done
This commit is contained in:
		| @ -0,0 +1,77 @@ | ||||
| #cython: language_level=3 | ||||
|  | ||||
| from libc.stdint cimport uint32_t | ||||
| from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer | ||||
|  | ||||
| import numpy as np | ||||
| cimport numpy as np | ||||
| cimport cython | ||||
|  | ||||
| from numpy.random cimport bitgen_t | ||||
| from numpy.random import PCG64 | ||||
|  | ||||
| np.import_array() | ||||
|  | ||||
|  | ||||
| @cython.boundscheck(False) | ||||
| @cython.wraparound(False) | ||||
| def uniform_mean(Py_ssize_t n): | ||||
|     cdef Py_ssize_t i | ||||
|     cdef bitgen_t *rng | ||||
|     cdef const char *capsule_name = "BitGenerator" | ||||
|     cdef double[::1] random_values | ||||
|     cdef np.ndarray randoms | ||||
|  | ||||
|     x = PCG64() | ||||
|     capsule = x.capsule | ||||
|     if not PyCapsule_IsValid(capsule, capsule_name): | ||||
|         raise ValueError("Invalid pointer to anon_func_state") | ||||
|     rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) | ||||
|     random_values = np.empty(n) | ||||
|     # Best practice is to acquire the lock whenever generating random values. | ||||
|     # This prevents other threads from modifying the state. Acquiring the lock | ||||
|     # is only necessary if the GIL is also released, as in this example. | ||||
|     with x.lock, nogil: | ||||
|         for i in range(n): | ||||
|             random_values[i] = rng.next_double(rng.state) | ||||
|     randoms = np.asarray(random_values) | ||||
|     return randoms.mean() | ||||
|  | ||||
|  | ||||
| # This function is declared nogil so it can be used without the GIL below | ||||
| cdef uint32_t bounded_uint(uint32_t lb, uint32_t ub, bitgen_t *rng) nogil: | ||||
|     cdef uint32_t mask, delta, val | ||||
|     mask = delta = ub - lb | ||||
|     mask |= mask >> 1 | ||||
|     mask |= mask >> 2 | ||||
|     mask |= mask >> 4 | ||||
|     mask |= mask >> 8 | ||||
|     mask |= mask >> 16 | ||||
|  | ||||
|     val = rng.next_uint32(rng.state) & mask | ||||
|     while val > delta: | ||||
|         val = rng.next_uint32(rng.state) & mask | ||||
|  | ||||
|     return lb + val | ||||
|  | ||||
|  | ||||
| @cython.boundscheck(False) | ||||
| @cython.wraparound(False) | ||||
| def bounded_uints(uint32_t lb, uint32_t ub, Py_ssize_t n): | ||||
|     cdef Py_ssize_t i | ||||
|     cdef bitgen_t *rng | ||||
|     cdef uint32_t[::1] out | ||||
|     cdef const char *capsule_name = "BitGenerator" | ||||
|  | ||||
|     x = PCG64() | ||||
|     out = np.empty(n, dtype=np.uint32) | ||||
|     capsule = x.capsule | ||||
|  | ||||
|     if not PyCapsule_IsValid(capsule, capsule_name): | ||||
|         raise ValueError("Invalid pointer to anon_func_state") | ||||
|     rng = <bitgen_t *>PyCapsule_GetPointer(capsule, capsule_name) | ||||
|  | ||||
|     with x.lock, nogil: | ||||
|         for i in range(n): | ||||
|             out[i] = bounded_uint(lb, ub, rng) | ||||
|     return np.asarray(out) | ||||
| @ -0,0 +1,118 @@ | ||||
| #cython: language_level=3 | ||||
| """ | ||||
| This file shows how the to use a BitGenerator to create a distribution. | ||||
| """ | ||||
| import numpy as np | ||||
| cimport numpy as np | ||||
| cimport cython | ||||
| from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer | ||||
| from libc.stdint cimport uint16_t, uint64_t | ||||
