done
This commit is contained in:
		
							
								
								
									
										187
									
								
								lib/python3.11/site-packages/numpy/polynomial/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										187
									
								
								lib/python3.11/site-packages/numpy/polynomial/__init__.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,187 @@
 | 
			
		||||
"""
 | 
			
		||||
A sub-package for efficiently dealing with polynomials.
 | 
			
		||||
 | 
			
		||||
Within the documentation for this sub-package, a "finite power series,"
 | 
			
		||||
i.e., a polynomial (also referred to simply as a "series") is represented
 | 
			
		||||
by a 1-D numpy array of the polynomial's coefficients, ordered from lowest
 | 
			
		||||
order term to highest.  For example, array([1,2,3]) represents
 | 
			
		||||
``P_0 + 2*P_1 + 3*P_2``, where P_n is the n-th order basis polynomial
 | 
			
		||||
applicable to the specific module in question, e.g., `polynomial` (which
 | 
			
		||||
"wraps" the "standard" basis) or `chebyshev`.  For optimal performance,
 | 
			
		||||
all operations on polynomials, including evaluation at an argument, are
 | 
			
		||||
implemented as operations on the coefficients.  Additional (module-specific)
 | 
			
		||||
information can be found in the docstring for the module of interest.
 | 
			
		||||
 | 
			
		||||
This package provides *convenience classes* for each of six different kinds
 | 
			
		||||
of polynomials:
 | 
			
		||||
 | 
			
		||||
========================    ================
 | 
			
		||||
**Name**                    **Provides**
 | 
			
		||||
========================    ================
 | 
			
		||||
`~polynomial.Polynomial`    Power series
 | 
			
		||||
`~chebyshev.Chebyshev`      Chebyshev series
 | 
			
		||||
`~legendre.Legendre`        Legendre series
 | 
			
		||||
`~laguerre.Laguerre`        Laguerre series
 | 
			
		||||
`~hermite.Hermite`          Hermite series
 | 
			
		||||
`~hermite_e.HermiteE`       HermiteE series
 | 
			
		||||
========================    ================
 | 
			
		||||
 | 
			
		||||
These *convenience classes* provide a consistent interface for creating,
 | 
			
		||||
manipulating, and fitting data with polynomials of different bases.
 | 
			
		||||
The convenience classes are the preferred interface for the `~numpy.polynomial`
 | 
			
		||||
package, and are available from the ``numpy.polynomial`` namespace.
 | 
			
		||||
This eliminates the need to navigate to the corresponding submodules, e.g.
 | 
			
		||||
``np.polynomial.Polynomial`` or ``np.polynomial.Chebyshev`` instead of
 | 
			
		||||
``np.polynomial.polynomial.Polynomial`` or
 | 
			
		||||
``np.polynomial.chebyshev.Chebyshev``, respectively.
 | 
			
		||||
The classes provide a more consistent and concise interface than the
 | 
			
		||||
type-specific functions defined in the submodules for each type of polynomial.
 | 
			
		||||
For example, to fit a Chebyshev polynomial with degree ``1`` to data given
 | 
			
		||||
by arrays ``xdata`` and ``ydata``, the
 | 
			
		||||
`~chebyshev.Chebyshev.fit` class method::
 | 
			
		||||
 | 
			
		||||
    >>> from numpy.polynomial import Chebyshev
 | 
			
		||||
    >>> xdata = [1, 2, 3, 4]
 | 
			
		||||
    >>> ydata = [1, 4, 9, 16]
 | 
			
		||||
    >>> c = Chebyshev.fit(xdata, ydata, deg=1)
 | 
			
		||||
 | 
			
		||||
is preferred over the `chebyshev.chebfit` function from the
 | 
			
		||||
``np.polynomial.chebyshev`` module::
 | 
			
		||||
 | 
			
		||||
    >>> from numpy.polynomial.chebyshev import chebfit
 | 
			
		||||
    >>> c = chebfit(xdata, ydata, deg=1)
 | 
			
		||||
 | 
			
		||||
See :doc:`routines.polynomials.classes` for more details.
 | 
			
		||||
 | 
			
		||||
Convenience Classes
 | 
			
		||||
===================
 | 
			
		||||
 | 
			
		||||
The following lists the various constants and methods common to all of
 | 
			
		||||
the classes representing the various kinds of polynomials. In the following,
 | 
			
