done
This commit is contained in:
		
							
								
								
									
										167
									
								
								lib/python3.11/site-packages/numpy/fft/tests/test_helper.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										167
									
								
								lib/python3.11/site-packages/numpy/fft/tests/test_helper.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,167 @@ | ||||
| """Test functions for fftpack.helper module | ||||
|  | ||||
| Copied from fftpack.helper by Pearu Peterson, October 2005 | ||||
|  | ||||
| """ | ||||
| import numpy as np | ||||
| from numpy import fft, pi | ||||
| from numpy.testing import assert_array_almost_equal | ||||
|  | ||||
|  | ||||
| class TestFFTShift: | ||||
|  | ||||
|     def test_definition(self): | ||||
|         x = [0, 1, 2, 3, 4, -4, -3, -2, -1] | ||||
|         y = [-4, -3, -2, -1, 0, 1, 2, 3, 4] | ||||
|         assert_array_almost_equal(fft.fftshift(x), y) | ||||
|         assert_array_almost_equal(fft.ifftshift(y), x) | ||||
|         x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1] | ||||
|         y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] | ||||
|         assert_array_almost_equal(fft.fftshift(x), y) | ||||
|         assert_array_almost_equal(fft.ifftshift(y), x) | ||||
|  | ||||
|     def test_inverse(self): | ||||
|         for n in [1, 4, 9, 100, 211]: | ||||
|             x = np.random.random((n,)) | ||||
|             assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x) | ||||
|  | ||||
|     def test_axes_keyword(self): | ||||
|         freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]] | ||||
|         shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]] | ||||
|         assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted) | ||||
|         assert_array_almost_equal(fft.fftshift(freqs, axes=0), | ||||
|                                   fft.fftshift(freqs, axes=(0,))) | ||||
|         assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs) | ||||
|         assert_array_almost_equal(fft.ifftshift(shifted, axes=0), | ||||
|                                   fft.ifftshift(shifted, axes=(0,))) | ||||
|  | ||||
|         assert_array_almost_equal(fft.fftshift(freqs), shifted) | ||||
|         assert_array_almost_equal(fft.ifftshift(shifted), freqs) | ||||
|  | ||||
|     def test_uneven_dims(self): | ||||
|         """ Test 2D input, which has uneven dimension sizes """ | ||||
|         freqs = [ | ||||
|             [0, 1], | ||||
|             [2, 3], | ||||
|             [4, 5] | ||||
|         ] | ||||
|  | ||||
|         # shift in dimension 0 | ||||
|         shift_dim0 = [ | ||||
|             [4, 5], | ||||
|             [0, 1], | ||||
|             [2, 3] | ||||
|         ] | ||||
|         assert_array_almost_equal(fft.fftshift(freqs, axes=0), shift_dim0) | ||||
|         assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=0), freqs) | ||||
|         assert_array_almost_equal(fft.fftshift(freqs, axes=(0,)), shift_dim0) | ||||
|         assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=[0]), freqs) | ||||
|  | ||||
|         # shift in dimension 1 | ||||
|         shift_dim1 = [ | ||||
|             [1, 0], | ||||
|             [3, 2], | ||||
|             [5, 4] | ||||
|         ] | ||||
|         assert_array_almost_equal(fft.fftshift(freqs, axes=1), shift_dim1) | ||||
|         assert_array_almost_equal(fft.ifftshift(shift_dim1, axes=1), freqs) | ||||
|  | ||||
|         # shift in both dimensions | ||||
|         shift_dim_both = [ | ||||
|             [5, 4], | ||||
|             [1, 0], | ||||
|             [3, 2] | ||||
|         ] | ||||
|         assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shift_dim_both) | ||||
|         assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=(0, 1)), freqs) | ||||
|         assert_array_almost_equal(fft.fftshift(freqs, axes=[0, 1]), shift_dim_both) | ||||
|         assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=[0, 1]), freqs) | ||||
|  | ||||
|         # axes=None (default) shift in all dimensions | ||||
|         assert_array_almost_equal(fft.fftshift(freqs, axes=None), shift_dim_both) | ||||
|         assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=None), freqs) | ||||
|         assert_array_almost_equal(fft.fftshift(freqs), shift_dim_both) | ||||
|         assert_array_almost_equal(fft.ifftshift(shift_dim_both), freqs) | ||||
|  | ||||
|     def test_equal_to_original(self): | ||||
|         """ Test the new (>=v1.15) and old implementations are equal (see #10073) """ | ||||
|         from numpy._core import arange, asarray, concatenate, take | ||||
|  | ||||
|         def original_fftshift(x, axes=None): | ||||
|             """ How fftshift was implemented in v1.14""" | ||||
