done
This commit is contained in:
		
							
								
								
									
										773
									
								
								lib/python3.11/site-packages/numpy/ma/mrecords.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										773
									
								
								lib/python3.11/site-packages/numpy/ma/mrecords.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,773 @@
 | 
			
		||||
""":mod:`numpy.ma..mrecords`
 | 
			
		||||
 | 
			
		||||
Defines the equivalent of :class:`numpy.recarrays` for masked arrays,
 | 
			
		||||
where fields can be accessed as attributes.
 | 
			
		||||
Note that :class:`numpy.ma.MaskedArray` already supports structured datatypes
 | 
			
		||||
and the masking of individual fields.
 | 
			
		||||
 | 
			
		||||
.. moduleauthor:: Pierre Gerard-Marchant
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
#  We should make sure that no field is called '_mask','mask','_fieldmask',
 | 
			
		||||
#  or whatever restricted keywords.  An idea would be to no bother in the
 | 
			
		||||
#  first place, and then rename the invalid fields with a trailing
 | 
			
		||||
#  underscore. Maybe we could just overload the parser function ?
 | 
			
		||||
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import numpy.ma as ma
 | 
			
		||||
 | 
			
		||||
_byteorderconv = np._core.records._byteorderconv
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
_check_fill_value = ma.core._check_fill_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
__all__ = [
 | 
			
		||||
    'MaskedRecords', 'mrecarray', 'fromarrays', 'fromrecords',
 | 
			
		||||
    'fromtextfile', 'addfield',
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
reserved_fields = ['_data', '_mask', '_fieldmask', 'dtype']
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _checknames(descr, names=None):
 | 
			
		||||
    """
 | 
			
		||||
    Checks that field names ``descr`` are not reserved keywords.
 | 
			
		||||
 | 
			
		||||
    If this is the case, a default 'f%i' is substituted.  If the argument
 | 
			
		||||
    `names` is not None, updates the field names to valid names.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    ndescr = len(descr)
 | 
			
		||||
    default_names = [f'f{i}' for i in range(ndescr)]
 | 
			
		||||
    if names is None:
 | 
			
		||||
        new_names = default_names
 | 
			
		||||
    else:
 | 
			
		||||
        if isinstance(names, (tuple, list)):
 | 
			
		||||
            new_names = names
 | 
			
		||||
        elif isinstance(names, str):
 | 
			
		||||
            new_names = names.split(',')
 | 
			
		||||
        else:
 | 
			
		||||
            raise NameError(f'illegal input names {names!r}')
 | 
			
		||||
        nnames = len(new_names)
 | 
			
		||||
        if nnames < ndescr:
 | 
			
		||||
            new_names += default_names[nnames:]
 | 
			
		||||
    ndescr = []
 | 
			
		||||
    for (n, d, t) in zip(new_names, default_names, descr.descr):
 | 
			
		||||
        if n in reserved_fields:
 | 
			
		||||
            if t[0] in reserved_fields:
 | 
			
		||||
                ndescr.append((d, t[1]))
 | 
			
		||||
            else:
 | 
			
		||||
                ndescr.append(t)
 | 
			
		||||
        else:
 | 
			
		||||
            ndescr.append((n, t[1]))
 | 
			
		||||
    return np.dtype(ndescr)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _get_fieldmask(self):
 | 
			
		||||
    mdescr = [(n, '|b1') for n in self.dtype.names]
 | 
			
		||||
    fdmask = np.empty(self.shape, dtype=mdescr)
 | 
			
		||||
    fdmask.flat = tuple([False] * len(mdescr))
 | 
			
		||||
    return fdmask
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class MaskedRecords(ma.MaskedArray):
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    Attributes
 | 
			
		||||
    ----------
 | 
			
		||||
    _data : recarray
 | 
			
		||||
        Underlying data, as a record array.
 | 
			
		||||
    _mask : boolean array
 | 
			
		||||
        Mask of the records. A record is masked when all its fields are
 | 
			
		||||
        masked.
 | 
			
		||||
    _fieldmask : boolean recarray
 | 
			
		||||
        Record array of booleans, setting the mask of each individual field
 | 
			
		||||
        of each record.
 | 
			
		||||
    _fill_value : record
 | 
			
		||||
        Filling values for each field.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __new__(cls, shape, dtype=None, buf=None, offset=0, strides=None,
 | 
			
		||||
                formats=None, names=None, titles=None,
 | 
			
		||||
                byteorder=None, aligned=False,
 | 
			
		||||
                mask=ma.nomask, hard_mask=False, fill_value=None, keep_mask=True,
 | 
			
		||||
                copy=False,
 | 
			
		||||
                **options):
 | 
			
		||||
 | 
			
		||||
        self = np.recarray.__new__(cls, shape, dtype=dtype, buf=buf, offset=offset,
 | 
			
		||||
                                   strides=strides, formats=formats, names=names,
 | 
			