| from numpy.random cimport bitgen_t | ||||
| from numpy.random import PCG64 | ||||
| from numpy.random.c_distributions cimport ( | ||||
|       random_standard_uniform_fill, random_standard_uniform_fill_f) | ||||
|  | ||||
| np.import_array() | ||||
|  | ||||
|  | ||||
| @cython.boundscheck(False) | ||||
| @cython.wraparound(False) | ||||
| def uniforms(Py_ssize_t n): | ||||
|     """ | ||||
|     Create an array of `n` uniformly distributed doubles. | ||||
|     A 'real' distribution would want to process the values into | ||||
|     some non-uniform distribution | ||||
|     """ | ||||
|     cdef Py_ssize_t i | ||||
|     cdef bitgen_t *rng | ||||
|     cdef const char *capsule_name = "BitGenerator" | ||||
|     cdef double[::1] random_values | ||||
|  | ||||
|     x = PCG64() | ||||
|     capsule = x.capsule | ||||
|     # Optional check that the capsule if from a BitGenerator | ||||
|     if not PyCapsule_IsValid(capsule, capsule_name): | ||||
|         raise ValueError("Invalid pointer to anon_func_state") | ||||
|     # Cast the pointer | ||||
|     rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) | ||||
|     random_values = np.empty(n, dtype='float64') | ||||
|     with x.lock, nogil: | ||||
|         for i in range(n): | ||||
|             # Call the function | ||||
|             random_values[i] = rng.next_double(rng.state) | ||||
|     randoms = np.asarray(random_values) | ||||
|  | ||||
|     return randoms | ||||
|  | ||||
| # cython example 2 | ||||
| @cython.boundscheck(False) | ||||
| @cython.wraparound(False) | ||||
| def uint10_uniforms(Py_ssize_t n): | ||||
|     """Uniform 10 bit integers stored as 16-bit unsigned integers""" | ||||
|     cdef Py_ssize_t i | ||||
|     cdef bitgen_t *rng | ||||
|     cdef const char *capsule_name = "BitGenerator" | ||||
|     cdef uint16_t[::1] random_values | ||||
|     cdef int bits_remaining | ||||
|     cdef int width = 10 | ||||
|     cdef uint64_t buff, mask = 0x3FF | ||||
|  | ||||
|     x = PCG64() | ||||
|     capsule = x.capsule | ||||
|     if not PyCapsule_IsValid(capsule, capsule_name): | ||||
|         raise ValueError("Invalid pointer to anon_func_state") | ||||
|     rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) | ||||
|     random_values = np.empty(n, dtype='uint16') | ||||
|     # Best practice is to release GIL and acquire the lock | ||||
|     bits_remaining = 0 | ||||
|     with x.lock, nogil: | ||||
|         for i in range(n): | ||||
|             if bits_remaining < width: | ||||
|                 buff = rng.next_uint64(rng.state) | ||||
|             random_values[i] = buff & mask | ||||
|             buff >>= width | ||||
|  | ||||
|     randoms = np.asarray(random_values) | ||||
|     return randoms | ||||
|  | ||||
| # cython example 3 | ||||
| def uniforms_ex(bit_generator, Py_ssize_t n, dtype=np.float64): | ||||
|     """ | ||||
|     Create an array of `n` uniformly distributed doubles via a "fill" function. | ||||
|  | ||||
|     A 'real' distribution would want to process the values into | ||||
|     some non-uniform distribution | ||||
|  | ||||
|     Parameters | ||||
|     ---------- | ||||
|     bit_generator: BitGenerator instance | ||||
|     n: int | ||||
|         Output vector length | ||||
|     dtype: {str, dtype}, optional | ||||
|         Desired dtype, either 'd' (or 'float64') or 'f' (or 'float32'). The | ||||