|             tmp = asarray(x) | ||||
|             ndim = tmp.ndim | ||||
|             if axes is None: | ||||
|                 axes = list(range(ndim)) | ||||
|             elif isinstance(axes, int): | ||||
|                 axes = (axes,) | ||||
|             y = tmp | ||||
|             for k in axes: | ||||
|                 n = tmp.shape[k] | ||||
|                 p2 = (n + 1) // 2 | ||||
|                 mylist = concatenate((arange(p2, n), arange(p2))) | ||||
|                 y = take(y, mylist, k) | ||||
|             return y | ||||
|  | ||||
|         def original_ifftshift(x, axes=None): | ||||
|             """ How ifftshift was implemented in v1.14 """ | ||||
|             tmp = asarray(x) | ||||
|             ndim = tmp.ndim | ||||
|             if axes is None: | ||||
|                 axes = list(range(ndim)) | ||||
|             elif isinstance(axes, int): | ||||
|                 axes = (axes,) | ||||
|             y = tmp | ||||
|             for k in axes: | ||||
|                 n = tmp.shape[k] | ||||
|                 p2 = n - (n + 1) // 2 | ||||
|                 mylist = concatenate((arange(p2, n), arange(p2))) | ||||
|                 y = take(y, mylist, k) | ||||
|             return y | ||||
|  | ||||
|         # create possible 2d array combinations and try all possible keywords | ||||
|         # compare output to original functions | ||||
|         for i in range(16): | ||||
|             for j in range(16): | ||||
|                 for axes_keyword in [0, 1, None, (0,), (0, 1)]: | ||||
|                     inp = np.random.rand(i, j) | ||||
|  | ||||
|                     assert_array_almost_equal(fft.fftshift(inp, axes_keyword), | ||||
|                                               original_fftshift(inp, axes_keyword)) | ||||
|  | ||||
|                     assert_array_almost_equal(fft.ifftshift(inp, axes_keyword), | ||||
|                                               original_ifftshift(inp, axes_keyword)) | ||||
|  | ||||
|  | ||||
| class TestFFTFreq: | ||||
|  | ||||
|     def test_definition(self): | ||||
|         x = [0, 1, 2, 3, 4, -4, -3, -2, -1] | ||||
|         assert_array_almost_equal(9 * fft.fftfreq(9), x) | ||||
|         assert_array_almost_equal(9 * pi * fft.fftfreq(9, pi), x) | ||||
|         x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1] | ||||
|         assert_array_almost_equal(10 * fft.fftfreq(10), x) | ||||
|         assert_array_almost_equal(10 * pi * fft.fftfreq(10, pi), x) | ||||
|  | ||||
|  | ||||
| class TestRFFTFreq: | ||||
|  | ||||
|     def test_definition(self): | ||||
|         x = [0, 1, 2, 3, 4] | ||||
|         assert_array_almost_equal(9 * fft.rfftfreq(9), x) | ||||
|         assert_array_almost_equal(9 * pi * fft.rfftfreq(9, pi), x) | ||||
|         x = [0, 1, 2, 3, 4, 5] | ||||
|         assert_array_almost_equal(10 * fft.rfftfreq(10), x) | ||||
|         assert_array_almost_equal(10 * pi * fft.rfftfreq(10, pi), x) | ||||
|  | ||||
|  | ||||
| class TestIRFFTN: | ||||
|  | ||||
|     def test_not_last_axis_success(self): | ||||
|         ar, ai = np.random.random((2, 16, 8, 32)) | ||||
|         a = ar + 1j * ai | ||||
|  | ||||
|         axes = (-2,) | ||||
|  | ||||
|         # Should not raise error | ||||
|         fft.irfftn(a, axes=axes) | ||||
							
								
								
									
										589
									
								
								lib/python3.11/site-packages/numpy/fft/tests/test_pocketfft.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										589
									
								
								lib/python3.11/site-packages/numpy/fft/tests/test_pocketfft.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,589 @@ | ||||
| import queue | ||||
| import threading | ||||
|  | ||||
| import pytest | ||||
|  | ||||
| import numpy as np | ||||
| from numpy.random import random | ||||
| from numpy.testing import IS_WASM, assert_allclose, assert_array_equal, assert_raises | ||||
|  | ||||
|  | ||||
| def fft1(x): | ||||
|     L = len(x) | ||||
|     phase = -2j * np.pi * (np.arange(L) / L) | ||||
|     phase = np.arange(L).reshape(-1, 1) * phase | ||||
|     return np.sum(x * np.exp(phase), axis=1) | ||||
|  | ||||
|  | ||||
| class TestFFTShift: | ||||
|  | ||||
|     def test_fft_n(self): | ||||
|         assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0) | ||||
|  | ||||
|  | ||||
| class TestFFT1D: | ||||
|  | ||||
|     def test_identity(self): | ||||
|         maxlen = 512 | ||||
|         x = random(maxlen) + 1j * random(maxlen) | ||||
|         xr = random(maxlen) | ||||
|         for i in range(1, maxlen): | ||||
|             assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i], | ||||
|                             atol=1e-12) | ||||
|             assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i), | ||||