		||||
                                   titles=titles, byteorder=byteorder,
 | 
			
		||||
                                   aligned=aligned,)
 | 
			
		||||
 | 
			
		||||
        mdtype = ma.make_mask_descr(self.dtype)
 | 
			
		||||
        if mask is ma.nomask or not np.size(mask):
 | 
			
		||||
            if not keep_mask:
 | 
			
		||||
                self._mask = tuple([False] * len(mdtype))
 | 
			
		||||
        else:
 | 
			
		||||
            mask = np.array(mask, copy=copy)
 | 
			
		||||
            if mask.shape != self.shape:
 | 
			
		||||
                (nd, nm) = (self.size, mask.size)
 | 
			
		||||
                if nm == 1:
 | 
			
		||||
                    mask = np.resize(mask, self.shape)
 | 
			
		||||
                elif nm == nd:
 | 
			
		||||
                    mask = np.reshape(mask, self.shape)
 | 
			
		||||
                else:
 | 
			
		||||
                    msg = (f"Mask and data not compatible: data size is {nd},"
 | 
			
		||||
                           " mask size is {nm}.")
 | 
			
		||||
                    raise ma.MAError(msg)
 | 
			
		||||
            if not keep_mask:
 | 
			
		||||
                self.__setmask__(mask)
 | 
			
		||||
                self._sharedmask = True
 | 
			
		||||
            else:
 | 
			
		||||
                if mask.dtype == mdtype:
 | 
			
		||||
                    _mask = mask
 | 
			
		||||
                else:
 | 
			
		||||
                    _mask = np.array([tuple([m] * len(mdtype)) for m in mask],
 | 
			
		||||
                                     dtype=mdtype)
 | 
			
		||||
                self._mask = _mask
 | 
			
		||||
        return self
 | 
			
		||||
 | 
			
		||||
    def __array_finalize__(self, obj):
 | 
			
		||||
        # Make sure we have a _fieldmask by default
 | 
			
		||||
        _mask = getattr(obj, '_mask', None)
 | 
			
		||||
        if _mask is None:
 | 
			
		||||
            objmask = getattr(obj, '_mask', ma.nomask)
 | 
			
		||||
            _dtype = np.ndarray.__getattribute__(self, 'dtype')
 | 
			
		||||
            if objmask is ma.nomask:
 | 
			
		||||
                _mask = ma.make_mask_none(self.shape, dtype=_dtype)
 | 
			
		||||
            else:
 | 
			
		||||
                mdescr = ma.make_mask_descr(_dtype)
 | 
			
		||||
                _mask = np.array([tuple([m] * len(mdescr)) for m in objmask],
 | 
			
		||||
                               dtype=mdescr).view(np.recarray)
 | 
			
		||||
        # Update some of the attributes
 | 
			
		||||
        _dict = self.__dict__
 | 
			
		||||
        _dict.update(_mask=_mask)
 | 
			
		||||
        self._update_from(obj)
 | 
			
		||||
        if _dict['_baseclass'] == np.ndarray:
 | 
			
		||||
            _dict['_baseclass'] = np.recarray
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def _data(self):
 | 
			
		||||
        """
 | 
			
		||||
        Returns the data as a recarray.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        return np.ndarray.view(self, np.recarray)
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def _fieldmask(self):
 | 
			
		||||
        """
 | 
			
		||||
        Alias to mask.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        return self._mask
 | 
			
		||||
 | 
			
		||||
    def __len__(self):
 | 
			
		||||
        """
 | 
			
		||||
        Returns the length
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        # We have more than one record
 | 
			
		||||
        if self.ndim:
 | 
			
		||||
            return len(self._data)
 | 
			
		||||
        # We have only one record: return the nb of fields
 | 
			
		||||
        return len(self.dtype)
 | 
			
		||||
 | 
			
		||||
    def __getattribute__(self, attr):
 | 
			
		||||
        try:
 | 
			
		||||
            return object.__getattribute__(self, attr)
 | 
			
		||||
        except AttributeError:
 | 
			
		||||
            # attr must be a fieldname
 | 
			
		||||
            pass
 | 
			
		||||
        fielddict = np.ndarray.__getattribute__(self, 'dtype').fields
 | 
			
		||||
        try:
 | 
			
		||||
            res = fielddict[attr][:2]
 | 
			
		||||
        except (TypeError, KeyError) as e:
 | 
			
		||||
            raise AttributeError(
 | 
			
		||||
                f'record array has no attribute {attr}') from e
 | 
			
		||||
        # So far, so good
 | 
			
		||||
        _localdict = np.ndarray.__getattribute__(self, '__dict__')
 | 
			
		||||
        _data = np.ndarray.view(self, _localdict['_baseclass'])
 | 
			
		||||
        obj = _data.getfield(*res)
 | 
			
		||||
        if obj.dtype.names is not None:
 | 
			
		||||
            raise NotImplementedError("MaskedRecords is currently limited to"
 | 
			
