done
This commit is contained in:
482
lib/python3.11/site-packages/numpy/linalg/_linalg.pyi
Normal file
482
lib/python3.11/site-packages/numpy/linalg/_linalg.pyi
Normal file
@ -0,0 +1,482 @@
|
||||
from collections.abc import Iterable
|
||||
from typing import (
|
||||
Any,
|
||||
NamedTuple,
|
||||
Never,
|
||||
SupportsIndex,
|
||||
SupportsInt,
|
||||
TypeAlias,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
from typing import Literal as L
|
||||
|
||||
import numpy as np
|
||||
from numpy import (
|
||||
complex128,
|
||||
complexfloating,
|
||||
float64,
|
||||
# other
|
||||
floating,
|
||||
int32,
|
||||
object_,
|
||||
signedinteger,
|
||||
timedelta64,
|
||||
unsignedinteger,
|
||||
# re-exports
|
||||
vecdot,
|
||||
)
|
||||
from numpy._core.fromnumeric import matrix_transpose
|
||||
from numpy._core.numeric import tensordot
|
||||
from numpy._typing import (
|
||||
ArrayLike,
|
||||
DTypeLike,
|
||||
NDArray,
|
||||
_ArrayLike,
|
||||
_ArrayLikeBool_co,
|
||||
_ArrayLikeComplex_co,
|
||||
_ArrayLikeFloat_co,
|
||||
_ArrayLikeInt_co,
|
||||
_ArrayLikeObject_co,
|
||||
_ArrayLikeTD64_co,
|
||||
_ArrayLikeUInt_co,
|
||||
)
|
||||
from numpy.linalg import LinAlgError
|
||||
|
||||
__all__ = [
|
||||
"matrix_power",
|
||||
"solve",
|
||||
"tensorsolve",
|
||||
"tensorinv",
|
||||
"inv",
|
||||
"cholesky",
|
||||
"eigvals",
|
||||
"eigvalsh",
|
||||
"pinv",
|
||||
"slogdet",
|
||||
"det",
|
||||
"svd",
|
||||
"svdvals",
|
||||
"eig",
|
||||
"eigh",
|
||||
"lstsq",
|
||||
"norm",
|
||||
"qr",
|
||||
"cond",
|
||||
"matrix_rank",
|
||||
"LinAlgError",
|
||||
"multi_dot",
|
||||
"trace",
|
||||
"diagonal",
|
||||
"cross",
|
||||
"outer",
|
||||
"tensordot",
|
||||
"matmul",
|
||||
"matrix_transpose",
|
||||
"matrix_norm",
|
||||
"vector_norm",
|
||||
"vecdot",
|
||||
]
|
||||
|
||||
_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any])
|
||||
|
||||
_ModeKind: TypeAlias = L["reduced", "complete", "r", "raw"]
|
||||
|
||||
###
|
||||
|
||||
fortran_int = np.intc
|
||||
|
||||
class EigResult(NamedTuple):
|
||||
eigenvalues: NDArray[Any]
|
||||
eigenvectors: NDArray[Any]
|
||||
|
||||
class EighResult(NamedTuple):
|
||||
eigenvalues: NDArray[Any]
|
||||
eigenvectors: NDArray[Any]
|
||||
|
||||
class QRResult(NamedTuple):
|
||||
Q: NDArray[Any]
|
||||
R: NDArray[Any]
|
||||
|
||||
class SlogdetResult(NamedTuple):
|
||||
# TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
|
||||
# a `(x.ndim - 2)`` dimensionl arrays otherwise
|
||||
sign: Any
|
||||
logabsdet: Any
|
||||
|
||||
class SVDResult(NamedTuple):
|
||||
U: NDArray[Any]
|
||||
S: NDArray[Any]
|
||||
Vh: NDArray[Any]
|
||||
|
||||
@overload
|
||||
def tensorsolve(
|
||||
a: _ArrayLikeInt_co,
|
||||
b: _ArrayLikeInt_co,
|
||||
axes: Iterable[int] | None = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def tensorsolve(
|
||||
a: _ArrayLikeFloat_co,
|
||||
b: _ArrayLikeFloat_co,
|
||||
axes: Iterable[int] | None = ...,
|
||||
) -> NDArray[floating]: ...
|
||||
@overload
|
||||
def tensorsolve(
|
||||
a: _ArrayLikeComplex_co,
|
||||
b: _ArrayLikeComplex_co,
|
||||
axes: Iterable[int] | None = ...,
|
||||
) -> NDArray[complexfloating]: ...
