||||
scale: _ArrayLikeFloat_co = ...,
|
||||
size: _ShapeLike | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def gumbel(
|
||||
self,
|
||||
loc: _FloatLike_co = ...,
|
||||
scale: _FloatLike_co = ...,
|
||||
size: None = ...,
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def gumbel(
|
||||
self,
|
||||
loc: _ArrayLikeFloat_co = ...,
|
||||
scale: _ArrayLikeFloat_co = ...,
|
||||
size: _ShapeLike | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def logistic(
|
||||
self,
|
||||
loc: _FloatLike_co = ...,
|
||||
scale: _FloatLike_co = ...,
|
||||
size: None = ...,
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def logistic(
|
||||
self,
|
||||
loc: _ArrayLikeFloat_co = ...,
|
||||
scale: _ArrayLikeFloat_co = ...,
|
||||
size: _ShapeLike | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def lognormal(
|
||||
self,
|
||||
mean: _FloatLike_co = ...,
|
||||
sigma: _FloatLike_co = ...,
|
||||
size: None = ...,
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def lognormal(
|
||||
self,
|
||||
mean: _ArrayLikeFloat_co = ...,
|
||||
sigma: _ArrayLikeFloat_co = ...,
|
||||
size: _ShapeLike | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def rayleigh(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def rayleigh(
|
||||
self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def wald(
|
||||
self, mean: _FloatLike_co, scale: _FloatLike_co, size: None = ...
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def wald(
|
||||
self,
|
||||
mean: _ArrayLikeFloat_co,
|
||||
scale: _ArrayLikeFloat_co,
|
||||
size: _ShapeLike | None = ...
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def triangular(
|
||||
self,
|
||||
left: _FloatLike_co,
|
||||
mode: _FloatLike_co,
|
||||
right: _FloatLike_co,
|
||||
size: None = ...,
|
||||
) -> float: ... # type: ignore[misc]
|
||||
@overload
|
||||
def triangular(
|
||||
self,
|
||||
left: _ArrayLikeFloat_co,
|
||||
mode: _ArrayLikeFloat_co,
|
||||
right: _ArrayLikeFloat_co,
|
||||
size: _ShapeLike | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def binomial(self, n: int, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
||||
@overload
|
||||
def binomial(
|
||||
self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
||||
) -> NDArray[int64]: ...
|
||||
@overload
|
||||
def negative_binomial(
|
||||
self, n: _FloatLike_co, p: _FloatLike_co, size: None = ...
|
||||
) -> int: ... # type: ignore[misc]
|
||||
@overload
|
||||
def negative_binomial(
|
||||
self,
|
||||
n: _ArrayLikeFloat_co,
|
||||
p: _ArrayLikeFloat_co,
|
||||
size: _ShapeLike | None = ...
|
||||
) -> NDArray[int64]: ...
|
||||
@overload
|
||||
def poisson(self, lam: _FloatLike_co = ..., size: None = ...) -> int: ... # type: ignore[misc]
|
||||
@overload
|
||||
def poisson(
|
||||
self, lam: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...
|
||||
) -> NDArray[int64]: ...
|
||||
@overload
|
||||
def zipf(self, a: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
||||
@overload
|
||||
def zipf(
|
||||
self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
||||
) -> NDArray[int64]: ...
|
||||
@overload
|
||||
def geometric(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
||||
@overload
|
||||
def geometric(
|
||||
self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
||||
) -> NDArray[int64]: ...
|
||||
@overload
|
||||
def hypergeometric(
|
||||
self, ngood: int, nbad: int, nsample: int, size: None = ...
|
||||
) -> int: ... # type: ignore[misc]
|
||||
@overload
|
||||
def hypergeometric(
|
||||
self,
|
||||
ngood: _ArrayLikeInt_co,
|
||||
nbad: _ArrayLikeInt_co,
|
||||
nsample: _ArrayLikeInt_co,
|
||||
size: _ShapeLike | None = ...,
|
||||
) -> NDArray[int64]: ...
|
||||
@overload
|
||||
def logseries(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
||||
@overload
|
||||
def logseries(
|
||||
self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
||||
) -> NDArray[int64]: ...
|
||||
def multivariate_normal(
|
||||
self,
|
||||
mean: _ArrayLikeFloat_co,
|
||||
cov: _ArrayLikeFloat_co,
|
||||
size: _ShapeLike | None = ...,
|
||||
check_valid: Literal["warn", "raise", "ignore"] = ...,
|
||||
tol: float = ...,
|
||||
*,
|
||||
method: Literal["svd", "eigh", "cholesky"] = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
def multinomial(
|
||||
self, n: _ArrayLikeInt_co,
|
||||
pvals: _ArrayLikeFloat_co,
|
||||
size: _ShapeLike | None = ...
|
||||
) -> NDArray[int64]: ...
|
||||
def multivariate_hypergeometric(
|
||||
self,
|
||||
colors: _ArrayLikeInt_co,
|
||||
nsample: int,
|
||||
size: _ShapeLike | None = ...,
|
||||
method: Literal["marginals", "count"] = ...,
|
||||
) -> NDArray[int64]: ...
|
||||
def dirichlet(
|
||||
self, alpha: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
||||
) -> NDArray[float64]: ...
|
||||
def permuted(
|
||||
self, x: ArrayLike, *, axis: int | None = ..., out: NDArray[Any] | None = ...
|
||||
) -> NDArray[Any]: ...
|
||||
def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ...
|
||||
|
||||
def default_rng(
|
||||
seed: _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator | RandomState | None = ...
|
||||
) -> Generator: ...
|
Reference in New Issue
Block a user