		||||
                                      "simple records.")
 | 
			
		||||
        # Get some special attributes
 | 
			
		||||
        # Reset the object's mask
 | 
			
		||||
        hasmasked = False
 | 
			
		||||
        _mask = _localdict.get('_mask', None)
 | 
			
		||||
        if _mask is not None:
 | 
			
		||||
            try:
 | 
			
		||||
                _mask = _mask[attr]
 | 
			
		||||
            except IndexError:
 | 
			
		||||
                # Couldn't find a mask: use the default (nomask)
 | 
			
		||||
                pass
 | 
			
		||||
            tp_len = len(_mask.dtype)
 | 
			
		||||
            hasmasked = _mask.view((bool, ((tp_len,) if tp_len else ()))).any()
 | 
			
		||||
        if (obj.shape or hasmasked):
 | 
			
		||||
            obj = obj.view(ma.MaskedArray)
 | 
			
		||||
            obj._baseclass = np.ndarray
 | 
			
		||||
            obj._isfield = True
 | 
			
		||||
            obj._mask = _mask
 | 
			
		||||
            # Reset the field values
 | 
			
		||||
            _fill_value = _localdict.get('_fill_value', None)
 | 
			
		||||
            if _fill_value is not None:
 | 
			
		||||
                try:
 | 
			
		||||
                    obj._fill_value = _fill_value[attr]
 | 
			
		||||
                except ValueError:
 | 
			
		||||
                    obj._fill_value = None
 | 
			
		||||
        else:
 | 
			
		||||
            obj = obj.item()
 | 
			
		||||
        return obj
 | 
			
		||||
 | 
			
		||||
    def __setattr__(self, attr, val):
 | 
			
		||||
        """
 | 
			
		||||
        Sets the attribute attr to the value val.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        # Should we call __setmask__ first ?
 | 
			
		||||
        if attr in ['mask', 'fieldmask']:
 | 
			
		||||
            self.__setmask__(val)
 | 
			
		||||
            return
 | 
			
		||||
        # Create a shortcut (so that we don't have to call getattr all the time)
 | 
			
		||||
        _localdict = object.__getattribute__(self, '__dict__')
 | 
			
		||||
        # Check whether we're creating a new field
 | 
			
		||||
        newattr = attr not in _localdict
 | 
			
		||||
        try:
 | 
			
		||||
            # Is attr a generic attribute ?
 | 
			
		||||
            ret = object.__setattr__(self, attr, val)
 | 
			
		||||
        except Exception:
 | 
			
		||||
            # Not a generic attribute: exit if it's not a valid field
 | 
			
		||||
            fielddict = np.ndarray.__getattribute__(self, 'dtype').fields or {}
 | 
			
		||||
            optinfo = np.ndarray.__getattribute__(self, '_optinfo') or {}
 | 
			
		||||
            if not (attr in fielddict or attr in optinfo):
 | 
			
		||||
                raise
 | 
			
		||||
        else:
 | 
			
		||||
            # Get the list of names
 | 
			
		||||
            fielddict = np.ndarray.__getattribute__(self, 'dtype').fields or {}
 | 
			
		||||
            # Check the attribute
 | 
			
		||||
            if attr not in fielddict:
 | 
			
		||||
                return ret
 | 
			
		||||
            if newattr:
 | 
			
		||||
                # We just added this one or this setattr worked on an
 | 
			
		||||
                # internal attribute.
 | 
			
		||||
                try:
 | 
			
		||||
                    object.__delattr__(self, attr)
 | 
			
		||||
                except Exception:
 | 
			
		||||
                    return ret
 | 
			
		||||
        # Let's try to set the field
 | 
			
		||||
        try:
 | 
			
		||||
            res = fielddict[attr][:2]
 | 
			
		||||
        except (TypeError, KeyError) as e:
 | 
			
		||||
            raise AttributeError(
 | 
			
		||||
                f'record array has no attribute {attr}') from e
 | 
			
		||||
 | 
			
		||||
        if val is ma.masked:
 | 
			
		||||
            _fill_value = _localdict['_fill_value']
 | 
			
		||||
            if _fill_value is not None:
 | 
			
		||||
                dval = _localdict['_fill_value'][attr]
 | 
			
		||||
            else:
 | 
			
		||||
                dval = val
 | 
			
		||||
            mval = True
 | 
			
		||||
        else:
 | 
			
		||||
            dval = ma.filled(val)
 | 
			
		||||
            mval = ma.getmaskarray(val)
 | 
			
		||||
        obj = np.ndarray.__getattribute__(self, '_data').setfield(dval, *res)
 | 
			
		||||
        _localdict['_mask'].__setitem__(attr, mval)
 | 
			
		||||
        return obj
 | 
			
		||||
 | 
			
		||||
    def __getitem__(self, indx):
 | 
			
		||||
        """
 | 
			
		||||
        Returns all the fields sharing the same fieldname base.
 | 
			
		||||
 | 
			
		||||
        The fieldname base is either `_data` or `_mask`.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        _localdict = self.__dict__
 | 
			
		||||
        _mask = np.ndarray.__getattribute__(self, '_mask')
 | 
			
		||||
        _data = np.ndarray.view(self, _localdict['_baseclass'])
 | 
			
		||||
        # We want a field
 | 
			
		||||
        if isinstance(indx, str):
 | 
			
		||||
            # Make sure _sharedmask is True to propagate back to _fieldmask
 | 
			
