This commit is contained in:
2025-09-07 22:09:54 +02:00
parent e1b817252c
commit 2fc0d000b6
7796 changed files with 2159515 additions and 933 deletions

View File

@ -0,0 +1,98 @@
"""
``numpy.linalg``
================
The NumPy linear algebra functions rely on BLAS and LAPACK to provide efficient
low level implementations of standard linear algebra algorithms. Those
libraries may be provided by NumPy itself using C versions of a subset of their
reference implementations but, when possible, highly optimized libraries that
take advantage of specialized processor functionality are preferred. Examples
of such libraries are OpenBLAS, MKL (TM), and ATLAS. Because those libraries
are multithreaded and processor dependent, environmental variables and external
packages such as threadpoolctl may be needed to control the number of threads
or specify the processor architecture.
- OpenBLAS: https://www.openblas.net/
- threadpoolctl: https://github.com/joblib/threadpoolctl
Please note that the most-used linear algebra functions in NumPy are present in
the main ``numpy`` namespace rather than in ``numpy.linalg``. There are:
``dot``, ``vdot``, ``inner``, ``outer``, ``matmul``, ``tensordot``, ``einsum``,
``einsum_path`` and ``kron``.
Functions present in numpy.linalg are listed below.
Matrix and vector products
--------------------------
cross
multi_dot
matrix_power
tensordot
matmul
Decompositions
--------------
cholesky
outer
qr
svd
svdvals
Matrix eigenvalues
------------------
eig
eigh
eigvals
eigvalsh
Norms and other numbers
-----------------------
norm
matrix_norm
vector_norm
cond
det
matrix_rank
slogdet
trace (Array API compatible)
Solving equations and inverting matrices
----------------------------------------
solve
tensorsolve
lstsq
inv
pinv
tensorinv
Other matrix operations
-----------------------
diagonal (Array API compatible)
matrix_transpose (Array API compatible)
Exceptions
----------
LinAlgError
"""
# To get sub-modules
from . import (
_linalg,
linalg, # deprecated in NumPy 2.0
)
from ._linalg import *
__all__ = _linalg.__all__.copy() # noqa: PLE0605
from numpy._pytesttester import PytestTester
test = PytestTester(__name__)
del PytestTester

View File

@ -0,0 +1,73 @@
from . import _linalg as _linalg
from . import _umath_linalg as _umath_linalg
from . import linalg as linalg
from ._linalg import (
cholesky,
cond,
cross,
det,
diagonal,
eig,
eigh,
eigvals,
eigvalsh,
inv,
lstsq,
matmul,
matrix_norm,
matrix_power,
matrix_rank,
matrix_transpose,
multi_dot,
norm,
outer,
pinv,
qr,
slogdet,
solve,
svd,
svdvals,
tensordot,
tensorinv,
tensorsolve,
trace,
vecdot,
vector_norm,
)
__all__ = [
"LinAlgError",
"cholesky",
"cond",
"cross",
"det",
"diagonal",
"eig",
"eigh",
"eigvals",
"eigvalsh",
"inv",
"lstsq",
"matmul",
"matrix_norm",
"matrix_power",
"matrix_rank",
"matrix_transpose",
"multi_dot",
"norm",
"outer",
"pinv",
"qr",
"slogdet",
"solve",
"svd",
"svdvals",
"tensordot",
"tensorinv",
"tensorsolve",
"trace",
"vecdot",
"vector_norm",
]
class LinAlgError(ValueError): ...