|                             xr[0:i], atol=1e-12) | ||||
|  | ||||
|     @pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble]) | ||||
|     def test_identity_long_short(self, dtype): | ||||
|         # Test with explicitly given number of points, both for n | ||||
|         # smaller and for n larger than the input size. | ||||
|         maxlen = 16 | ||||
|         atol = 5 * np.spacing(np.array(1., dtype=dtype)) | ||||
|         x = random(maxlen).astype(dtype) + 1j * random(maxlen).astype(dtype) | ||||
|         xx = np.concatenate([x, np.zeros_like(x)]) | ||||
|         xr = random(maxlen).astype(dtype) | ||||
|         xxr = np.concatenate([xr, np.zeros_like(xr)]) | ||||
|         for i in range(1, maxlen * 2): | ||||
|             check_c = np.fft.ifft(np.fft.fft(x, n=i), n=i) | ||||
|             assert check_c.real.dtype == dtype | ||||
|             assert_allclose(check_c, xx[0:i], atol=atol, rtol=0) | ||||
|             check_r = np.fft.irfft(np.fft.rfft(xr, n=i), n=i) | ||||
|             assert check_r.dtype == dtype | ||||
|             assert_allclose(check_r, xxr[0:i], atol=atol, rtol=0) | ||||
|  | ||||
|     @pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble]) | ||||
|     def test_identity_long_short_reversed(self, dtype): | ||||
|         # Also test explicitly given number of points in reversed order. | ||||
|         maxlen = 16 | ||||
|         atol = 5 * np.spacing(np.array(1., dtype=dtype)) | ||||
|         x = random(maxlen).astype(dtype) + 1j * random(maxlen).astype(dtype) | ||||
|         xx = np.concatenate([x, np.zeros_like(x)]) | ||||
|         for i in range(1, maxlen * 2): | ||||
|             check_via_c = np.fft.fft(np.fft.ifft(x, n=i), n=i) | ||||
|             assert check_via_c.dtype == x.dtype | ||||
|             assert_allclose(check_via_c, xx[0:i], atol=atol, rtol=0) | ||||
|             # For irfft, we can neither recover the imaginary part of | ||||
|             # the first element, nor the imaginary part of the last | ||||
|             # element if npts is even.  So, set to 0 for the comparison. | ||||
|             y = x.copy() | ||||
|             n = i // 2 + 1 | ||||
|             y.imag[0] = 0 | ||||
|             if i % 2 == 0: | ||||
|                 y.imag[n - 1:] = 0 | ||||
|             yy = np.concatenate([y, np.zeros_like(y)]) | ||||
|             check_via_r = np.fft.rfft(np.fft.irfft(x, n=i), n=i) | ||||
|             assert check_via_r.dtype == x.dtype | ||||
|             assert_allclose(check_via_r, yy[0:n], atol=atol, rtol=0) | ||||
|  | ||||
|     def test_fft(self): | ||||
|         x = random(30) + 1j * random(30) | ||||
|         assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6) | ||||
|         assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=1e-6) | ||||
|         assert_allclose(fft1(x) / np.sqrt(30), | ||||
|                         np.fft.fft(x, norm="ortho"), atol=1e-6) | ||||
|         assert_allclose(fft1(x) / 30., | ||||
|                         np.fft.fft(x, norm="forward"), atol=1e-6) | ||||
|  | ||||
|     @pytest.mark.parametrize("axis", (0, 1)) | ||||
|     @pytest.mark.parametrize("dtype", (complex, float)) | ||||
|     @pytest.mark.parametrize("transpose", (True, False)) | ||||
|     def test_fft_out_argument(self, dtype, transpose, axis): | ||||
|         def zeros_like(x): | ||||
|             if transpose: | ||||
|                 return np.zeros_like(x.T).T | ||||
|             else: | ||||
|                 return np.zeros_like(x) | ||||
|  | ||||
|         # tests below only test the out parameter | ||||
|         if dtype is complex: | ||||
|             y = random((10, 20)) + 1j * random((10, 20)) | ||||
|             fft, ifft = np.fft.fft, np.fft.ifft | ||||
|         else: | ||||
|             y = random((10, 20)) | ||||
|             fft, ifft = np.fft.rfft, np.fft.irfft | ||||
|  | ||||
|         expected = fft(y, axis=axis) | ||||
|         out = zeros_like(expected) | ||||
|         result = fft(y, out=out, axis=axis) | ||||
|         assert result is out | ||||
|         assert_array_equal(result, expected) | ||||
|  | ||||
|         expected2 = ifft(expected, axis=axis) | ||||
|         out2 = out if dtype is complex else zeros_like(expected2) | ||||
|         result2 = ifft(out, out=out2, axis=axis) | ||||
|         assert result2 is out2 | ||||
|         assert_array_equal(result2, expected2) | ||||
|  | ||||
|     @pytest.mark.parametrize("axis", [0, 1]) | ||||
|     def test_fft_inplace_out(self, axis): | ||||
|         # Test some weirder in-place combinations | ||||
|         y = random((20, 20)) + 1j * random((20, 20)) | ||||
|         # Fully in-place. | ||||
|         y1 = y.copy() | ||||
|         expected1 = np.fft.fft(y1, axis=axis) | ||||