		||||
            # Don't use _set_mask, there are some copies being made that
 | 
			
		||||
            # break propagation Don't force the mask to nomask, that wreaks
 | 
			
		||||
            # easy masking
 | 
			
		||||
            obj = _data[indx].view(ma.MaskedArray)
 | 
			
		||||
            obj._mask = _mask[indx]
 | 
			
		||||
            obj._sharedmask = True
 | 
			
		||||
            fval = _localdict['_fill_value']
 | 
			
		||||
            if fval is not None:
 | 
			
		||||
                obj._fill_value = fval[indx]
 | 
			
		||||
            # Force to masked if the mask is True
 | 
			
		||||
            if not obj.ndim and obj._mask:
 | 
			
		||||
                return ma.masked
 | 
			
		||||
            return obj
 | 
			
		||||
        # We want some elements.
 | 
			
		||||
        # First, the data.
 | 
			
		||||
        obj = np.asarray(_data[indx]).view(mrecarray)
 | 
			
		||||
        obj._mask = np.asarray(_mask[indx]).view(np.recarray)
 | 
			
		||||
        return obj
 | 
			
		||||
 | 
			
		||||
    def __setitem__(self, indx, value):
 | 
			
		||||
        """
 | 
			
		||||
        Sets the given record to value.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        ma.MaskedArray.__setitem__(self, indx, value)
 | 
			
		||||
        if isinstance(indx, str):
 | 
			
		||||
            self._mask[indx] = ma.getmaskarray(value)
 | 
			
		||||
 | 
			
		||||
    def __str__(self):
 | 
			
		||||
        """
 | 
			
		||||
        Calculates the string representation.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        if self.size > 1:
 | 
			
		||||
            mstr = [f"({','.join([str(i) for i in s])})"
 | 
			
		||||
                    for s in zip(*[getattr(self, f) for f in self.dtype.names])]
 | 
			
		||||
            return f"[{', '.join(mstr)}]"
 | 
			
		||||
        else:
 | 
			
		||||
            mstr = [f"{','.join([str(i) for i in s])}"
 | 
			
		||||
                    for s in zip([getattr(self, f) for f in self.dtype.names])]
 | 
			
		||||
            return f"({', '.join(mstr)})"
 | 
			
		||||
 | 
			
		||||
    def __repr__(self):
 | 
			
		||||
        """
 | 
			
		||||
        Calculates the repr representation.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        _names = self.dtype.names
 | 
			
		||||
        fmt = f"%{max(len(n) for n in _names) + 4}s : %s"
 | 
			
		||||
        reprstr = [fmt % (f, getattr(self, f)) for f in self.dtype.names]
 | 
			
		||||
        reprstr.insert(0, 'masked_records(')
 | 
			
		||||
        reprstr.extend([fmt % ('    fill_value', self.fill_value),
 | 
			
		||||
                        '              )'])
 | 
			
		||||
        return str("\n".join(reprstr))
 | 
			
		||||
 | 
			
		||||
    def view(self, dtype=None, type=None):
 | 
			
		||||
        """
 | 
			
		||||
        Returns a view of the mrecarray.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        # OK, basic copy-paste from MaskedArray.view.
 | 
			
		||||
        if dtype is None:
 | 
			
		||||
            if type is None:
 | 
			
		||||
                output = np.ndarray.view(self)
 | 
			
		||||
            else:
 | 
			
		||||
                output = np.ndarray.view(self, type)
 | 
			
		||||
        # Here again.
 | 
			
		||||
        elif type is None:
 | 
			
		||||
            try:
 | 
			
		||||
                if issubclass(dtype, np.ndarray):
 | 
			
		||||
                    output = np.ndarray.view(self, dtype)
 | 
			
		||||
                else:
 | 
			
		||||
                    output = np.ndarray.view(self, dtype)
 | 
			
		||||
            # OK, there's the change
 | 
			
		||||
            except TypeError:
 | 
			
		||||
                dtype = np.dtype(dtype)
 | 
			
		||||
                # we need to revert to MaskedArray, but keeping the possibility
 | 
			
		||||
                # of subclasses (eg, TimeSeriesRecords), so we'll force a type
 | 
			
		||||
                # set to the first parent
 | 
			
		||||
                if dtype.fields is None:
 | 
			
		||||
                    basetype = self.__class__.__bases__[0]
 | 
			
		||||
                    output = self.__array__().view(dtype, basetype)
 | 
			
		||||
                    output._update_from(self)
 | 
			
		||||
                else:
 | 
			
		||||
                    output = np.ndarray.view(self, dtype)
 | 
			
		||||
                output._fill_value = None
 | 
			
		||||
        else:
 | 
			
		||||
            output = np.ndarray.view(self, dtype, type)
 | 
			
		||||
        # Update the mask, just like in MaskedArray.view
 | 
			
		||||
        if (getattr(output, '_mask', ma.nomask) is not ma.nomask):
 | 
			
		||||
            mdtype = ma.make_mask_descr(output.dtype)
 | 
			
		||||
            output._mask = self._mask.view(mdtype, np.ndarray)
 | 
			
		||||
            output._mask.shape = output.shape
 | 
			
		||||
        return output
 | 
			
		||||
 | 
			
		||||
    def harden_mask(self):
 | 
			
		||||
        """
 | 
			
		||||
        Forces the mask to hard.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        self._hardmask = True
 | 
			
