done
This commit is contained in:
		
							
								
								
									
										856
									
								
								lib/python3.11/site-packages/numpy/random/_generator.pyi
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										856
									
								
								lib/python3.11/site-packages/numpy/random/_generator.pyi
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,856 @@
 | 
			
		||||
from collections.abc import Callable
 | 
			
		||||
from typing import Any, Literal, TypeAlias, TypeVar, overload
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
from numpy import dtype, float32, float64, int64
 | 
			
		||||
from numpy._typing import (
 | 
			
		||||
    ArrayLike,
 | 
			
		||||
    DTypeLike,
 | 
			
		||||
    NDArray,
 | 
			
		||||
    _ArrayLikeFloat_co,
 | 
			
		||||
    _ArrayLikeInt_co,
 | 
			
		||||
    _BoolCodes,
 | 
			
		||||
    _DoubleCodes,
 | 
			
		||||
    _DTypeLike,
 | 
			
		||||
    _DTypeLikeBool,
 | 
			
		||||
    _Float32Codes,
 | 
			
		||||
    _Float64Codes,
 | 
			
		||||
    _FloatLike_co,
 | 
			
		||||
    _Int8Codes,
 | 
			
		||||
    _Int16Codes,
 | 
			
		||||
    _Int32Codes,
 | 
			
		||||
    _Int64Codes,
 | 
			
		||||
    _IntPCodes,
 | 
			
		||||
    _ShapeLike,
 | 
			
		||||
    _SingleCodes,
 | 
			
		||||
    _SupportsDType,
 | 
			
		||||
    _UInt8Codes,
 | 
			
		||||
    _UInt16Codes,
 | 
			
		||||
    _UInt32Codes,
 | 
			
		||||
    _UInt64Codes,
 | 
			
		||||
    _UIntPCodes,
 | 
			
		||||
)
 | 
			
		||||
from numpy.random import BitGenerator, RandomState, SeedSequence
 | 
			
		||||
 | 
			
		||||
_IntegerT = TypeVar("_IntegerT", bound=np.integer)
 | 
			
		||||
 | 
			
		||||
_DTypeLikeFloat32: TypeAlias = (
 | 
			
		||||
    dtype[float32]
 | 
			
		||||
    | _SupportsDType[dtype[float32]]
 | 
			
		||||
    | type[float32]
 | 
			
		||||
    | _Float32Codes
 | 
			
		||||
    | _SingleCodes
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
_DTypeLikeFloat64: TypeAlias = (
 | 
			
		||||
    dtype[float64]
 | 
			
		||||
    | _SupportsDType[dtype[float64]]
 | 
			
		||||
    | type[float]
 | 
			
		||||
    | type[float64]
 | 
			
		||||
    | _Float64Codes
 | 
			
		||||
    | _DoubleCodes
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
class Generator:
 | 
			
		||||
    def __init__(self, bit_generator: BitGenerator) -> None: ...
 | 
			
		||||
    def __repr__(self) -> str: ...
 | 
			
		||||
    def __str__(self) -> str: ...
 | 
			
		||||
    def __getstate__(self) -> None: ...
 | 
			
		||||
    def __setstate__(self, state: dict[str, Any] | None) -> None: ...
 | 
			
		||||
    def __reduce__(self) -> tuple[
 | 
			
		||||
        Callable[[BitGenerator], Generator],
 | 
			
		||||
        tuple[BitGenerator],
 | 
			
		||||
        None]: ...
 | 
			
		||||
    @property
 | 
			
		||||
    def bit_generator(self) -> BitGenerator: ...
 | 
			
		||||
    def spawn(self, n_children: int) -> list[Generator]: ...
 | 
			
		||||
    def bytes(self, length: int) -> bytes: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_normal(  # type: ignore[misc]
 | 
			
		||||
        self,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
 | 
			
		||||
        out: None = ...,
 | 
			
		||||
    ) -> float: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_normal(  # type: ignore[misc]
 | 
			
		||||
        self,
 | 
			
		||||
        size: _ShapeLike = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_normal(  # type: ignore[misc]
 | 
			