|         result1 = np.fft.fft(y1, axis=axis, out=y1) | ||||
|         assert result1 is y1 | ||||
|         assert_array_equal(result1, expected1) | ||||
|         # In-place of part of the array; rest should be unchanged. | ||||
|         y2 = y.copy() | ||||
|         out2 = y2[:10] if axis == 0 else y2[:, :10] | ||||
|         expected2 = np.fft.fft(y2, n=10, axis=axis) | ||||
|         result2 = np.fft.fft(y2, n=10, axis=axis, out=out2) | ||||
|         assert result2 is out2 | ||||
|         assert_array_equal(result2, expected2) | ||||
|         if axis == 0: | ||||
|             assert_array_equal(y2[10:], y[10:]) | ||||
|         else: | ||||
|             assert_array_equal(y2[:, 10:], y[:, 10:]) | ||||
|         # In-place of another part of the array. | ||||
|         y3 = y.copy() | ||||
|         y3_sel = y3[5:] if axis == 0 else y3[:, 5:] | ||||
|         out3 = y3[5:15] if axis == 0 else y3[:, 5:15] | ||||
|         expected3 = np.fft.fft(y3_sel, n=10, axis=axis) | ||||
|         result3 = np.fft.fft(y3_sel, n=10, axis=axis, out=out3) | ||||
|         assert result3 is out3 | ||||
|         assert_array_equal(result3, expected3) | ||||
|         if axis == 0: | ||||
|             assert_array_equal(y3[:5], y[:5]) | ||||
|             assert_array_equal(y3[15:], y[15:]) | ||||
|         else: | ||||
|             assert_array_equal(y3[:, :5], y[:, :5]) | ||||
|             assert_array_equal(y3[:, 15:], y[:, 15:]) | ||||
|         # In-place with n > nin; rest should be unchanged. | ||||
|         y4 = y.copy() | ||||
|         y4_sel = y4[:10] if axis == 0 else y4[:, :10] | ||||
|         out4 = y4[:15] if axis == 0 else y4[:, :15] | ||||
|         expected4 = np.fft.fft(y4_sel, n=15, axis=axis) | ||||
|         result4 = np.fft.fft(y4_sel, n=15, axis=axis, out=out4) | ||||
|         assert result4 is out4 | ||||
|         assert_array_equal(result4, expected4) | ||||
|         if axis == 0: | ||||
|             assert_array_equal(y4[15:], y[15:]) | ||||
|         else: | ||||
|             assert_array_equal(y4[:, 15:], y[:, 15:]) | ||||
|         # Overwrite in a transpose. | ||||
|         y5 = y.copy() | ||||
|         out5 = y5.T | ||||
|         result5 = np.fft.fft(y5, axis=axis, out=out5) | ||||
|         assert result5 is out5 | ||||
|         assert_array_equal(result5, expected1) | ||||
|         # Reverse strides. | ||||
|         y6 = y.copy() | ||||
|         out6 = y6[::-1] if axis == 0 else y6[:, ::-1] | ||||
|         result6 = np.fft.fft(y6, axis=axis, out=out6) | ||||
|         assert result6 is out6 | ||||
|         assert_array_equal(result6, expected1) | ||||
|  | ||||
|     def test_fft_bad_out(self): | ||||
|         x = np.arange(30.) | ||||
|         with pytest.raises(TypeError, match="must be of ArrayType"): | ||||
|             np.fft.fft(x, out="") | ||||
|         with pytest.raises(ValueError, match="has wrong shape"): | ||||
|             np.fft.fft(x, out=np.zeros_like(x).reshape(5, -1)) | ||||
|         with pytest.raises(TypeError, match="Cannot cast"): | ||||
|             np.fft.fft(x, out=np.zeros_like(x, dtype=float)) | ||||
|  | ||||
|     @pytest.mark.parametrize('norm', (None, 'backward', 'ortho', 'forward')) | ||||
|     def test_ifft(self, norm): | ||||
|         x = random(30) + 1j * random(30) | ||||
|         assert_allclose( | ||||
|             x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm), | ||||
|             atol=1e-6) | ||||
|         # Ensure we get the correct error message | ||||
|         with pytest.raises(ValueError, | ||||
|                            match='Invalid number of FFT data points'): | ||||
|             np.fft.ifft([], norm=norm) | ||||
|  | ||||
|     def test_fft2(self): | ||||
|         x = random((30, 20)) + 1j * random((30, 20)) | ||||
|         assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0), | ||||
|                         np.fft.fft2(x), atol=1e-6) | ||||
|         assert_allclose(np.fft.fft2(x), | ||||
|                         np.fft.fft2(x, norm="backward"), atol=1e-6) | ||||
|         assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20), | ||||
|                         np.fft.fft2(x, norm="ortho"), atol=1e-6) | ||||
|         assert_allclose(np.fft.fft2(x) / (30. * 20.), | ||||
|                         np.fft.fft2(x, norm="forward"), atol=1e-6) | ||||
|  | ||||
|     def test_ifft2(self): | ||||
|         x = random((30, 20)) + 1j * random((30, 20)) | ||||
|         assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0), | ||||
|                         np.fft.ifft2(x), atol=1e-6) | ||||
|         assert_allclose(np.fft.ifft2(x), | ||||
|                         np.fft.ifft2(x, norm="backward"), atol=1e-6) | ||||