|
||||
|
||||
@overload
|
||||
def solve(
|
||||
a: _ArrayLikeInt_co,
|
||||
b: _ArrayLikeInt_co,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def solve(
|
||||
a: _ArrayLikeFloat_co,
|
||||
b: _ArrayLikeFloat_co,
|
||||
) -> NDArray[floating]: ...
|
||||
@overload
|
||||
def solve(
|
||||
a: _ArrayLikeComplex_co,
|
||||
b: _ArrayLikeComplex_co,
|
||||
) -> NDArray[complexfloating]: ...
|
||||
|
||||
@overload
|
||||
def tensorinv(
|
||||
a: _ArrayLikeInt_co,
|
||||
ind: int = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def tensorinv(
|
||||
a: _ArrayLikeFloat_co,
|
||||
ind: int = ...,
|
||||
) -> NDArray[floating]: ...
|
||||
@overload
|
||||
def tensorinv(
|
||||
a: _ArrayLikeComplex_co,
|
||||
ind: int = ...,
|
||||
) -> NDArray[complexfloating]: ...
|
||||
|
||||
@overload
|
||||
def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def inv(a: _ArrayLikeFloat_co) -> NDArray[floating]: ...
|
||||
@overload
|
||||
def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
|
||||
|
||||
# TODO: The supported input and output dtypes are dependent on the value of `n`.
|
||||
# For example: `n < 0` always casts integer types to float64
|
||||
def matrix_power(
|
||||
a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
||||
n: SupportsIndex,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
@overload
|
||||
def cholesky(a: _ArrayLikeInt_co, /, *, upper: bool = False) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def cholesky(a: _ArrayLikeFloat_co, /, *, upper: bool = False) -> NDArray[floating]: ...
|
||||
@overload
|
||||
def cholesky(a: _ArrayLikeComplex_co, /, *, upper: bool = False) -> NDArray[complexfloating]: ...
|
||||
|
||||
@overload
|
||||
def outer(x1: _ArrayLike[Never], x2: _ArrayLike[Never]) -> NDArray[Any]: ...
|
||||
@overload
|
||||
def outer(x1: _ArrayLikeBool_co, x2: _ArrayLikeBool_co) -> NDArray[np.bool]: ...
|
||||
@overload
|
||||
def outer(x1: _ArrayLikeUInt_co, x2: _ArrayLikeUInt_co) -> NDArray[unsignedinteger]: ...
|
||||
@overload
|
||||
def outer(x1: _ArrayLikeInt_co, x2: _ArrayLikeInt_co) -> NDArray[signedinteger]: ...
|
||||
@overload
|
||||
def outer(x1: _ArrayLikeFloat_co, x2: _ArrayLikeFloat_co) -> NDArray[floating]: ...
|
||||
@overload
|
||||
def outer(
|
||||
x1: _ArrayLikeComplex_co,
|
||||
x2: _ArrayLikeComplex_co,
|
||||
) -> NDArray[complexfloating]: ...
|
||||
@overload
|
||||
def outer(
|
||||
x1: _ArrayLikeTD64_co,
|
||||
x2: _ArrayLikeTD64_co,
|
||||
out: None = ...,
|
||||
) -> NDArray[timedelta64]: ...
|
||||
@overload
|
||||
def outer(x1: _ArrayLikeObject_co, x2: _ArrayLikeObject_co) -> NDArray[object_]: ...
|
||||
@overload
|
||||
def outer(
|
||||
x1: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
||||
x2: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
||||
) -> _ArrayT: ...
|
||||
|
||||
@overload
|
||||
def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
|
||||
@overload
|
||||
def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
|
||||
@overload
|
||||
def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...
|
||||
|
||||
@overload
|
||||
def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
|
||||
@overload
|
||||
def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating] | NDArray[complexfloating]: ...
|
||||
@overload
|
||||
def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
|
||||
|
||||
@overload
|
||||
def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating]: ...
|
||||
|
||||
@overload
|
||||
def eig(a: _ArrayLikeInt_co) -> EigResult: ...
|
||||
@overload
|
||||
def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
|
||||
@overload
|
||||
def eig(a: _ArrayLikeComplex_co) -> EigResult: ...
|
||||
|
||||
@overload
|
||||
def eigh(
|
||||
a: _ArrayLikeInt_co,
|
||||
UPLO: L["L", "U", "l", "u"] = ...,
|
||||
) -> EighResult: ...