		||||
 | 
			
		||||
    def soften_mask(self):
 | 
			
		||||
        """
 | 
			
		||||
        Forces the mask to soft
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        self._hardmask = False
 | 
			
		||||
 | 
			
		||||
    def copy(self):
 | 
			
		||||
        """
 | 
			
		||||
        Returns a copy of the masked record.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        copied = self._data.copy().view(type(self))
 | 
			
		||||
        copied._mask = self._mask.copy()
 | 
			
		||||
        return copied
 | 
			
		||||
 | 
			
		||||
    def tolist(self, fill_value=None):
 | 
			
		||||
        """
 | 
			
		||||
        Return the data portion of the array as a list.
 | 
			
		||||
 | 
			
		||||
        Data items are converted to the nearest compatible Python type.
 | 
			
		||||
        Masked values are converted to fill_value. If fill_value is None,
 | 
			
		||||
        the corresponding entries in the output list will be ``None``.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        if fill_value is not None:
 | 
			
		||||
            return self.filled(fill_value).tolist()
 | 
			
		||||
        result = np.array(self.filled().tolist(), dtype=object)
 | 
			
		||||
        mask = np.array(self._mask.tolist())
 | 
			
		||||
        result[mask] = None
 | 
			
		||||
        return result.tolist()
 | 
			
		||||
 | 
			
		||||
    def __getstate__(self):
 | 
			
		||||
        """Return the internal state of the masked array.
 | 
			
		||||
 | 
			
		||||
        This is for pickling.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        state = (1,
 | 
			
		||||
                 self.shape,
 | 
			
		||||
                 self.dtype,
 | 
			
		||||
                 self.flags.fnc,
 | 
			
		||||
                 self._data.tobytes(),
 | 
			
		||||
                 self._mask.tobytes(),
 | 
			
		||||
                 self._fill_value,
 | 
			
		||||
                 )
 | 
			
		||||
        return state
 | 
			
		||||
 | 
			
		||||
    def __setstate__(self, state):
 | 
			
		||||
        """
 | 
			
		||||
        Restore the internal state of the masked array.
 | 
			
		||||
 | 
			
		||||
        This is for pickling.  ``state`` is typically the output of the
 | 
			
		||||
        ``__getstate__`` output, and is a 5-tuple:
 | 
			
		||||
 | 
			
		||||
        - class name
 | 
			
		||||
        - a tuple giving the shape of the data
 | 
			
		||||
        - a typecode for the data
 | 
			
		||||
        - a binary string for the data
 | 
			
		||||
        - a binary string for the mask.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        (ver, shp, typ, isf, raw, msk, flv) = state
 | 
			
		||||
        np.ndarray.__setstate__(self, (shp, typ, isf, raw))
 | 
			
		||||
        mdtype = np.dtype([(k, np.bool) for (k, _) in self.dtype.descr])
 | 
			
		||||
        self.__dict__['_mask'].__setstate__((shp, mdtype, isf, msk))
 | 
			
		||||
        self.fill_value = flv
 | 
			
		||||
 | 
			
		||||
    def __reduce__(self):
 | 
			
		||||
        """
 | 
			
		||||
        Return a 3-tuple for pickling a MaskedArray.
 | 
			
		||||
 | 
			
		||||
        """
 | 
			
		||||
        return (_mrreconstruct,
 | 
			
		||||
                (self.__class__, self._baseclass, (0,), 'b',),
 | 
			
		||||
                self.__getstate__())
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _mrreconstruct(subtype, baseclass, baseshape, basetype,):
 | 
			
		||||
    """
 | 
			
		||||
    Build a new MaskedArray from the information stored in a pickle.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    _data = np.ndarray.__new__(baseclass, baseshape, basetype).view(subtype)
 | 
			
		||||
    _mask = np.ndarray.__new__(np.ndarray, baseshape, 'b1')
 | 
			
		||||
    return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
mrecarray = MaskedRecords
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
###############################################################################
 | 
			
		||||
#                             Constructors                                    #
 | 
			
		||||
###############################################################################
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def fromarrays(arraylist, dtype=None, shape=None, formats=None,
 | 
			
		||||
               names=None, titles=None, aligned=False, byteorder=None,
 | 
			
		||||
               fill_value=None):
 | 
			
		||||
    """
 | 
			
		||||
    Creates a mrecarray from a (flat) list of masked arrays.
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
    ----------
 | 
			
		||||
    arraylist : sequence
 | 
			
		||||
        A list of (masked) arrays. Each element of the sequence is first converted
 | 
			