		||||
the term ``Poly`` represents any one of the convenience classes (e.g.
 | 
			
		||||
`~polynomial.Polynomial`, `~chebyshev.Chebyshev`, `~hermite.Hermite`, etc.)
 | 
			
		||||
while the lowercase ``p`` represents an **instance** of a polynomial class.
 | 
			
		||||
 | 
			
		||||
Constants
 | 
			
		||||
---------
 | 
			
		||||
 | 
			
		||||
- ``Poly.domain``     -- Default domain
 | 
			
		||||
- ``Poly.window``     -- Default window
 | 
			
		||||
- ``Poly.basis_name`` -- String used to represent the basis
 | 
			
		||||
- ``Poly.maxpower``   -- Maximum value ``n`` such that ``p**n`` is allowed
 | 
			
		||||
 | 
			
		||||
Creation
 | 
			
		||||
--------
 | 
			
		||||
 | 
			
		||||
Methods for creating polynomial instances.
 | 
			
		||||
 | 
			
		||||
- ``Poly.basis(degree)``    -- Basis polynomial of given degree
 | 
			
		||||
- ``Poly.identity()``       -- ``p`` where ``p(x) = x`` for all ``x``
 | 
			
		||||
- ``Poly.fit(x, y, deg)``   -- ``p`` of degree ``deg`` with coefficients
 | 
			
		||||
  determined by the least-squares fit to the data ``x``, ``y``
 | 
			
		||||
- ``Poly.fromroots(roots)`` -- ``p`` with specified roots
 | 
			
		||||
- ``p.copy()``              -- Create a copy of ``p``
 | 
			
		||||
 | 
			
		||||
Conversion
 | 
			
		||||
----------
 | 
			
		||||
 | 
			
		||||
Methods for converting a polynomial instance of one kind to another.
 | 
			
		||||
 | 
			
		||||
- ``p.cast(Poly)``    -- Convert ``p`` to instance of kind ``Poly``
 | 
			
		||||
- ``p.convert(Poly)`` -- Convert ``p`` to instance of kind ``Poly`` or map
 | 
			
		||||
  between ``domain`` and ``window``
 | 
			
		||||
 | 
			
		||||
Calculus
 | 
			
		||||
--------
 | 
			
		||||
- ``p.deriv()`` -- Take the derivative of ``p``
 | 
			
		||||
- ``p.integ()`` -- Integrate ``p``
 | 
			
		||||
 | 
			
		||||
Validation
 | 
			
		||||
----------
 | 
			
		||||
- ``Poly.has_samecoef(p1, p2)``   -- Check if coefficients match
 | 
			
		||||
- ``Poly.has_samedomain(p1, p2)`` -- Check if domains match
 | 
			
		||||
- ``Poly.has_sametype(p1, p2)``   -- Check if types match
 | 
			
		||||
- ``Poly.has_samewindow(p1, p2)`` -- Check if windows match
 | 
			
		||||
 | 
			
		||||
Misc
 | 
			
		||||
----
 | 
			
		||||
- ``p.linspace()`` -- Return ``x, p(x)`` at equally-spaced points in ``domain``
 | 
			
		||||
- ``p.mapparms()`` -- Return the parameters for the linear mapping between
 | 
			
		||||
  ``domain`` and ``window``.
 | 
			
		||||
- ``p.roots()``    -- Return the roots of ``p``.
 | 
			
		||||
- ``p.trim()``     -- Remove trailing coefficients.
 | 
			
		||||
- ``p.cutdeg(degree)`` -- Truncate ``p`` to given degree
 | 
			
		||||
- ``p.truncate(size)`` -- Truncate ``p`` to given size
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
from .chebyshev import Chebyshev
 | 
			