|
||||
@overload
|
||||
def eigh(
|
||||
a: _ArrayLikeFloat_co,
|
||||
UPLO: L["L", "U", "l", "u"] = ...,
|
||||
) -> EighResult: ...
|
||||
@overload
|
||||
def eigh(
|
||||
a: _ArrayLikeComplex_co,
|
||||
UPLO: L["L", "U", "l", "u"] = ...,
|
||||
) -> EighResult: ...
|
||||
|
||||
@overload
|
||||
def svd(
|
||||
a: _ArrayLikeInt_co,
|
||||
full_matrices: bool = ...,
|
||||
compute_uv: L[True] = ...,
|
||||
hermitian: bool = ...,
|
||||
) -> SVDResult: ...
|
||||
@overload
|
||||
def svd(
|
||||
a: _ArrayLikeFloat_co,
|
||||
full_matrices: bool = ...,
|
||||
compute_uv: L[True] = ...,
|
||||
hermitian: bool = ...,
|
||||
) -> SVDResult: ...
|
||||
@overload
|
||||
def svd(
|
||||
a: _ArrayLikeComplex_co,
|
||||
full_matrices: bool = ...,
|
||||
compute_uv: L[True] = ...,
|
||||
hermitian: bool = ...,
|
||||
) -> SVDResult: ...
|
||||
@overload
|
||||
def svd(
|
||||
a: _ArrayLikeInt_co,
|
||||
full_matrices: bool = ...,
|
||||
compute_uv: L[False] = ...,
|
||||
hermitian: bool = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def svd(
|
||||
a: _ArrayLikeComplex_co,
|
||||
full_matrices: bool = ...,
|
||||
compute_uv: L[False] = ...,
|
||||
hermitian: bool = ...,
|
||||
) -> NDArray[floating]: ...
|
||||
|
||||
def svdvals(
|
||||
x: _ArrayLikeInt_co | _ArrayLikeFloat_co | _ArrayLikeComplex_co
|
||||
) -> NDArray[floating]: ...
|
||||
|
||||
# TODO: Returns a scalar for 2D arrays and
|
||||
# a `(x.ndim - 2)`` dimensionl array otherwise
|
||||
def cond(x: _ArrayLikeComplex_co, p: float | L["fro", "nuc"] | None = ...) -> Any: ...
|
||||
|
||||
# TODO: Returns `int` for <2D arrays and `intp` otherwise
|
||||
def matrix_rank(
|
||||
A: _ArrayLikeComplex_co,
|
||||
tol: _ArrayLikeFloat_co | None = ...,
|
||||
hermitian: bool = ...,
|
||||
*,
|
||||
rtol: _ArrayLikeFloat_co | None = ...,
|
||||
) -> Any: ...
|
||||
|
||||
@overload
|
||||
def pinv(
|
||||
a: _ArrayLikeInt_co,
|
||||
rcond: _ArrayLikeFloat_co = ...,
|
||||
hermitian: bool = ...,
|
||||
) -> NDArray[float64]: ...
|
||||
@overload
|
||||
def pinv(
|
||||
a: _ArrayLikeFloat_co,
|
||||
rcond: _ArrayLikeFloat_co = ...,
|
||||
hermitian: bool = ...,
|
||||
) -> NDArray[floating]: ...
|
||||
@overload
|
||||
def pinv(
|
||||
a: _ArrayLikeComplex_co,
|
||||
rcond: _ArrayLikeFloat_co = ...,
|
||||
hermitian: bool = ...,
|
||||
) -> NDArray[complexfloating]: ...
|
||||
|
||||
# TODO: Returns a 2-tuple of scalars for 2D arrays and
|
||||
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
|
||||
def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...
|
||||
|
||||
# TODO: Returns a 2-tuple of scalars for 2D arrays and
|
||||
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
|
||||
def det(a: _ArrayLikeComplex_co) -> Any: ...
|
||||
|
||||
@overload
|
||||
def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: float | None = ...) -> tuple[
|
||||
NDArray[float64],
|
||||
NDArray[float64],
|
||||
int32,
|
||||
NDArray[float64],
|
||||
]: ...
|
||||
@overload
|
||||
def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: float | None = ...) -> tuple[
|
||||
NDArray[floating],
|
||||
NDArray[floating],
|
||||
int32,
|
||||
NDArray[floating],
|
||||
]: ...
|
||||
@overload
|
||||
def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: float | None = ...) -> tuple[
|
||||
NDArray[complexfloating],
|
||||
NDArray[floating],
|
||||
int32,
|
||||
NDArray[floating],
|
||||
]: ...