		||||
        self,
 | 
			
		||||
        *,
 | 
			
		||||
        out: NDArray[float64] = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_normal(  # type: ignore[misc]
 | 
			
		||||
        self,
 | 
			
		||||
        size: _ShapeLike = ...,
 | 
			
		||||
        dtype: _DTypeLikeFloat32 = ...,
 | 
			
		||||
        out: NDArray[float32] | None = ...,
 | 
			
		||||
    ) -> NDArray[float32]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_normal(  # type: ignore[misc]
 | 
			
		||||
        self,
 | 
			
		||||
        size: _ShapeLike = ...,
 | 
			
		||||
        dtype: _DTypeLikeFloat64 = ...,
 | 
			
		||||
        out: NDArray[float64] | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def permutation(self, x: int, axis: int = ...) -> NDArray[int64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def permutation(self, x: ArrayLike, axis: int = ...) -> NDArray[Any]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_exponential(  # type: ignore[misc]
 | 
			
		||||
        self,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
 | 
			
		||||
        method: Literal["zig", "inv"] = ...,
 | 
			
		||||
        out: None = ...,
 | 
			
		||||
    ) -> float: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_exponential(
 | 
			
		||||
        self,
 | 
			
		||||
        size: _ShapeLike = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_exponential(
 | 
			
		||||
        self,
 | 
			
		||||
        *,
 | 
			
		||||
        out: NDArray[float64] = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_exponential(
 | 
			
		||||
        self,
 | 
			
		||||
        size: _ShapeLike = ...,
 | 
			
		||||
        *,
 | 
			
		||||
        method: Literal["zig", "inv"] = ...,
 | 
			
		||||
        out: NDArray[float64] | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_exponential(
 | 
			
		||||
        self,
 | 
			
		||||
        size: _ShapeLike = ...,
 | 
			
		||||
        dtype: _DTypeLikeFloat32 = ...,
 | 
			
		||||
        method: Literal["zig", "inv"] = ...,
 | 
			
		||||
        out: NDArray[float32] | None = ...,
 | 
			
		||||
    ) -> NDArray[float32]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_exponential(
 | 
			
		||||
        self,
 | 
			
		||||
        size: _ShapeLike = ...,
 | 
			
		||||
        dtype: _DTypeLikeFloat64 = ...,
 | 
			
		||||
        method: Literal["zig", "inv"] = ...,
 | 
			
		||||
        out: NDArray[float64] | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def random(  # type: ignore[misc]
 | 
			
		||||
        self,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
 | 
			
		||||
        out: None = ...,
 | 
			
		||||
    ) -> float: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def random(
 | 
			
		||||
        self,
 | 
			
		||||
        *,
 | 
			
		||||
        out: NDArray[float64] = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def random(
 | 
			
		||||
        self,
 | 
			
		||||
        size: _ShapeLike = ...,
 | 
			
		||||
        *,
 | 
			
		||||
        out: NDArray[float64] | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def random(
 | 
			
		||||
        self,
 | 
			
		||||
        size: _ShapeLike = ...,
 | 
			
		||||
        dtype: _DTypeLikeFloat32 = ...,
 | 
			
		||||
        out: NDArray[float32] | None = ...,
 | 
			
		||||
    ) -> NDArray[float32]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def random(
 | 
			
		||||
        self,
 | 
			
		||||
        size: _ShapeLike = ...,
 | 
			
		||||
        dtype: _DTypeLikeFloat64 = ...,
 | 
			
		||||
        out: NDArray[float64] | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def beta(
 | 
			
		||||
        self,
 | 
			
		||||
        a: _FloatLike_co,
 | 
			
		||||
        b: _FloatLike_co,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def beta(
 | 
			
		||||
        self,
 | 
			
		||||
        a: _ArrayLikeFloat_co,
 | 
			
		||||
        b: _ArrayLikeFloat_co,
 | 
			
		||||
        size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def exponential(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def exponential(self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...) -> NDArray[float64]: ...
 | 
			