		||||
        to a masked array if needed. If a 2D array is passed as argument, it is
 | 
			
		||||
        processed line by line
 | 
			
		||||
    dtype : {None, dtype}, optional
 | 
			
		||||
        Data type descriptor.
 | 
			
		||||
    shape : {None, integer}, optional
 | 
			
		||||
        Number of records. If None, shape is defined from the shape of the
 | 
			
		||||
        first array in the list.
 | 
			
		||||
    formats : {None, sequence}, optional
 | 
			
		||||
        Sequence of formats for each individual field. If None, the formats will
 | 
			
		||||
        be autodetected by inspecting the fields and selecting the highest dtype
 | 
			
		||||
        possible.
 | 
			
		||||
    names : {None, sequence}, optional
 | 
			
		||||
        Sequence of the names of each field.
 | 
			
		||||
    fill_value : {None, sequence}, optional
 | 
			
		||||
        Sequence of data to be used as filling values.
 | 
			
		||||
 | 
			
		||||
    Notes
 | 
			
		||||
    -----
 | 
			
		||||
    Lists of tuples should be preferred over lists of lists for faster processing.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    datalist = [ma.getdata(x) for x in arraylist]
 | 
			
		||||
    masklist = [np.atleast_1d(ma.getmaskarray(x)) for x in arraylist]
 | 
			
		||||
    _array = np.rec.fromarrays(datalist,
 | 
			
		||||
                               dtype=dtype, shape=shape, formats=formats,
 | 
			
		||||
                               names=names, titles=titles, aligned=aligned,
 | 
			
		||||
                               byteorder=byteorder).view(mrecarray)
 | 
			
		||||
    _array._mask.flat = list(zip(*masklist))
 | 
			
		||||
    if fill_value is not None:
 | 
			
		||||
        _array.fill_value = fill_value
 | 
			
		||||
    return _array
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def fromrecords(reclist, dtype=None, shape=None, formats=None, names=None,
 | 
			
		||||
                titles=None, aligned=False, byteorder=None,
 | 
			
		||||
                fill_value=None, mask=ma.nomask):
 | 
			
		||||
    """
 | 
			
		||||
    Creates a MaskedRecords from a list of records.
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
    ----------
 | 
			
		||||
    reclist : sequence
 | 
			
		||||
        A list of records. Each element of the sequence is first converted
 | 
			
		||||
        to a masked array if needed. If a 2D array is passed as argument, it is
 | 
			
		||||
        processed line by line
 | 
			
		||||
    dtype : {None, dtype}, optional
 | 
			
		||||
        Data type descriptor.
 | 
			
		||||
    shape : {None,int}, optional
 | 
			
		||||
        Number of records. If None, ``shape`` is defined from the shape of the
 | 
			
		||||
        first array in the list.
 | 
			
		||||
    formats : {None, sequence}, optional
 | 
			
		||||
        Sequence of formats for each individual field. If None, the formats will
 | 
			
		||||
        be autodetected by inspecting the fields and selecting the highest dtype
 | 
			
		||||
        possible.
 | 
			
		||||
    names : {None, sequence}, optional
 | 
			
		||||
        Sequence of the names of each field.
 | 
			
		||||
    fill_value : {None, sequence}, optional
 | 
			
		||||
        Sequence of data to be used as filling values.
 | 
			
		||||
    mask : {nomask, sequence}, optional.
 | 
			
		||||
        External mask to apply on the data.
 | 
			
		||||
 | 
			
		||||
    Notes
 | 
			
		||||
    -----
 | 
			
		||||
    Lists of tuples should be preferred over lists of lists for faster processing.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    # Grab the initial _fieldmask, if needed:
 | 
			
		||||
    _mask = getattr(reclist, '_mask', None)
 | 
			
		||||
    # Get the list of records.
 | 
			
		||||
    if isinstance(reclist, np.ndarray):
 | 
			
		||||
        # Make sure we don't have some hidden mask
 | 
			
		||||
        if isinstance(reclist, ma.MaskedArray):
 | 
			
		||||
            reclist = reclist.filled().view(np.ndarray)
 | 
			
		||||
        # Grab the initial dtype, just in case
 | 
			
		||||
        if dtype is None:
 | 
			
		||||
            dtype = reclist.dtype
 | 
			
		||||
        reclist = reclist.tolist()
 | 
			
		||||
    mrec = np.rec.fromrecords(reclist, dtype=dtype, shape=shape, formats=formats,
 | 
			
		||||
                          names=names, titles=titles,
 | 
			
		||||
                          aligned=aligned, byteorder=byteorder).view(mrecarray)
 | 
			