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,482 @@
from collections.abc import Iterable
from typing import (
Any,
NamedTuple,
Never,
SupportsIndex,
SupportsInt,
TypeAlias,
TypeVar,
overload,
)
from typing import Literal as L
import numpy as np
from numpy import (
complex128,
complexfloating,
float64,
# other
floating,
int32,
object_,
signedinteger,
timedelta64,
unsignedinteger,
# re-exports
vecdot,
)
from numpy._core.fromnumeric import matrix_transpose
from numpy._core.numeric import tensordot
from numpy._typing import (
ArrayLike,
DTypeLike,
NDArray,
_ArrayLike,
_ArrayLikeBool_co,
_ArrayLikeComplex_co,
_ArrayLikeFloat_co,
_ArrayLikeInt_co,
_ArrayLikeObject_co,
_ArrayLikeTD64_co,
_ArrayLikeUInt_co,
)
from numpy.linalg import LinAlgError
__all__ = [
"matrix_power",
"solve",
"tensorsolve",
"tensorinv",
"inv",
"cholesky",
"eigvals",
"eigvalsh",
"pinv",
"slogdet",
"det",
"svd",
"svdvals",
"eig",
"eigh",
"lstsq",
"norm",
"qr",
"cond",
"matrix_rank",
"LinAlgError",
"multi_dot",
"trace",
"diagonal",
"cross",
"outer",
"tensordot",
"matmul",
"matrix_transpose",
"matrix_norm",
"vector_norm",
"vecdot",
]
_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any])
_ModeKind: TypeAlias = L["reduced", "complete", "r", "raw"]
###
fortran_int = np.intc
class EigResult(NamedTuple):
eigenvalues: NDArray[Any]
eigenvectors: NDArray[Any]
class EighResult(NamedTuple):
eigenvalues: NDArray[Any]
eigenvectors: NDArray[Any]
class QRResult(NamedTuple):
Q: NDArray[Any]
R: NDArray[Any]
class SlogdetResult(NamedTuple):
# TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
# a `(x.ndim - 2)`` dimensionl arrays otherwise
sign: Any
logabsdet: Any
class SVDResult(NamedTuple):
U: NDArray[Any]
S: NDArray[Any]
Vh: NDArray[Any]
@overload
def tensorsolve(
a: _ArrayLikeInt_co,
b: _ArrayLikeInt_co,
axes: Iterable[int] | None = ...,
) -> NDArray[float64]: ...
@overload
def tensorsolve(
a: _ArrayLikeFloat_co,
b: _ArrayLikeFloat_co,
axes: Iterable[int] | None = ...,
) -> NDArray[floating]: ...
@overload
def tensorsolve(
a: _ArrayLikeComplex_co,
b: _ArrayLikeComplex_co,
axes: Iterable[int] | None = ...,
) -> NDArray[complexfloating]: ...
@overload
def solve(
a: _ArrayLikeInt_co,
b: _ArrayLikeInt_co,
) -> NDArray[float64]: ...
@overload
def solve(
a: _ArrayLikeFloat_co,
b: _ArrayLikeFloat_co,
) -> NDArray[floating]: ...
@overload
def solve(
a: _ArrayLikeComplex_co,
b: _ArrayLikeComplex_co,
) -> NDArray[complexfloating]: ...
@overload
def tensorinv(
a: _ArrayLikeInt_co,
ind: int = ...,
) -> NDArray[float64]: ...
@overload
def tensorinv(
a: _ArrayLikeFloat_co,
ind: int = ...,
) -> NDArray[floating]: ...
@overload
def tensorinv(
a: _ArrayLikeComplex_co,
ind: int = ...,
) -> NDArray[complexfloating]: ...
@overload
def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
@overload
def inv(a: _ArrayLikeFloat_co) -> NDArray[floating]: ...
@overload
def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
# TODO: The supported input and output dtypes are dependent on the value of `n`.
# For example: `n < 0` always casts integer types to float64
def matrix_power(
a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
n: SupportsIndex,
) -> NDArray[Any]: ...
@overload
def cholesky(a: _ArrayLikeInt_co, /, *, upper: bool = False) -> NDArray[float64]: ...
@overload
def cholesky(a: _ArrayLikeFloat_co, /, *, upper: bool = False) -> NDArray[floating]: ...
@overload
def cholesky(a: _ArrayLikeComplex_co, /, *, upper: bool = False) -> NDArray[complexfloating]: ...
@overload
def outer(x1: _ArrayLike[Never], x2: _ArrayLike[Never]) -> NDArray[Any]: ...
@overload
def outer(x1: _ArrayLikeBool_co, x2: _ArrayLikeBool_co) -> NDArray[np.bool]: ...
@overload
def outer(x1: _ArrayLikeUInt_co, x2: _ArrayLikeUInt_co) -> NDArray[unsignedinteger]: ...
@overload
def outer(x1: _ArrayLikeInt_co, x2: _ArrayLikeInt_co) -> NDArray[signedinteger]: ...
@overload
def outer(x1: _ArrayLikeFloat_co, x2: _ArrayLikeFloat_co) -> NDArray[floating]: ...
@overload
def outer(
x1: _ArrayLikeComplex_co,
x2: _ArrayLikeComplex_co,
) -> NDArray[complexfloating]: ...
@overload
def outer(
x1: _ArrayLikeTD64_co,
x2: _ArrayLikeTD64_co,
out: None = ...,
) -> NDArray[timedelta64]: ...
@overload
def outer(x1: _ArrayLikeObject_co, x2: _ArrayLikeObject_co) -> NDArray[object_]: ...
@overload
def outer(
x1: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
x2: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
) -> _ArrayT: ...
@overload
def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
@overload
def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
@overload
def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...
@overload
def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
@overload
def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating] | NDArray[complexfloating]: ...
@overload
def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
@overload
def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
@overload
def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating]: ...