|
||||
|
||||
@overload
|
||||
def norm(
|
||||
x: ArrayLike,
|
||||
ord: float | L["fro", "nuc"] | None = ...,
|
||||
axis: None = ...,
|
||||
keepdims: bool = ...,
|
||||
) -> floating: ...
|
||||
@overload
|
||||
def norm(
|
||||
x: ArrayLike,
|
||||
ord: float | L["fro", "nuc"] | None = ...,
|
||||
axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
|
||||
keepdims: bool = ...,
|
||||
) -> Any: ...
|
||||
|
||||
@overload
|
||||
def matrix_norm(
|
||||
x: ArrayLike,
|
||||
/,
|
||||
*,
|
||||
ord: float | L["fro", "nuc"] | None = ...,
|
||||
keepdims: bool = ...,
|
||||
) -> floating: ...
|
||||
@overload
|
||||
def matrix_norm(
|
||||
x: ArrayLike,
|
||||
/,
|
||||
*,
|
||||
ord: float | L["fro", "nuc"] | None = ...,
|
||||
keepdims: bool = ...,
|
||||
) -> Any: ...
|
||||
|
||||
@overload
|
||||
def vector_norm(
|
||||
x: ArrayLike,
|
||||
/,
|
||||
*,
|
||||
axis: None = ...,
|
||||
ord: float | None = ...,
|
||||
keepdims: bool = ...,
|
||||
) -> floating: ...
|
||||
@overload
|
||||
def vector_norm(
|
||||
x: ArrayLike,
|
||||
/,
|
||||
*,
|
||||
axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
|
||||
ord: float | None = ...,
|
||||
keepdims: bool = ...,
|
||||
) -> Any: ...
|
||||
|
||||
# TODO: Returns a scalar or array
|
||||
def multi_dot(
|
||||
arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
|
||||
*,
|
||||
out: NDArray[Any] | None = ...,
|
||||
) -> Any: ...
|
||||
|
||||
def diagonal(
|
||||
x: ArrayLike, # >= 2D array
|
||||
/,
|
||||
*,
|
||||
offset: SupportsIndex = ...,
|
||||
) -> NDArray[Any]: ...
|
||||
|
||||
def trace(
|
||||
x: ArrayLike, # >= 2D array
|
||||
/,
|
||||
*,
|
||||
offset: SupportsIndex = ...,
|
||||
dtype: DTypeLike = ...,
|
||||
) -> Any: ...
|
||||
|
||||
@overload
|
||||
def cross(
|
||||
x1: _ArrayLikeUInt_co,
|
||||
x2: _ArrayLikeUInt_co,
|
||||
/,
|
||||
*,
|
||||
axis: int = ...,
|
||||
) -> NDArray[unsignedinteger]: ...
|
||||
@overload
|
||||
def cross(
|
||||
x1: _ArrayLikeInt_co,
|
||||
x2: _ArrayLikeInt_co,
|
||||
/,
|
||||
*,
|
||||
axis: int = ...,
|
||||
) -> NDArray[signedinteger]: ...
|
||||
@overload
|
||||
def cross(
|
||||
x1: _ArrayLikeFloat_co,
|
||||
x2: _ArrayLikeFloat_co,
|
||||
/,
|
||||
*,
|
||||
axis: int = ...,
|
||||
) -> NDArray[floating]: ...
|
||||
@overload
|
||||
def cross(
|
||||
x1: _ArrayLikeComplex_co,
|
||||
x2: _ArrayLikeComplex_co,
|
||||
/,
|
||||
*,
|
||||
axis: int = ...,
|
||||
) -> NDArray[complexfloating]: ...
|
||||
|
||||
@overload
|
||||
def matmul(
|
||||
x1: _ArrayLikeInt_co,
|
||||
x2: _ArrayLikeInt_co,
|
||||
) -> NDArray[signedinteger]: ...
|
||||
@overload
|
||||
def matmul(
|
||||
x1: _ArrayLikeUInt_co,
|
||||
x2: _ArrayLikeUInt_co,
|
||||
) -> NDArray[unsignedinteger]: ...
|
||||
@overload
|
||||
def matmul(
|
||||
x1: _ArrayLikeFloat_co,
|
||||
x2: _ArrayLikeFloat_co,
|
||||
) -> NDArray[floating]: ...
|
||||
@overload
|
||||
def matmul(
|
||||
x1: _ArrayLikeComplex_co,
|
||||
x2: _ArrayLikeComplex_co,
|
||||
) -> NDArray[complexfloating]: ...
|
Reference in New Issue
Block a user