|         assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20), | ||||
|                         np.fft.ifft2(x, norm="ortho"), atol=1e-6) | ||||
|         assert_allclose(np.fft.ifft2(x) * (30. * 20.), | ||||
|                         np.fft.ifft2(x, norm="forward"), atol=1e-6) | ||||
|  | ||||
|     def test_fftn(self): | ||||
|         x = random((30, 20, 10)) + 1j * random((30, 20, 10)) | ||||
|         assert_allclose( | ||||
|             np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0), | ||||
|             np.fft.fftn(x), atol=1e-6) | ||||
|         assert_allclose(np.fft.fftn(x), | ||||
|                         np.fft.fftn(x, norm="backward"), atol=1e-6) | ||||
|         assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10), | ||||
|                         np.fft.fftn(x, norm="ortho"), atol=1e-6) | ||||
|         assert_allclose(np.fft.fftn(x) / (30. * 20. * 10.), | ||||
|                         np.fft.fftn(x, norm="forward"), atol=1e-6) | ||||
|  | ||||
|     def test_ifftn(self): | ||||
|         x = random((30, 20, 10)) + 1j * random((30, 20, 10)) | ||||
|         assert_allclose( | ||||
|             np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0), | ||||
|             np.fft.ifftn(x), atol=1e-6) | ||||
|         assert_allclose(np.fft.ifftn(x), | ||||
|                         np.fft.ifftn(x, norm="backward"), atol=1e-6) | ||||
|         assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10), | ||||
|                         np.fft.ifftn(x, norm="ortho"), atol=1e-6) | ||||
|         assert_allclose(np.fft.ifftn(x) * (30. * 20. * 10.), | ||||
|                         np.fft.ifftn(x, norm="forward"), atol=1e-6) | ||||
|  | ||||
|     def test_rfft(self): | ||||
|         x = random(30) | ||||
|         for n in [x.size, 2 * x.size]: | ||||
|             for norm in [None, 'backward', 'ortho', 'forward']: | ||||
|                 assert_allclose( | ||||
|                     np.fft.fft(x, n=n, norm=norm)[:(n // 2 + 1)], | ||||
|                     np.fft.rfft(x, n=n, norm=norm), atol=1e-6) | ||||
|             assert_allclose( | ||||
|                 np.fft.rfft(x, n=n), | ||||
|                 np.fft.rfft(x, n=n, norm="backward"), atol=1e-6) | ||||
|             assert_allclose( | ||||
|                 np.fft.rfft(x, n=n) / np.sqrt(n), | ||||
|                 np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6) | ||||
|             assert_allclose( | ||||
|                 np.fft.rfft(x, n=n) / n, | ||||
|                 np.fft.rfft(x, n=n, norm="forward"), atol=1e-6) | ||||
|  | ||||
|     def test_rfft_even(self): | ||||
|         x = np.arange(8) | ||||
|         n = 4 | ||||
|         y = np.fft.rfft(x, n) | ||||
|         assert_allclose(y, np.fft.fft(x[:n])[:n // 2 + 1], rtol=1e-14) | ||||
|  | ||||
|     def test_rfft_odd(self): | ||||
|         x = np.array([1, 0, 2, 3, -3]) | ||||
|         y = np.fft.rfft(x) | ||||
|         assert_allclose(y, np.fft.fft(x)[:3], rtol=1e-14) | ||||
|  | ||||
|     def test_irfft(self): | ||||
|         x = random(30) | ||||
|         assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6) | ||||
|         assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="backward"), | ||||
|                         norm="backward"), atol=1e-6) | ||||
|         assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), | ||||
|                         norm="ortho"), atol=1e-6) | ||||
|         assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="forward"), | ||||
|                         norm="forward"), atol=1e-6) | ||||
|  | ||||
|     def test_rfft2(self): | ||||
|         x = random((30, 20)) | ||||
|         assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6) | ||||
|         assert_allclose(np.fft.rfft2(x), | ||||
|                         np.fft.rfft2(x, norm="backward"), atol=1e-6) | ||||
|         assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20), | ||||
|                         np.fft.rfft2(x, norm="ortho"), atol=1e-6) | ||||
|         assert_allclose(np.fft.rfft2(x) / (30. * 20.), | ||||
|                         np.fft.rfft2(x, norm="forward"), atol=1e-6) | ||||
|  | ||||
|     def test_irfft2(self): | ||||
|         x = random((30, 20)) | ||||
|         assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6) | ||||
|         assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"), | ||||
|                         norm="backward"), atol=1e-6) | ||||
|         assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), | ||||
|                         norm="ortho"), atol=1e-6) | ||||
|         assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"), | ||||
|                         norm="forward"), atol=1e-6) | ||||
|  | ||||
|     def test_rfftn(self): | ||||