@overload
def eig(a: _ArrayLikeInt_co) -> EigResult: ...
@overload
def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
@overload
def eig(a: _ArrayLikeComplex_co) -> EigResult: ...
@overload
def eigh(
a: _ArrayLikeInt_co,
UPLO: L["L", "U", "l", "u"] = ...,
) -> EighResult: ...
@overload
def eigh(
a: _ArrayLikeFloat_co,
UPLO: L["L", "U", "l", "u"] = ...,
) -> EighResult: ...
@overload
def eigh(
a: _ArrayLikeComplex_co,
UPLO: L["L", "U", "l", "u"] = ...,
) -> EighResult: ...
@overload
def svd(
a: _ArrayLikeInt_co,
full_matrices: bool = ...,
compute_uv: L[True] = ...,
hermitian: bool = ...,
) -> SVDResult: ...
@overload
def svd(
a: _ArrayLikeFloat_co,
full_matrices: bool = ...,
compute_uv: L[True] = ...,
hermitian: bool = ...,
) -> SVDResult: ...
@overload
def svd(
a: _ArrayLikeComplex_co,
full_matrices: bool = ...,
compute_uv: L[True] = ...,
hermitian: bool = ...,
) -> SVDResult: ...
@overload
def svd(
a: _ArrayLikeInt_co,
full_matrices: bool = ...,
compute_uv: L[False] = ...,
hermitian: bool = ...,
) -> NDArray[float64]: ...
@overload
def svd(
a: _ArrayLikeComplex_co,
full_matrices: bool = ...,
compute_uv: L[False] = ...,
hermitian: bool = ...,
) -> NDArray[floating]: ...
def svdvals(
x: _ArrayLikeInt_co | _ArrayLikeFloat_co | _ArrayLikeComplex_co
) -> NDArray[floating]: ...
# TODO: Returns a scalar for 2D arrays and
# a `(x.ndim - 2)`` dimensionl array otherwise
def cond(x: _ArrayLikeComplex_co, p: float | L["fro", "nuc"] | None = ...) -> Any: ...
# TODO: Returns `int` for <2D arrays and `intp` otherwise
def matrix_rank(
A: _ArrayLikeComplex_co,
tol: _ArrayLikeFloat_co | None = ...,
hermitian: bool = ...,
*,
rtol: _ArrayLikeFloat_co | None = ...,
) -> Any: ...
@overload
def pinv(
a: _ArrayLikeInt_co,
rcond: _ArrayLikeFloat_co = ...,
hermitian: bool = ...,
) -> NDArray[float64]: ...
@overload
def pinv(
a: _ArrayLikeFloat_co,
rcond: _ArrayLikeFloat_co = ...,
hermitian: bool = ...,
) -> NDArray[floating]: ...
@overload
def pinv(
a: _ArrayLikeComplex_co,
rcond: _ArrayLikeFloat_co = ...,
hermitian: bool = ...,
) -> NDArray[complexfloating]: ...
# TODO: Returns a 2-tuple of scalars for 2D arrays and
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...
# TODO: Returns a 2-tuple of scalars for 2D arrays and
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
def det(a: _ArrayLikeComplex_co) -> Any: ...
@overload
def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: float | None = ...) -> tuple[
NDArray[float64],
NDArray[float64],
int32,
NDArray[float64],
]: ...
@overload
def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: float | None = ...) -> tuple[
NDArray[floating],
NDArray[floating],
int32,
NDArray[floating],
]: ...
@overload
def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: float | None = ...) -> tuple[
NDArray[complexfloating],
NDArray[floating],
int32,
NDArray[floating],
]: ...
@overload
def norm(
x: ArrayLike,
ord: float | L["fro", "nuc"] | None = ...,
axis: None = ...,
keepdims: bool = ...,
) -> floating: ...
@overload
def norm(
x: ArrayLike,
ord: float | L["fro", "nuc"] | None = ...,
axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
keepdims: bool = ...,
) -> Any: ...
@overload
def matrix_norm(
x: ArrayLike,
/,
*,
ord: float | L["fro", "nuc"] | None = ...,
keepdims: bool = ...,
) -> floating: ...
@overload
def matrix_norm(
x: ArrayLike,
/,
*,
ord: float | L["fro", "nuc"] | None = ...,
keepdims: bool = ...,
) -> Any: ...
@overload
def vector_norm(
x: ArrayLike,
/,
*,
axis: None = ...,
ord: float | None = ...,
keepdims: bool = ...,
) -> floating: ...
@overload
def vector_norm(
x: ArrayLike,
/,
*,
axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
ord: float | None = ...,
keepdims: bool = ...,
) -> Any: ...
# TODO: Returns a scalar or array
def multi_dot(
arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
*,
out: NDArray[Any] | None = ...,
) -> Any: ...
def diagonal(
x: ArrayLike, # >= 2D array
/,
*,
offset: SupportsIndex = ...,
) -> NDArray[Any]: ...
def trace(
x: ArrayLike, # >= 2D array
/,
*,
offset: SupportsIndex = ...,
dtype: DTypeLike = ...,
) -> Any: ...
@overload
def cross(
x1: _ArrayLikeUInt_co,
x2: _ArrayLikeUInt_co,
/,
*,
axis: int = ...,
) -> NDArray[unsignedinteger]: ...
@overload
def cross(
x1: _ArrayLikeInt_co,
x2: _ArrayLikeInt_co,
/,
*,
axis: int = ...,
) -> NDArray[signedinteger]: ...
@overload
def cross(
x1: _ArrayLikeFloat_co,
x2: _ArrayLikeFloat_co,
/,
*,
axis: int = ...,
) -> NDArray[floating]: ...
@overload
def cross(
x1: _ArrayLikeComplex_co,
x2: _ArrayLikeComplex_co,
/,
*,
axis: int = ...,
) -> NDArray[complexfloating]: ...
@overload
def matmul(
x1: _ArrayLikeInt_co,
x2: _ArrayLikeInt_co,
) -> NDArray[signedinteger]: ...
@overload
def matmul(
x1: _ArrayLikeUInt_co,
x2: _ArrayLikeUInt_co,
) -> NDArray[unsignedinteger]: ...
@overload
def matmul(
x1: _ArrayLikeFloat_co,
x2: _ArrayLikeFloat_co,
) -> NDArray[floating]: ...
@overload
def matmul(
x1: _ArrayLikeComplex_co,
x2: _ArrayLikeComplex_co,
) -> NDArray[complexfloating]: ...