		||||
from .hermite import Hermite
 | 
			
		||||
from .hermite_e import HermiteE
 | 
			
		||||
from .laguerre import Laguerre
 | 
			
		||||
from .legendre import Legendre
 | 
			
		||||
from .polynomial import Polynomial
 | 
			
		||||
 | 
			
		||||
__all__ = [  # noqa: F822
 | 
			
		||||
    "set_default_printstyle",
 | 
			
		||||
    "polynomial", "Polynomial",
 | 
			
		||||
    "chebyshev", "Chebyshev",
 | 
			
		||||
    "legendre", "Legendre",
 | 
			
		||||
    "hermite", "Hermite",
 | 
			
		||||
    "hermite_e", "HermiteE",
 | 
			
		||||
    "laguerre", "Laguerre",
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def set_default_printstyle(style):
 | 
			
		||||
    """
 | 
			
		||||
    Set the default format for the string representation of polynomials.
 | 
			
		||||
 | 
			
		||||
    Values for ``style`` must be valid inputs to ``__format__``, i.e. 'ascii'
 | 
			
		||||
    or 'unicode'.
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
    ----------
 | 
			
		||||
    style : str
 | 
			
		||||
        Format string for default printing style. Must be either 'ascii' or
 | 
			
		||||
        'unicode'.
 | 
			
		||||
 | 
			
		||||
    Notes
 | 
			
		||||
    -----
 | 
			
		||||
    The default format depends on the platform: 'unicode' is used on
 | 
			
		||||
    Unix-based systems and 'ascii' on Windows. This determination is based on
 | 
			
		||||
    default font support for the unicode superscript and subscript ranges.
 | 
			
		||||
 | 
			
		||||
    Examples
 | 
			
		||||
    --------
 | 
			
		||||
    >>> p = np.polynomial.Polynomial([1, 2, 3])
 | 
			
		||||
    >>> c = np.polynomial.Chebyshev([1, 2, 3])
 | 
			
		||||
    >>> np.polynomial.set_default_printstyle('unicode')
 | 
			
		||||
    >>> print(p)
 | 
			
		||||
    1.0 + 2.0·x + 3.0·x²
 | 
			
		||||
    >>> print(c)
 | 
			
		||||
    1.0 + 2.0·T₁(x) + 3.0·T₂(x)
 | 
			
		||||
    >>> np.polynomial.set_default_printstyle('ascii')
 | 
			
		||||
    >>> print(p)
 | 
			
		||||
    1.0 + 2.0 x + 3.0 x**2
 | 
			
		||||
    >>> print(c)
 | 
			
		||||
    1.0 + 2.0 T_1(x) + 3.0 T_2(x)
 | 
			
		||||
    >>> # Formatting supersedes all class/package-level defaults
 | 
			
		||||
    >>> print(f"{p:unicode}")
 | 
			
		||||
    1.0 + 2.0·x + 3.0·x²
 | 
			
		||||
    """
 | 
			
		||||
    if style not in ('unicode', 'ascii'):
 | 
			
		||||
        raise ValueError(
 | 
			
		||||
            f"Unsupported format string '{style}'. Valid options are 'ascii' "
 | 
			
		||||
            f"and 'unicode'"
 | 
			
		||||
        )
 | 
			
		||||
    _use_unicode = True
 | 
			
		||||
    if style == 'ascii':
 | 
			
		||||
        _use_unicode = False
 | 
			
		||||
    from ._polybase import ABCPolyBase
 | 
			
		||||
    ABCPolyBase._use_unicode = _use_unicode
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
from numpy._pytesttester import PytestTester
 | 
			
		||||
 | 
			
		||||
test = PytestTester(__name__)
 | 
			
		||||
del PytestTester
 | 
			
		||||
		Reference in New Issue
	
	Block a user