		||||
 | 
			
		||||
    #
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        dtype: _DTypeLike[np.int64] | _Int64Codes = ...,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> np.int64: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: type[bool],
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> bool: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: type[int],
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> int: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _DTypeLike[np.bool] | _BoolCodes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> np.bool: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _DTypeLike[_IntegerT],
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> _IntegerT: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeInt_co,
 | 
			
		||||
        high: _ArrayLikeInt_co | None = None,
 | 
			
		||||
        size: _ShapeLike | None = None,
 | 
			
		||||
        dtype: _DTypeLike[np.int64] | _Int64Codes = ...,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> NDArray[np.int64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeInt_co,
 | 
			
		||||
        high: _ArrayLikeInt_co | None = None,
 | 
			
		||||
        size: _ShapeLike | None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _DTypeLikeBool,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> NDArray[np.bool]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeInt_co,
 | 
			
		||||
        high: _ArrayLikeInt_co | None = None,
 | 
			
		||||
        size: _ShapeLike | None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _DTypeLike[_IntegerT],
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> NDArray[_IntegerT]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _Int8Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> np.int8: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeInt_co,
 | 
			
		||||
        high: _ArrayLikeInt_co | None = None,
 | 
			
		||||
        size: _ShapeLike | None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _Int8Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> NDArray[np.int8]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _UInt8Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> np.uint8: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeInt_co,
 | 
			
		||||
        high: _ArrayLikeInt_co | None = None,
 | 
			
		||||
        size: _ShapeLike | None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _UInt8Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> NDArray[np.uint8]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _Int16Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> np.int16: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeInt_co,
 | 
			
		||||
        high: _ArrayLikeInt_co | None = None,
 | 
			
		||||
        size: _ShapeLike | None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _Int16Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> NDArray[np.int16]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _UInt16Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> np.uint16: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeInt_co,
 | 
			
		||||
        high: _ArrayLikeInt_co | None = None,
 | 
			
		||||
        size: _ShapeLike | None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _UInt16Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> NDArray[np.uint16]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _Int32Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> np.int32: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeInt_co,
 | 
			
		||||
        high: _ArrayLikeInt_co | None = None,
 | 
			
		||||
        size: _ShapeLike | None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _Int32Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> NDArray[np.int32]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _UInt32Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> np.uint32: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeInt_co,
 | 
			
		||||
        high: _ArrayLikeInt_co | None = None,
 | 
			
		||||
        size: _ShapeLike | None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _UInt32Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> NDArray[np.uint32]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _UInt64Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> np.uint64: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeInt_co,
 | 
			
		||||
        high: _ArrayLikeInt_co | None = None,
 | 
			
		||||
        size: _ShapeLike | None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _UInt64Codes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> NDArray[np.uint64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _IntPCodes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> np.intp: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeInt_co,
 | 
			
		||||
        high: _ArrayLikeInt_co | None = None,
 | 
			
		||||
        size: _ShapeLike | None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _IntPCodes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> NDArray[np.intp]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _UIntPCodes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> np.uintp: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeInt_co,
 | 
			
		||||
        high: _ArrayLikeInt_co | None = None,
 | 
			
		||||
        size: _ShapeLike | None = None,
 | 
			
		||||
        *,
 | 
			
		||||
        dtype: _UIntPCodes,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> NDArray[np.uintp]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: int,
 | 
			
		||||
        high: int | None = None,
 | 
			
		||||
        size: None = None,
 | 
			
		||||
        dtype: DTypeLike = ...,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> Any: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def integers(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeInt_co,
 | 
			
		||||
        high: _ArrayLikeInt_co | None = None,
 | 
			
		||||
        size: _ShapeLike | None = None,
 | 
			
		||||
        dtype: DTypeLike = ...,
 | 
			
		||||
        endpoint: bool = False,
 | 
			
		||||
    ) -> NDArray[Any]: ...
 | 
			
		||||
 | 
			
		||||
    # TODO: Use a TypeVar _T here to get away from Any output?
 | 
			
		||||
    #       Should be int->NDArray[int64], ArrayLike[_T] -> _T | NDArray[Any]
 | 
			