View File

@ -0,0 +1,61 @@
from typing import Final
from typing import Literal as L
import numpy as np
from numpy._typing._ufunc import _GUFunc_Nin2_Nout1
__version__: Final[str] = ...
_ilp64: Final[bool] = ...
###
# 1 -> 1
# (m,m) -> ()
det: Final[np.ufunc] = ...
# (m,m) -> (m)
cholesky_lo: Final[np.ufunc] = ...
cholesky_up: Final[np.ufunc] = ...
eigvals: Final[np.ufunc] = ...
eigvalsh_lo: Final[np.ufunc] = ...
eigvalsh_up: Final[np.ufunc] = ...
# (m,m) -> (m,m)
inv: Final[np.ufunc] = ...
# (m,n) -> (p)
qr_r_raw: Final[np.ufunc] = ...
svd: Final[np.ufunc] = ...
###
# 1 -> 2
# (m,m) -> (), ()
slogdet: Final[np.ufunc] = ...
# (m,m) -> (m), (m,m)
eig: Final[np.ufunc] = ...
eigh_lo: Final[np.ufunc] = ...
eigh_up: Final[np.ufunc] = ...
###
# 2 -> 1
# (m,n), (n) -> (m,m)
qr_complete: Final[_GUFunc_Nin2_Nout1[L["qr_complete"], L[2], None, L["(m,n),(n)->(m,m)"]]] = ...
# (m,n), (k) -> (m,k)
qr_reduced: Final[_GUFunc_Nin2_Nout1[L["qr_reduced"], L[2], None, L["(m,n),(k)->(m,k)"]]] = ...
# (m,m), (m,n) -> (m,n)
solve: Final[_GUFunc_Nin2_Nout1[L["solve"], L[4], None, L["(m,m),(m,n)->(m,n)"]]] = ...
# (m,m), (m) -> (m)
solve1: Final[_GUFunc_Nin2_Nout1[L["solve1"], L[4], None, L["(m,m),(m)->(m)"]]] = ...
###
# 1 -> 3
# (m,n) -> (m,m), (p), (n,n)
svd_f: Final[np.ufunc] = ...
# (m,n) -> (m,p), (p), (p,n)
svd_s: Final[np.ufunc] = ...
###
# 3 -> 4
# (m,n), (m,k), () -> (n,k), (k), (), (p)
lstsq: Final[np.ufunc] = ...