		||||
    # Set the fill_value if needed
 | 
			
		||||
    if fill_value is not None:
 | 
			
		||||
        mrec.fill_value = fill_value
 | 
			
		||||
    # Now, let's deal w/ the mask
 | 
			
		||||
    if mask is not ma.nomask:
 | 
			
		||||
        mask = np.asarray(mask)
 | 
			
		||||
        maskrecordlength = len(mask.dtype)
 | 
			
		||||
        if maskrecordlength:
 | 
			
		||||
            mrec._mask.flat = mask
 | 
			
		||||
        elif mask.ndim == 2:
 | 
			
		||||
            mrec._mask.flat = [tuple(m) for m in mask]
 | 
			
		||||
        else:
 | 
			
		||||
            mrec.__setmask__(mask)
 | 
			
		||||
    if _mask is not None:
 | 
			
		||||
        mrec._mask[:] = _mask
 | 
			
		||||
    return mrec
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _guessvartypes(arr):
 | 
			
		||||
    """
 | 
			
		||||
    Tries to guess the dtypes of the str_ ndarray `arr`.
 | 
			
		||||
 | 
			
		||||
    Guesses by testing element-wise conversion. Returns a list of dtypes.
 | 
			
		||||
    The array is first converted to ndarray. If the array is 2D, the test
 | 
			
		||||
    is performed on the first line. An exception is raised if the file is
 | 
			
		||||
    3D or more.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    vartypes = []
 | 
			
		||||
    arr = np.asarray(arr)
 | 
			
		||||
    if arr.ndim == 2:
 | 
			
		||||
        arr = arr[0]
 | 
			
		||||
    elif arr.ndim > 2:
 | 
			
		||||
        raise ValueError("The array should be 2D at most!")
 | 
			
		||||
    # Start the conversion loop.
 | 
			
		||||
    for f in arr:
 | 
			
		||||
        try:
 | 
			
		||||
            int(f)
 | 
			
		||||
        except (ValueError, TypeError):
 | 
			
		||||
            try:
 | 
			
		||||
                float(f)
 | 
			
		||||
            except (ValueError, TypeError):
 | 
			
		||||
                try:
 | 
			
		||||
                    complex(f)
 | 
			
		||||
                except (ValueError, TypeError):
 | 
			
		||||
                    vartypes.append(arr.dtype)
 | 
			
		||||
                else:
 | 
			
		||||
                    vartypes.append(np.dtype(complex))
 | 
			
		||||
            else:
 | 
			
		||||
                vartypes.append(np.dtype(float))
 | 
			
		||||
        else:
 | 
			
		||||
            vartypes.append(np.dtype(int))
 | 
			
		||||
    return vartypes
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def openfile(fname):
 | 
			
		||||
    """
 | 
			
		||||
    Opens the file handle of file `fname`.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    # A file handle
 | 
			
		||||
    if hasattr(fname, 'readline'):
 | 
			
		||||
        return fname
 | 
			
		||||
    # Try to open the file and guess its type
 | 
			
		||||
    try:
 | 
			
		||||
        f = open(fname)
 | 
			
		||||
    except FileNotFoundError as e:
 | 
			
		||||
        raise FileNotFoundError(f"No such file: '{fname}'") from e
 | 
			
		||||
    if f.readline()[:2] != "\\x":
 | 
			
		||||
        f.seek(0, 0)
 | 
			
		||||
        return f
 | 
			
		||||
    f.close()
 | 
			
		||||
    raise NotImplementedError("Wow, binary file")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def fromtextfile(fname, delimiter=None, commentchar='#', missingchar='',
 | 
			
		||||
                 varnames=None, vartypes=None,
 | 
			
		||||
                 *, delimitor=np._NoValue):  # backwards compatibility
 | 
			
		||||
    """
 | 
			
		||||
    Creates a mrecarray from data stored in the file `filename`.
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
    ----------
 | 
			
		||||
    fname : {file name/handle}
 | 
			
		||||
        Handle of an opened file.
 | 
			
		||||
    delimiter : {None, string}, optional
 | 
			
		||||
        Alphanumeric character used to separate columns in the file.
 | 
			
		||||
        If None, any (group of) white spacestring(s) will be used.
 | 
			
		||||
    commentchar : {'#', string}, optional
 | 
			
		||||
        Alphanumeric character used to mark the start of a comment.
 | 
			
		||||
    missingchar : {'', string}, optional
 | 
			
		||||
        String indicating missing data, and used to create the masks.
 | 
			
		||||
    varnames : {None, sequence}, optional
 | 
			
		||||
        Sequence of the variable names. If None, a list will be created from
 | 
			
		||||
        the first non empty line of the file.
 | 
			
		||||
    vartypes : {None, sequence}, optional
 | 
			
		||||
        Sequence of the variables dtypes. If None, it will be estimated from
 | 
			
		||||
        the first non-commented line.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    Ultra simple: the varnames are in the header, one line"""
 | 
			
		||||
    if delimitor is not np._NoValue:
 | 
			
		||||
        if delimiter is not None:
 | 
			
		||||
            raise TypeError("fromtextfile() got multiple values for argument "
 | 
			