		||||
    @overload
 | 
			
		||||
    def choice(
 | 
			
		||||
        self,
 | 
			
		||||
        a: int,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
        replace: bool = ...,
 | 
			
		||||
        p: _ArrayLikeFloat_co | None = ...,
 | 
			
		||||
        axis: int = ...,
 | 
			
		||||
        shuffle: bool = ...,
 | 
			
		||||
    ) -> int: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def choice(
 | 
			
		||||
        self,
 | 
			
		||||
        a: int,
 | 
			
		||||
        size: _ShapeLike = ...,
 | 
			
		||||
        replace: bool = ...,
 | 
			
		||||
        p: _ArrayLikeFloat_co | None = ...,
 | 
			
		||||
        axis: int = ...,
 | 
			
		||||
        shuffle: bool = ...,
 | 
			
		||||
    ) -> NDArray[int64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def choice(
 | 
			
		||||
        self,
 | 
			
		||||
        a: ArrayLike,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
        replace: bool = ...,
 | 
			
		||||
        p: _ArrayLikeFloat_co | None = ...,
 | 
			
		||||
        axis: int = ...,
 | 
			
		||||
        shuffle: bool = ...,
 | 
			
		||||
    ) -> Any: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def choice(
 | 
			
		||||
        self,
 | 
			
		||||
        a: ArrayLike,
 | 
			
		||||
        size: _ShapeLike = ...,
 | 
			
		||||
        replace: bool = ...,
 | 
			
		||||
        p: _ArrayLikeFloat_co | None = ...,
 | 
			
		||||
        axis: int = ...,
 | 
			
		||||
        shuffle: bool = ...,
 | 
			
		||||
    ) -> NDArray[Any]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def uniform(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _FloatLike_co = ...,
 | 
			
		||||
        high: _FloatLike_co = ...,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def uniform(
 | 
			
		||||
        self,
 | 
			
		||||
        low: _ArrayLikeFloat_co = ...,
 | 
			
		||||
        high: _ArrayLikeFloat_co = ...,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def normal(
 | 
			
		||||
        self,
 | 
			
		||||
        loc: _FloatLike_co = ...,
 | 
			
		||||
        scale: _FloatLike_co = ...,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def normal(
 | 
			
		||||
        self,
 | 
			
		||||
        loc: _ArrayLikeFloat_co = ...,
 | 
			
		||||
        scale: _ArrayLikeFloat_co = ...,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_gamma(  # type: ignore[misc]
 | 
			
		||||
        self,
 | 
			
		||||
        shape: _FloatLike_co,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
        dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
 | 
			
		||||
        out: None = ...,
 | 
			
		||||
    ) -> float: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_gamma(
 | 
			
		||||
        self,
 | 
			
		||||
        shape: _ArrayLikeFloat_co,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_gamma(
 | 
			
		||||
        self,
 | 
			
		||||
        shape: _ArrayLikeFloat_co,
 | 
			
		||||
        *,
 | 
			
		||||
        out: NDArray[float64] = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_gamma(
 | 
			
		||||
        self,
 | 
			
		||||
        shape: _ArrayLikeFloat_co,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
        dtype: _DTypeLikeFloat32 = ...,
 | 
			
		||||
        out: NDArray[float32] | None = ...,
 | 
			
		||||
    ) -> NDArray[float32]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_gamma(
 | 
			
		||||
        self,
 | 
			
		||||
        shape: _ArrayLikeFloat_co,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
        dtype: _DTypeLikeFloat64 = ...,
 | 
			
		||||
        out: NDArray[float64] | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def gamma(
 | 
			
		||||
        self, shape: _FloatLike_co, scale: _FloatLike_co = ..., size: None = ...
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def gamma(
 | 
			
		||||
        self,
 | 
			
		||||
        shape: _ArrayLikeFloat_co,
 | 
			
		||||
        scale: _ArrayLikeFloat_co = ...,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def f(
 | 
			
		||||
        self, dfnum: _FloatLike_co, dfden: _FloatLike_co, size: None = ...
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def f(
 | 
			