View File

@ -0,0 +1,141 @@
from typing import Final, TypedDict, type_check_only
import numpy as np
from numpy._typing import NDArray
from ._linalg import fortran_int
###
@type_check_only
class _GELSD(TypedDict):
m: int
n: int
nrhs: int
lda: int
ldb: int
rank: int
lwork: int
info: int
@type_check_only
class _DGELSD(_GELSD):
dgelsd_: int
rcond: float
@type_check_only
class _ZGELSD(_GELSD):
zgelsd_: int
@type_check_only
class _GEQRF(TypedDict):
m: int
n: int
lda: int
lwork: int
info: int
@type_check_only
class _DGEQRF(_GEQRF):
dgeqrf_: int
@type_check_only
class _ZGEQRF(_GEQRF):
zgeqrf_: int
@type_check_only
class _DORGQR(TypedDict):
dorgqr_: int
info: int
@type_check_only
class _ZUNGQR(TypedDict):
zungqr_: int
info: int
###
_ilp64: Final[bool] = ...
def dgelsd(
m: int,
n: int,
nrhs: int,
a: NDArray[np.float64],
lda: int,
b: NDArray[np.float64],
ldb: int,
s: NDArray[np.float64],
rcond: float,
rank: int,
work: NDArray[np.float64],
lwork: int,
iwork: NDArray[fortran_int],
info: int,
) -> _DGELSD: ...
def zgelsd(
m: int,
n: int,
nrhs: int,
a: NDArray[np.complex128],
lda: int,
b: NDArray[np.complex128],
ldb: int,
s: NDArray[np.float64],
rcond: float,
rank: int,
work: NDArray[np.complex128],
lwork: int,
rwork: NDArray[np.float64],
iwork: NDArray[fortran_int],
info: int,
) -> _ZGELSD: ...
#
def dgeqrf(
m: int,
n: int,
a: NDArray[np.float64], # in/out, shape: (lda, n)
lda: int,
tau: NDArray[np.float64], # out, shape: (min(m, n),)
work: NDArray[np.float64], # out, shape: (max(1, lwork),)
lwork: int,
info: int, # out
) -> _DGEQRF: ...
def zgeqrf(
m: int,
n: int,
a: NDArray[np.complex128], # in/out, shape: (lda, n)
lda: int,
tau: NDArray[np.complex128], # out, shape: (min(m, n),)
work: NDArray[np.complex128], # out, shape: (max(1, lwork),)
lwork: int,
info: int, # out
) -> _ZGEQRF: ...
#
def dorgqr(
m: int, # >=0
n: int, # m >= n >= 0
k: int, # n >= k >= 0
a: NDArray[np.float64], # in/out, shape: (lda, n)
lda: int, # >= max(1, m)
tau: NDArray[np.float64], # in, shape: (k,)
work: NDArray[np.float64], # out, shape: (max(1, lwork),)
lwork: int,
info: int, # out
) -> _DORGQR: ...
def zungqr(
m: int,
n: int,
k: int,
a: NDArray[np.complex128],
lda: int,
tau: NDArray[np.complex128],
work: NDArray[np.complex128],
lwork: int,
info: int,
) -> _ZUNGQR: ...
#
def xerbla(srname: object, info: int) -> None: ...