|         default dtype value is 'd' | ||||
|     """ | ||||
|     cdef Py_ssize_t i | ||||
|     cdef bitgen_t *rng | ||||
|     cdef const char *capsule_name = "BitGenerator" | ||||
|     cdef np.ndarray randoms | ||||
|  | ||||
|     capsule = bit_generator.capsule | ||||
|     # Optional check that the capsule if from a BitGenerator | ||||
|     if not PyCapsule_IsValid(capsule, capsule_name): | ||||
|         raise ValueError("Invalid pointer to anon_func_state") | ||||
|     # Cast the pointer | ||||
|     rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name) | ||||
|  | ||||
|     _dtype = np.dtype(dtype) | ||||
|     randoms = np.empty(n, dtype=_dtype) | ||||
|     if _dtype == np.float32: | ||||
|         with bit_generator.lock: | ||||
|             random_standard_uniform_fill_f(rng, n, <float*>np.PyArray_DATA(randoms)) | ||||
|     elif _dtype == np.float64: | ||||
|         with bit_generator.lock: | ||||
|             random_standard_uniform_fill(rng, n, <double*>np.PyArray_DATA(randoms)) | ||||
|     else: | ||||
|         raise TypeError('Unsupported dtype %r for random' % _dtype) | ||||
|     return randoms | ||||
|  | ||||
| @ -0,0 +1,53 @@ | ||||
| project('random-build-examples', 'c', 'cpp', 'cython') | ||||
|  | ||||
| py_mod = import('python') | ||||
| py3 = py_mod.find_installation(pure: false) | ||||
|  | ||||
| cc = meson.get_compiler('c') | ||||
| cy = meson.get_compiler('cython') | ||||
|  | ||||
| # Keep synced with pyproject.toml | ||||
| if not cy.version().version_compare('>=3.0.6') | ||||
|   error('tests requires Cython >= 3.0.6') | ||||
| endif | ||||
|  | ||||
| base_cython_args = [] | ||||
| if cy.version().version_compare('>=3.1.0') | ||||
|   base_cython_args += ['-Xfreethreading_compatible=True'] | ||||
| endif | ||||
|  | ||||
| _numpy_abs = run_command(py3, ['-c', | ||||
|                'import os; os.chdir(".."); import numpy; print(os.path.abspath(numpy.get_include() + "../../.."))'], | ||||
|                          check: true).stdout().strip() | ||||
|  | ||||
| npymath_path = _numpy_abs / '_core' / 'lib' | ||||
| npy_include_path = _numpy_abs / '_core' / 'include' | ||||
| npyrandom_path = _numpy_abs / 'random' / 'lib' | ||||
| npymath_lib = cc.find_library('npymath', dirs: npymath_path) | ||||
| npyrandom_lib = cc.find_library('npyrandom', dirs: npyrandom_path) | ||||
|  | ||||
| py3.extension_module( | ||||
|     'extending_distributions', | ||||
|     'extending_distributions.pyx', | ||||
|     install: false, | ||||
|     include_directories: [npy_include_path], | ||||
|     dependencies: [npyrandom_lib, npymath_lib], | ||||
|     cython_args: base_cython_args, | ||||
| ) | ||||
| py3.extension_module( | ||||
|     'extending', | ||||
|     'extending.pyx', | ||||
|     install: false, | ||||
|     include_directories: [npy_include_path], | ||||
|     dependencies: [npyrandom_lib, npymath_lib], | ||||
|     cython_args: base_cython_args, | ||||
| ) | ||||
| py3.extension_module( | ||||
|     'extending_cpp', | ||||
|     'extending_distributions.pyx', | ||||
|     install: false, | ||||
|     override_options : ['cython_language=cpp'], | ||||
|     cython_args: base_cython_args + ['--module-name', 'extending_cpp'], | ||||
|     include_directories: [npy_include_path], | ||||
|     dependencies: [npyrandom_lib, npymath_lib], | ||||
| ) | ||||
		Reference in New Issue
	
	Block a user