		||||
        self,
 | 
			
		||||
        dfnum: _ArrayLikeFloat_co,
 | 
			
		||||
        dfden: _ArrayLikeFloat_co,
 | 
			
		||||
        size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def noncentral_f(
 | 
			
		||||
        self,
 | 
			
		||||
        dfnum: _FloatLike_co,
 | 
			
		||||
        dfden: _FloatLike_co,
 | 
			
		||||
        nonc: _FloatLike_co, size: None = ...
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def noncentral_f(
 | 
			
		||||
        self,
 | 
			
		||||
        dfnum: _ArrayLikeFloat_co,
 | 
			
		||||
        dfden: _ArrayLikeFloat_co,
 | 
			
		||||
        nonc: _ArrayLikeFloat_co,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def chisquare(self, df: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def chisquare(
 | 
			
		||||
        self, df: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def noncentral_chisquare(
 | 
			
		||||
        self, df: _FloatLike_co, nonc: _FloatLike_co, size: None = ...
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def noncentral_chisquare(
 | 
			
		||||
        self,
 | 
			
		||||
        df: _ArrayLikeFloat_co,
 | 
			
		||||
        nonc: _ArrayLikeFloat_co,
 | 
			
		||||
        size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_t(self, df: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_t(
 | 
			
		||||
        self, df: _ArrayLikeFloat_co, size: None = ...
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_t(
 | 
			
		||||
        self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def vonmises(
 | 
			
		||||
        self, mu: _FloatLike_co, kappa: _FloatLike_co, size: None = ...
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def vonmises(
 | 
			
		||||
        self,
 | 
			
		||||
        mu: _ArrayLikeFloat_co,
 | 
			
		||||
        kappa: _ArrayLikeFloat_co,
 | 
			
		||||
        size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def pareto(self, a: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def pareto(
 | 
			
		||||
        self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def weibull(self, a: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def weibull(
 | 
			
		||||
        self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def power(self, a: _FloatLike_co, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def power(
 | 
			
		||||
        self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_cauchy(self, size: None = ...) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def standard_cauchy(self, size: _ShapeLike = ...) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def laplace(
 | 
			
		||||
        self,
 | 
			
		||||
        loc: _FloatLike_co = ...,
 | 
			
		||||
        scale: _FloatLike_co = ...,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def laplace(
 | 
			
		||||
        self,
 | 
			
		||||
        loc: _ArrayLikeFloat_co = ...,
 | 
			
		||||
        scale: _ArrayLikeFloat_co = ...,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def gumbel(
 | 
			
		||||
        self,
 | 
			
		||||
        loc: _FloatLike_co = ...,
 | 
			
		||||
        scale: _FloatLike_co = ...,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def gumbel(
 | 
			
		||||
        self,
 | 
			
		||||
        loc: _ArrayLikeFloat_co = ...,
 | 
			
		||||
        scale: _ArrayLikeFloat_co = ...,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def logistic(
 | 
			
		||||
        self,
 | 
			
		||||
        loc: _FloatLike_co = ...,
 | 
			
		||||
        scale: _FloatLike_co = ...,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def logistic(
 | 
			
		||||
        self,
 | 
			
		||||
        loc: _ArrayLikeFloat_co = ...,
 | 
			
		||||
        scale: _ArrayLikeFloat_co = ...,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def lognormal(
 | 
			
		||||
        self,
 | 
			
		||||
        mean: _FloatLike_co = ...,
 | 
			
		||||
        sigma: _FloatLike_co = ...,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def lognormal(
 | 
			
		||||
        self,
 | 
			
		||||
        mean: _ArrayLikeFloat_co = ...,
 | 
			
		||||
        sigma: _ArrayLikeFloat_co = ...,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def rayleigh(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def rayleigh(
 | 
			
		||||
        self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def wald(
 | 
			
		||||
        self, mean: _FloatLike_co, scale: _FloatLike_co, size: None = ...
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def wald(
 | 
			
		||||
        self,
 | 
			
		||||
        mean: _ArrayLikeFloat_co,
 | 
			
		||||
        scale: _ArrayLikeFloat_co,
 | 
			
		||||
        size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def triangular(
 | 
			