View File

@ -0,0 +1,17 @@
def __getattr__(attr_name):
import warnings
from numpy.linalg import _linalg
ret = getattr(_linalg, attr_name, None)
if ret is None:
raise AttributeError(
f"module 'numpy.linalg.linalg' has no attribute {attr_name}")
warnings.warn(
"The numpy.linalg.linalg has been made private and renamed to "
"numpy.linalg._linalg. All public functions exported by it are "
f"available from numpy.linalg. Please use numpy.linalg.{attr_name} "
"instead.",
DeprecationWarning,
stacklevel=3
)
return ret

View File

@ -0,0 +1,69 @@
from ._linalg import (
LinAlgError,
cholesky,
cond,
cross,
det,
diagonal,
eig,
eigh,
eigvals,
eigvalsh,
inv,
lstsq,
matmul,
matrix_norm,
matrix_power,
matrix_rank,
matrix_transpose,
multi_dot,
norm,
outer,
pinv,
qr,
slogdet,
solve,
svd,
svdvals,
tensordot,
tensorinv,
tensorsolve,
trace,
vecdot,
vector_norm,
)
__all__ = [
"LinAlgError",
"cholesky",
"cond",
"cross",
"det",
"diagonal",
"eig",
"eigh",
"eigvals",
"eigvalsh",
"inv",
"lstsq",
"matmul",
"matrix_norm",
"matrix_power",
"matrix_rank",
"matrix_transpose",
"multi_dot",
"norm",
"outer",
"pinv",
"qr",
"slogdet",
"solve",
"svd",
"svdvals",
"tensordot",
"tensorinv",
"tensorsolve",
"trace",
"vecdot",
"vector_norm",
]

View File

@ -0,0 +1,20 @@
"""Test deprecation and future warnings.
"""
import numpy as np
from numpy.testing import assert_warns
def test_qr_mode_full_future_warning():
"""Check mode='full' FutureWarning.
In numpy 1.8 the mode options 'full' and 'economic' in linalg.qr were
deprecated. The release date will probably be sometime in the summer
of 2013.
"""
a = np.eye(2)
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='full')
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='f')
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='economic')
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='e')