|         x = random((30, 20, 10)) | ||||
|         assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6) | ||||
|         assert_allclose(np.fft.rfftn(x), | ||||
|                         np.fft.rfftn(x, norm="backward"), atol=1e-6) | ||||
|         assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10), | ||||
|                         np.fft.rfftn(x, norm="ortho"), atol=1e-6) | ||||
|         assert_allclose(np.fft.rfftn(x) / (30. * 20. * 10.), | ||||
|                         np.fft.rfftn(x, norm="forward"), atol=1e-6) | ||||
|         # Regression test for gh-27159 | ||||
|         x = np.ones((2, 3)) | ||||
|         result = np.fft.rfftn(x, axes=(0, 0, 1), s=(10, 20, 40)) | ||||
|         assert result.shape == (10, 21) | ||||
|         expected = np.fft.fft(np.fft.fft(np.fft.rfft(x, axis=1, n=40), | ||||
|                             axis=0, n=20), axis=0, n=10) | ||||
|         assert expected.shape == (10, 21) | ||||
|         assert_allclose(result, expected, atol=1e-6) | ||||
|  | ||||
|     def test_irfftn(self): | ||||
|         x = random((30, 20, 10)) | ||||
|         assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6) | ||||
|         assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"), | ||||
|                         norm="backward"), atol=1e-6) | ||||
|         assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), | ||||
|                         norm="ortho"), atol=1e-6) | ||||
|         assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"), | ||||
|                         norm="forward"), atol=1e-6) | ||||
|  | ||||
|     def test_hfft(self): | ||||
|         x = random(14) + 1j * random(14) | ||||
|         x_herm = np.concatenate((random(1), x, random(1))) | ||||
|         x = np.concatenate((x_herm, x[::-1].conj())) | ||||
|         assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6) | ||||
|         assert_allclose(np.fft.hfft(x_herm), | ||||
|                         np.fft.hfft(x_herm, norm="backward"), atol=1e-6) | ||||
|         assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30), | ||||
|                         np.fft.hfft(x_herm, norm="ortho"), atol=1e-6) | ||||
|         assert_allclose(np.fft.hfft(x_herm) / 30., | ||||
|                         np.fft.hfft(x_herm, norm="forward"), atol=1e-6) | ||||
|  | ||||
|     def test_ihfft(self): | ||||
|         x = random(14) + 1j * random(14) | ||||
|         x_herm = np.concatenate((random(1), x, random(1))) | ||||
|         x = np.concatenate((x_herm, x[::-1].conj())) | ||||
|         assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6) | ||||
|         assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, | ||||
|                         norm="backward"), norm="backward"), atol=1e-6) | ||||
|         assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, | ||||
|                         norm="ortho"), norm="ortho"), atol=1e-6) | ||||
|         assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, | ||||
|                         norm="forward"), norm="forward"), atol=1e-6) | ||||
|  | ||||
|     @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn, | ||||
|                                     np.fft.rfftn, np.fft.irfftn]) | ||||
|     def test_axes(self, op): | ||||
|         x = random((30, 20, 10)) | ||||
|         axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)] | ||||
|         for a in axes: | ||||
|             op_tr = op(np.transpose(x, a)) | ||||
|             tr_op = np.transpose(op(x, axes=a), a) | ||||
|             assert_allclose(op_tr, tr_op, atol=1e-6) | ||||
|  | ||||
|     @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn, | ||||
|                                     np.fft.fft2, np.fft.ifft2]) | ||||
|     def test_s_negative_1(self, op): | ||||
|         x = np.arange(100).reshape(10, 10) | ||||
|         # should use the whole input array along the first axis | ||||
|         assert op(x, s=(-1, 5), axes=(0, 1)).shape == (10, 5) | ||||
|  | ||||
|     @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn, | ||||
|                                     np.fft.rfftn, np.fft.irfftn]) | ||||
|     def test_s_axes_none(self, op): | ||||
|         x = np.arange(100).reshape(10, 10) | ||||
|         with pytest.warns(match='`axes` should not be `None` if `s`'): | ||||
|             op(x, s=(-1, 5)) | ||||
|  | ||||
|     @pytest.mark.parametrize("op", [np.fft.fft2, np.fft.ifft2]) | ||||
|     def test_s_axes_none_2D(self, op): | ||||
|         x = np.arange(100).reshape(10, 10) | ||||
|         with pytest.warns(match='`axes` should not be `None` if `s`'): | ||||
|             op(x, s=(-1, 5), axes=None) | ||||
|  | ||||
|     @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn, | ||||