		||||
                            "'delimiter'")
 | 
			
		||||
        # NumPy 1.22.0, 2021-09-23
 | 
			
		||||
        warnings.warn("The 'delimitor' keyword argument of "
 | 
			
		||||
                      "numpy.ma.mrecords.fromtextfile() is deprecated "
 | 
			
		||||
                      "since NumPy 1.22.0, use 'delimiter' instead.",
 | 
			
		||||
                      DeprecationWarning, stacklevel=2)
 | 
			
		||||
        delimiter = delimitor
 | 
			
		||||
 | 
			
		||||
    # Try to open the file.
 | 
			
		||||
    ftext = openfile(fname)
 | 
			
		||||
 | 
			
		||||
    # Get the first non-empty line as the varnames
 | 
			
		||||
    while True:
 | 
			
		||||
        line = ftext.readline()
 | 
			
		||||
        firstline = line[:line.find(commentchar)].strip()
 | 
			
		||||
        _varnames = firstline.split(delimiter)
 | 
			
		||||
        if len(_varnames) > 1:
 | 
			
		||||
            break
 | 
			
		||||
    if varnames is None:
 | 
			
		||||
        varnames = _varnames
 | 
			
		||||
 | 
			
		||||
    # Get the data.
 | 
			
		||||
    _variables = ma.masked_array([line.strip().split(delimiter) for line in ftext
 | 
			
		||||
                                 if line[0] != commentchar and len(line) > 1])
 | 
			
		||||
    (_, nfields) = _variables.shape
 | 
			
		||||
    ftext.close()
 | 
			
		||||
 | 
			
		||||
    # Try to guess the dtype.
 | 
			
		||||
    if vartypes is None:
 | 
			
		||||
        vartypes = _guessvartypes(_variables[0])
 | 
			
		||||
    else:
 | 
			
		||||
        vartypes = [np.dtype(v) for v in vartypes]
 | 
			
		||||
        if len(vartypes) != nfields:
 | 
			
		||||
            msg = f"Attempting to {len(vartypes)} dtypes for {nfields} fields!"
 | 
			
		||||
            msg += " Reverting to default."
 | 
			
		||||
            warnings.warn(msg, stacklevel=2)
 | 
			
		||||
            vartypes = _guessvartypes(_variables[0])
 | 
			
		||||
 | 
			
		||||
    # Construct the descriptor.
 | 
			
		||||
    mdescr = list(zip(varnames, vartypes))
 | 
			
		||||
    mfillv = [ma.default_fill_value(f) for f in vartypes]
 | 
			
		||||
 | 
			
		||||
    # Get the data and the mask.
 | 
			
		||||
    # We just need a list of masked_arrays. It's easier to create it like that:
 | 
			
		||||
    _mask = (_variables.T == missingchar)
 | 
			
		||||
    _datalist = [ma.masked_array(a, mask=m, dtype=t, fill_value=f)
 | 
			
		||||
                 for (a, m, t, f) in zip(_variables.T, _mask, vartypes, mfillv)]
 | 
			
		||||
 | 
			
		||||
    return fromarrays(_datalist, dtype=mdescr)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def addfield(mrecord, newfield, newfieldname=None):
 | 
			
		||||
    """Adds a new field to the masked record array
 | 
			
		||||
 | 
			
		||||
    Uses `newfield` as data and `newfieldname` as name. If `newfieldname`
 | 
			
		||||
    is None, the new field name is set to 'fi', where `i` is the number of
 | 
			
		||||
    existing fields.
 | 
			
		||||
 | 
			
		||||
    """
 | 
			
		||||
    _data = mrecord._data
 | 
			
		||||
    _mask = mrecord._mask
 | 
			
		||||
    if newfieldname is None or newfieldname in reserved_fields:
 | 
			
		||||
        newfieldname = f'f{len(_data.dtype)}'
 | 
			
		||||
    newfield = ma.array(newfield)
 | 
			
		||||
    # Get the new data.
 | 
			
		||||
    # Create a new empty recarray
 | 
			
		||||
    newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)])
 | 
			
		||||
    newdata = np.recarray(_data.shape, newdtype)
 | 
			
		||||
    # Add the existing field
 | 
			
		||||
    [newdata.setfield(_data.getfield(*f), *f)
 | 
			
		||||
     for f in _data.dtype.fields.values()]
 | 
			
		||||
    # Add the new field
 | 
			
		||||
    newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname])
 | 
			
		||||
    newdata = newdata.view(MaskedRecords)
 | 
			
		||||
    # Get the new mask
 | 
			
		||||
    # Create a new empty recarray
 | 
			
		||||
    newmdtype = np.dtype([(n, np.bool) for n in newdtype.names])
 | 
			
		||||
    newmask = np.recarray(_data.shape, newmdtype)
 | 
			
		||||
    # Add the old masks
 | 
			
		||||
    [newmask.setfield(_mask.getfield(*f), *f)
 | 
			
		||||
     for f in _mask.dtype.fields.values()]
 | 
			
		||||
    # Add the mask of the new field
 | 
			
		||||
    newmask.setfield(ma.getmaskarray(newfield),
 | 
			
		||||
                     *newmask.dtype.fields[newfieldname])
 | 
			
		||||
    newdata._mask = newmask
 | 
			
		||||
    return newdata
 | 
			
		||||
		Reference in New Issue
	
	Block a user