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,181 @@
""" Test functions for linalg module
"""
import pytest
import numpy as np
from numpy import arange, array, dot, float64, linalg, transpose
from numpy.testing import (
assert_,
assert_array_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
assert_raises,
)
class TestRegression:
def test_eig_build(self):
# Ticket #652
rva = array([1.03221168e+02 + 0.j,
-1.91843603e+01 + 0.j,
-6.04004526e-01 + 15.84422474j,
-6.04004526e-01 - 15.84422474j,
-1.13692929e+01 + 0.j,
-6.57612485e-01 + 10.41755503j,
-6.57612485e-01 - 10.41755503j,
1.82126812e+01 + 0.j,
1.06011014e+01 + 0.j,
7.80732773e+00 + 0.j,
-7.65390898e-01 + 0.j,
1.51971555e-15 + 0.j,
-1.51308713e-15 + 0.j])
a = arange(13 * 13, dtype=float64)
a.shape = (13, 13)
a = a % 17
va, ve = linalg.eig(a)
va.sort()
rva.sort()
assert_array_almost_equal(va, rva)
def test_eigh_build(self):
# Ticket 662.
rvals = [68.60568999, 89.57756725, 106.67185574]
cov = array([[77.70273908, 3.51489954, 15.64602427],
[ 3.51489954, 88.97013878, -1.07431931],
[15.64602427, -1.07431931, 98.18223512]])
vals, vecs = linalg.eigh(cov)
assert_array_almost_equal(vals, rvals)
def test_svd_build(self):
# Ticket 627.
a = array([[0., 1.], [1., 1.], [2., 1.], [3., 1.]])
m, n = a.shape
u, s, vh = linalg.svd(a)
b = dot(transpose(u[:, n:]), a)
assert_array_almost_equal(b, np.zeros((2, 2)))
def test_norm_vector_badarg(self):
# Regression for #786: Frobenius norm for vectors raises
# ValueError.
assert_raises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro')
def test_lapack_endian(self):
# For bug #1482
a = array([[ 5.7998084, -2.1825367],
[-2.1825367, 9.85910595]], dtype='>f8')
b = array(a, dtype='<f8')
ap = linalg.cholesky(a)
bp = linalg.cholesky(b)
assert_array_equal(ap, bp)
def test_large_svd_32bit(self):
# See gh-4442, 64bit would require very large/slow matrices.
x = np.eye(1000, 66)
np.linalg.svd(x)
def test_svd_no_uv(self):
# gh-4733
for shape in (3, 4), (4, 4), (4, 3):
for t in float, complex:
a = np.ones(shape, dtype=t)
w = linalg.svd(a, compute_uv=False)
c = np.count_nonzero(np.absolute(w) > 0.5)
assert_equal(c, 1)
assert_equal(np.linalg.matrix_rank(a), 1)
assert_array_less(1, np.linalg.norm(a, ord=2))
w_svdvals = linalg.svdvals(a)
assert_array_almost_equal(w, w_svdvals)
def test_norm_object_array(self):
# gh-7575
testvector = np.array([np.array([0, 1]), 0, 0], dtype=object)
norm = linalg.norm(testvector)
assert_array_equal(norm, [0, 1])
assert_(norm.dtype == np.dtype('float64'))
norm = linalg.norm(testvector, ord=1)
assert_array_equal(norm, [0, 1])
assert_(norm.dtype != np.dtype('float64'))
norm = linalg.norm(testvector, ord=2)
assert_array_equal(norm, [0, 1])
assert_(norm.dtype == np.dtype('float64'))
assert_raises(ValueError, linalg.norm, testvector, ord='fro')
assert_raises(ValueError, linalg.norm, testvector, ord='nuc')
assert_raises(ValueError, linalg.norm, testvector, ord=np.inf)
assert_raises(ValueError, linalg.norm, testvector, ord=-np.inf)
assert_raises(ValueError, linalg.norm, testvector, ord=0)
assert_raises(ValueError, linalg.norm, testvector, ord=-1)
assert_raises(ValueError, linalg.norm, testvector, ord=-2)
testmatrix = np.array([[np.array([0, 1]), 0, 0],
[0, 0, 0]], dtype=object)
norm = linalg.norm(testmatrix)
assert_array_equal(norm, [0, 1])
assert_(norm.dtype == np.dtype('float64'))
norm = linalg.norm(testmatrix, ord='fro')
assert_array_equal(norm, [0, 1])
assert_(norm.dtype == np.dtype('float64'))
assert_raises(TypeError, linalg.norm, testmatrix, ord='nuc')
assert_raises(ValueError, linalg.norm, testmatrix, ord=np.inf)
assert_raises(ValueError, linalg.norm, testmatrix, ord=-np.inf)
assert_raises(ValueError, linalg.norm, testmatrix, ord=0)
assert_raises(ValueError, linalg.norm, testmatrix, ord=1)
assert_raises(ValueError, linalg.norm, testmatrix, ord=-1)
assert_raises(TypeError, linalg.norm, testmatrix, ord=2)
assert_raises(TypeError, linalg.norm, testmatrix, ord=-2)
assert_raises(ValueError, linalg.norm, testmatrix, ord=3)
def test_lstsq_complex_larger_rhs(self):
# gh-9891
size = 20
n_rhs = 70
G = np.random.randn(size, size) + 1j * np.random.randn(size, size)
u = np.random.randn(size, n_rhs) + 1j * np.random.randn(size, n_rhs)
b = G.dot(u)
# This should work without segmentation fault.
u_lstsq, res, rank, sv = linalg.lstsq(G, b, rcond=None)
# check results just in case
assert_array_almost_equal(u_lstsq, u)
@pytest.mark.parametrize("upper", [True, False])
def test_cholesky_empty_array(self, upper):
# gh-25840 - upper=True hung before.
res = np.linalg.cholesky(np.zeros((0, 0)), upper=upper)
assert res.size == 0
@pytest.mark.parametrize("rtol", [0.0, [0.0] * 4, np.zeros((4,))])
def test_matrix_rank_rtol_argument(self, rtol):
# gh-25877
x = np.zeros((4, 3, 2))
res = np.linalg.matrix_rank(x, rtol=rtol)
assert res.shape == (4,)
def test_openblas_threading(self):
# gh-27036
# Test whether matrix multiplication involving a large matrix always
# gives the same (correct) answer
x = np.arange(500000, dtype=np.float64)
src = np.vstack((x, -10 * x)).T
matrix = np.array([[0, 1], [1, 0]])
expected = np.vstack((-10 * x, x)).T # src @ matrix
for i in range(200):
result = src @ matrix
mismatches = (~np.isclose(result, expected)).sum()
if mismatches != 0:
assert False, ("unexpected result from matmul, "
"probably due to OpenBLAS threading issues")