|                                     np.fft.rfftn, np.fft.irfftn, | ||||
|                                     np.fft.fft2, np.fft.ifft2]) | ||||
|     def test_s_contains_none(self, op): | ||||
|         x = random((30, 20, 10)) | ||||
|         with pytest.warns(match='array containing `None` values to `s`'): | ||||
|             op(x, s=(10, None, 10), axes=(0, 1, 2)) | ||||
|  | ||||
|     def test_all_1d_norm_preserving(self): | ||||
|         # verify that round-trip transforms are norm-preserving | ||||
|         x = random(30) | ||||
|         x_norm = np.linalg.norm(x) | ||||
|         n = x.size * 2 | ||||
|         func_pairs = [(np.fft.fft, np.fft.ifft), | ||||
|                       (np.fft.rfft, np.fft.irfft), | ||||
|                       # hfft: order so the first function takes x.size samples | ||||
|                       #       (necessary for comparison to x_norm above) | ||||
|                       (np.fft.ihfft, np.fft.hfft), | ||||
|                       ] | ||||
|         for forw, back in func_pairs: | ||||
|             for n in [x.size, 2 * x.size]: | ||||
|                 for norm in [None, 'backward', 'ortho', 'forward']: | ||||
|                     tmp = forw(x, n=n, norm=norm) | ||||
|                     tmp = back(tmp, n=n, norm=norm) | ||||
|                     assert_allclose(x_norm, | ||||
|                                     np.linalg.norm(tmp), atol=1e-6) | ||||
|  | ||||
|     @pytest.mark.parametrize("axes", [(0, 1), (0, 2), None]) | ||||
|     @pytest.mark.parametrize("dtype", (complex, float)) | ||||
|     @pytest.mark.parametrize("transpose", (True, False)) | ||||
|     def test_fftn_out_argument(self, dtype, transpose, axes): | ||||
|         def zeros_like(x): | ||||
|             if transpose: | ||||
|                 return np.zeros_like(x.T).T | ||||
|             else: | ||||
|                 return np.zeros_like(x) | ||||
|  | ||||
|         # tests below only test the out parameter | ||||
|         if dtype is complex: | ||||
|             x = random((10, 5, 6)) + 1j * random((10, 5, 6)) | ||||
|             fft, ifft = np.fft.fftn, np.fft.ifftn | ||||
|         else: | ||||
|             x = random((10, 5, 6)) | ||||
|             fft, ifft = np.fft.rfftn, np.fft.irfftn | ||||
|  | ||||
|         expected = fft(x, axes=axes) | ||||
|         out = zeros_like(expected) | ||||
|         result = fft(x, out=out, axes=axes) | ||||
|         assert result is out | ||||
|         assert_array_equal(result, expected) | ||||
|  | ||||
|         expected2 = ifft(expected, axes=axes) | ||||
|         out2 = out if dtype is complex else zeros_like(expected2) | ||||
|         result2 = ifft(out, out=out2, axes=axes) | ||||
|         assert result2 is out2 | ||||
|         assert_array_equal(result2, expected2) | ||||
|  | ||||
|     @pytest.mark.parametrize("fft", [np.fft.fftn, np.fft.ifftn, np.fft.rfftn]) | ||||
|     def test_fftn_out_and_s_interaction(self, fft): | ||||
|         # With s, shape varies, so generally one cannot pass in out. | ||||
|         if fft is np.fft.rfftn: | ||||
|             x = random((10, 5, 6)) | ||||
|         else: | ||||
|             x = random((10, 5, 6)) + 1j * random((10, 5, 6)) | ||||
|         with pytest.raises(ValueError, match="has wrong shape"): | ||||
|             fft(x, out=np.zeros_like(x), s=(3, 3, 3), axes=(0, 1, 2)) | ||||
|         # Except on the first axis done (which is the last of axes). | ||||
|         s = (10, 5, 5) | ||||
|         expected = fft(x, s=s, axes=(0, 1, 2)) | ||||
|         out = np.zeros_like(expected) | ||||
|         result = fft(x, s=s, axes=(0, 1, 2), out=out) | ||||
|         assert result is out | ||||
|         assert_array_equal(result, expected) | ||||
|  | ||||
|     @pytest.mark.parametrize("s", [(9, 5, 5), (3, 3, 3)]) | ||||
|     def test_irfftn_out_and_s_interaction(self, s): | ||||
|         # Since for irfftn, the output is real and thus cannot be used for | ||||
|         # intermediate steps, it should always work. | ||||
|         x = random((9, 5, 6, 2)) + 1j * random((9, 5, 6, 2)) | ||||
|         expected = np.fft.irfftn(x, s=s, axes=(0, 1, 2)) | ||||
|         out = np.zeros_like(expected) | ||||
|         result = np.fft.irfftn(x, s=s, axes=(0, 1, 2), out=out) | ||||
|         assert result is out | ||||
|         assert_array_equal(result, expected) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize( | ||||
|         "dtype", | ||||
|         [np.float32, np.float64, np.complex64, np.complex128]) | ||||
| @pytest.mark.parametrize("order", ["F", 'non-contiguous']) | ||||
| @pytest.mark.parametrize( | ||||
|         "fft", | ||||
|         [np.fft.fft, np.fft.fft2, np.fft.fftn, | ||||
|          np.fft.ifft, np.fft.ifft2, np.fft.ifftn]) | ||||