		||||
        self,
 | 
			
		||||
        left: _FloatLike_co,
 | 
			
		||||
        mode: _FloatLike_co,
 | 
			
		||||
        right: _FloatLike_co,
 | 
			
		||||
        size: None = ...,
 | 
			
		||||
    ) -> float: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def triangular(
 | 
			
		||||
        self,
 | 
			
		||||
        left: _ArrayLikeFloat_co,
 | 
			
		||||
        mode: _ArrayLikeFloat_co,
 | 
			
		||||
        right: _ArrayLikeFloat_co,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def binomial(self, n: int, p: _FloatLike_co, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def binomial(
 | 
			
		||||
        self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[int64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def negative_binomial(
 | 
			
		||||
        self, n: _FloatLike_co, p: _FloatLike_co, size: None = ...
 | 
			
		||||
    ) -> int: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def negative_binomial(
 | 
			
		||||
        self,
 | 
			
		||||
        n: _ArrayLikeFloat_co,
 | 
			
		||||
        p: _ArrayLikeFloat_co,
 | 
			
		||||
        size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[int64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def poisson(self, lam: _FloatLike_co = ..., size: None = ...) -> int: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def poisson(
 | 
			
		||||
        self, lam: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[int64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def zipf(self, a: _FloatLike_co, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def zipf(
 | 
			
		||||
        self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[int64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def geometric(self, p: _FloatLike_co, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def geometric(
 | 
			
		||||
        self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[int64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def hypergeometric(
 | 
			
		||||
        self, ngood: int, nbad: int, nsample: int, size: None = ...
 | 
			
		||||
    ) -> int: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def hypergeometric(
 | 
			
		||||
        self,
 | 
			
		||||
        ngood: _ArrayLikeInt_co,
 | 
			
		||||
        nbad: _ArrayLikeInt_co,
 | 
			
		||||
        nsample: _ArrayLikeInt_co,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
    ) -> NDArray[int64]: ...
 | 
			
		||||
    @overload
 | 
			
		||||
    def logseries(self, p: _FloatLike_co, size: None = ...) -> int: ...  # type: ignore[misc]
 | 
			
		||||
    @overload
 | 
			
		||||
    def logseries(
 | 
			
		||||
        self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[int64]: ...
 | 
			
		||||
    def multivariate_normal(
 | 
			
		||||
        self,
 | 
			
		||||
        mean: _ArrayLikeFloat_co,
 | 
			
		||||
        cov: _ArrayLikeFloat_co,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
        check_valid: Literal["warn", "raise", "ignore"] = ...,
 | 
			
		||||
        tol: float = ...,
 | 
			
		||||
        *,
 | 
			
		||||
        method: Literal["svd", "eigh", "cholesky"] = ...,
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    def multinomial(
 | 
			
		||||
        self, n: _ArrayLikeInt_co,
 | 
			
		||||
            pvals: _ArrayLikeFloat_co,
 | 
			
		||||
            size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[int64]: ...
 | 
			
		||||
    def multivariate_hypergeometric(
 | 
			
		||||
        self,
 | 
			
		||||
        colors: _ArrayLikeInt_co,
 | 
			
		||||
        nsample: int,
 | 
			
		||||
        size: _ShapeLike | None = ...,
 | 
			
		||||
        method: Literal["marginals", "count"] = ...,
 | 
			
		||||
    ) -> NDArray[int64]: ...
 | 
			
		||||
    def dirichlet(
 | 
			
		||||
        self, alpha: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
 | 
			
		||||
    ) -> NDArray[float64]: ...
 | 
			
		||||
    def permuted(
 | 
			
		||||
        self, x: ArrayLike, *, axis: int | None = ..., out: NDArray[Any] | None = ...
 | 
			
		||||
    ) -> NDArray[Any]: ...
 | 
			
		||||
    def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ...
 | 
			
		||||
 | 
			
		||||
def default_rng(
 | 
			
		||||
    seed: _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator | RandomState | None = ...
 | 
			
		||||
) -> Generator: ...
 | 
			
		||||
		Reference in New Issue
	
	Block a user