| def test_fft_with_order(dtype, order, fft): | ||||
|     # Check that FFT/IFFT produces identical results for C, Fortran and | ||||
|     # non contiguous arrays | ||||
|     rng = np.random.RandomState(42) | ||||
|     X = rng.rand(8, 7, 13).astype(dtype, copy=False) | ||||
|     # See discussion in pull/14178 | ||||
|     _tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps | ||||
|     if order == 'F': | ||||
|         Y = np.asfortranarray(X) | ||||
|     else: | ||||
|         # Make a non contiguous array | ||||
|         Y = X[::-1] | ||||
|         X = np.ascontiguousarray(X[::-1]) | ||||
|  | ||||
|     if fft.__name__.endswith('fft'): | ||||
|         for axis in range(3): | ||||
|             X_res = fft(X, axis=axis) | ||||
|             Y_res = fft(Y, axis=axis) | ||||
|             assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) | ||||
|     elif fft.__name__.endswith(('fft2', 'fftn')): | ||||
|         axes = [(0, 1), (1, 2), (0, 2)] | ||||
|         if fft.__name__.endswith('fftn'): | ||||
|             axes.extend([(0,), (1,), (2,), None]) | ||||
|         for ax in axes: | ||||
|             X_res = fft(X, axes=ax) | ||||
|             Y_res = fft(Y, axes=ax) | ||||
|             assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) | ||||
|     else: | ||||
|         raise ValueError | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize("order", ["F", "C"]) | ||||
| @pytest.mark.parametrize("n", [None, 7, 12]) | ||||
| def test_fft_output_order(order, n): | ||||
|     rng = np.random.RandomState(42) | ||||
|     x = rng.rand(10) | ||||
|     x = np.asarray(x, dtype=np.complex64, order=order) | ||||
|     res = np.fft.fft(x, n=n) | ||||
|     assert res.flags.c_contiguous == x.flags.c_contiguous | ||||
|     assert res.flags.f_contiguous == x.flags.f_contiguous | ||||
|  | ||||
| @pytest.mark.skipif(IS_WASM, reason="Cannot start thread") | ||||
| class TestFFTThreadSafe: | ||||
|     threads = 16 | ||||
|     input_shape = (800, 200) | ||||
|  | ||||
|     def _test_mtsame(self, func, *args): | ||||
|         def worker(args, q): | ||||
|             q.put(func(*args)) | ||||
|  | ||||
|         q = queue.Queue() | ||||
|         expected = func(*args) | ||||
|  | ||||
|         # Spin off a bunch of threads to call the same function simultaneously | ||||
|         t = [threading.Thread(target=worker, args=(args, q)) | ||||
|              for i in range(self.threads)] | ||||
|         [x.start() for x in t] | ||||
|  | ||||
|         [x.join() for x in t] | ||||
|         # Make sure all threads returned the correct value | ||||
|         for i in range(self.threads): | ||||
|             assert_array_equal(q.get(timeout=5), expected, | ||||
|                 'Function returned wrong value in multithreaded context') | ||||
|  | ||||
|     def test_fft(self): | ||||
|         a = np.ones(self.input_shape) * 1 + 0j | ||||
|         self._test_mtsame(np.fft.fft, a) | ||||
|  | ||||
|     def test_ifft(self): | ||||
|         a = np.ones(self.input_shape) * 1 + 0j | ||||
|         self._test_mtsame(np.fft.ifft, a) | ||||
|  | ||||
|     def test_rfft(self): | ||||
|         a = np.ones(self.input_shape) | ||||
|         self._test_mtsame(np.fft.rfft, a) | ||||
|  | ||||
|     def test_irfft(self): | ||||
|         a = np.ones(self.input_shape) * 1 + 0j | ||||
|         self._test_mtsame(np.fft.irfft, a) | ||||
|  | ||||
|  | ||||
| def test_irfft_with_n_1_regression(): | ||||
|     # Regression test for gh-25661 | ||||
|     x = np.arange(10) | ||||
|     np.fft.irfft(x, n=1) | ||||
|     np.fft.hfft(x, n=1) | ||||
|     np.fft.irfft(np.array([0], complex), n=10) | ||||
|  | ||||
|  | ||||
| def test_irfft_with_n_large_regression(): | ||||
|     # Regression test for gh-25679 | ||||
|     x = np.arange(5) * (1 + 1j) | ||||
|     result = np.fft.hfft(x, n=10) | ||||
|     expected = np.array([20., 9.91628173, -11.8819096, 7.1048486, | ||||
|                          -6.62459848, 4., -3.37540152, -0.16057669, | ||||
|                          1.8819096, -20.86055364]) | ||||
|     assert_allclose(result, expected) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize("fft", [ | ||||
|     np.fft.fft, np.fft.ifft, np.fft.rfft, np.fft.irfft | ||||
| ]) | ||||
| @pytest.mark.parametrize("data", [ | ||||
|     np.array([False, True, False]), | ||||
|     np.arange(10, dtype=np.uint8), | ||||
|     np.arange(5, dtype=np.int16), | ||||
| ]) | ||||
| def test_fft_with_integer_or_bool_input(data, fft): | ||||
|     # Regression test for gh-25819 | ||||
|     result = fft(data) | ||||
|     float_data = data.astype(np.result_type(data, 1.)) | ||||
|     expected = fft(float_data) | ||||
|     assert_array_equal(result, expected) | ||||
		Reference in New Issue
	
	Block a user