done
This commit is contained in:
345
lib/python3.11/site-packages/narwhals/_pandas_like/expr.py
Normal file
345
lib/python3.11/site-packages/narwhals/_pandas_like/expr.py
Normal file
@ -0,0 +1,345 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from narwhals._compliant import EagerExpr
|
||||
from narwhals._expression_parsing import evaluate_output_names_and_aliases
|
||||
from narwhals._pandas_like.group_by import PandasLikeGroupBy
|
||||
from narwhals._pandas_like.series import PandasLikeSeries
|
||||
from narwhals._utils import generate_temporary_column_name
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Sequence
|
||||
|
||||
from typing_extensions import Self
|
||||
|
||||
from narwhals._compliant.typing import AliasNames, EvalNames, EvalSeries, ScalarKwargs
|
||||
from narwhals._expression_parsing import ExprMetadata
|
||||
from narwhals._pandas_like.dataframe import PandasLikeDataFrame
|
||||
from narwhals._pandas_like.namespace import PandasLikeNamespace
|
||||
from narwhals._utils import Implementation, Version, _LimitedContext
|
||||
from narwhals.typing import PythonLiteral
|
||||
|
||||
WINDOW_FUNCTIONS_TO_PANDAS_EQUIVALENT = {
|
||||
"cum_sum": "cumsum",
|
||||
"cum_min": "cummin",
|
||||
"cum_max": "cummax",
|
||||
"cum_prod": "cumprod",
|
||||
# Pandas cumcount starts counting from 0 while Polars starts from 1
|
||||
# Pandas cumcount counts nulls while Polars does not
|
||||
# So, instead of using "cumcount" we use "cumsum" on notna() to get the same result
|
||||
"cum_count": "cumsum",
|
||||
"rolling_sum": "sum",
|
||||
"rolling_mean": "mean",
|
||||
"rolling_std": "std",
|
||||
"rolling_var": "var",
|
||||
"shift": "shift",
|
||||
"rank": "rank",
|
||||
"diff": "diff",
|
||||
"fill_null": "fillna",
|
||||
"quantile": "quantile",
|
||||
"ewm_mean": "mean",
|
||||
}
|
||||
|
||||
|
||||
def window_kwargs_to_pandas_equivalent(
|
||||
function_name: str, kwargs: ScalarKwargs
|
||||
) -> dict[str, PythonLiteral]:
|
||||
if function_name == "shift":
|
||||
assert "n" in kwargs # noqa: S101
|
||||
pandas_kwargs: dict[str, PythonLiteral] = {"periods": kwargs["n"]}
|
||||
elif function_name == "rank":
|
||||
assert "method" in kwargs # noqa: S101
|
||||
assert "descending" in kwargs # noqa: S101
|
||||
_method = kwargs["method"]
|
||||
pandas_kwargs = {
|
||||
"method": "first" if _method == "ordinal" else _method,
|
||||
"ascending": not kwargs["descending"],
|
||||
"na_option": "keep",
|
||||
"pct": False,
|
||||
}
|
||||
elif function_name.startswith("cum_"): # Cumulative operation
|
||||
pandas_kwargs = {"skipna": True}
|
||||
elif function_name.startswith("rolling_"): # Rolling operation
|
||||
assert "min_samples" in kwargs # noqa: S101
|
||||
assert "window_size" in kwargs # noqa: S101
|
||||
assert "center" in kwargs # noqa: S101
|
||||
pandas_kwargs = {
|
||||
"min_periods": kwargs["min_samples"],
|
||||
"window": kwargs["window_size"],
|
||||
"center": kwargs["center"],
|
||||
}
|
||||
elif function_name in {"std", "var"}:
|
||||
assert "ddof" in kwargs # noqa: S101
|
||||
pandas_kwargs = {"ddof": kwargs["ddof"]}
|
||||
elif function_name == "fill_null":
|
||||
assert "strategy" in kwargs # noqa: S101
|
||||
assert "limit" in kwargs # noqa: S101
|
||||
pandas_kwargs = {"strategy": kwargs["strategy"], "limit": kwargs["limit"]}
|
||||
elif function_name == "quantile":
|
||||
assert "quantile" in kwargs # noqa: S101
|
||||
assert "interpolation" in kwargs # noqa: S101
|
||||
pandas_kwargs = {
|
||||
"q": kwargs["quantile"],
|
||||
"interpolation": kwargs["interpolation"],
|
||||
}
|
||||
elif function_name.startswith("ewm_"):
|
||||
assert "com" in kwargs # noqa: S101
|
||||
assert "span" in kwargs # noqa: S101
|
||||
assert "half_life" in kwargs # noqa: S101
|
||||
assert "alpha" in kwargs # noqa: S101
|
||||
assert "adjust" in kwargs # noqa: S101
|
||||
assert "min_samples" in kwargs # noqa: S101
|
||||
assert "ignore_nulls" in kwargs # noqa: S101
|
||||
|
||||
pandas_kwargs = {
|
||||
"com": kwargs["com"],
|
||||
"span": kwargs["span"],
|
||||
"halflife": kwargs["half_life"],
|
||||
"alpha": kwargs["alpha"],
|
||||
"adjust": kwargs["adjust"],
|
||||
"min_periods": kwargs["min_samples"],
|
||||
"ignore_na": kwargs["ignore_nulls"],
|
||||
}
|
||||
else: # sum, len, ...
|
||||
pandas_kwargs = {}
|
||||
return pandas_kwargs
|
||||
|
||||
|
||||
class PandasLikeExpr(EagerExpr["PandasLikeDataFrame", PandasLikeSeries]):
|
||||
def __init__(
|
||||
self,
|
||||
call: EvalSeries[PandasLikeDataFrame, PandasLikeSeries],
|
||||
*,
|
||||
depth: int,
|
||||
function_name: str,
|
||||
evaluate_output_names: EvalNames[PandasLikeDataFrame],
|
||||
alias_output_names: AliasNames | None,
|
||||
implementation: Implementation,
|
||||
version: Version,
|
||||
scalar_kwargs: ScalarKwargs | None = None,
|
||||
) -> None:
|
||||
self._call = call
|
||||
self._depth = depth
|
||||
self._function_name = function_name
|
||||
self._evaluate_output_names = evaluate_output_names
|
||||
self._alias_output_names = alias_output_names
|
||||
self._implementation = implementation
|
||||
self._version = version
|
||||
self._scalar_kwargs = scalar_kwargs or {}
|
||||
self._metadata: ExprMetadata | None = None
|
||||
|
||||
def __narwhals_namespace__(self) -> PandasLikeNamespace:
|
||||
from narwhals._pandas_like.namespace import PandasLikeNamespace
|
||||
|
||||
return PandasLikeNamespace(self._implementation, version=self._version)
|
||||
|
||||
@classmethod
|
||||
def from_column_names(
|
||||
cls: type[Self],
|
||||
evaluate_column_names: EvalNames[PandasLikeDataFrame],
|
||||
/,
|
||||
*,
|
||||
context: _LimitedContext,
|
||||
function_name: str = "",
|
||||
) -> Self:
|
||||
def func(df: PandasLikeDataFrame) -> list[PandasLikeSeries]:
|
||||
try:
|
||||
return [
|
||||
PandasLikeSeries(
|
||||
df._native_frame[column_name],
|
||||
implementation=df._implementation,
|
||||
version=df._version,
|
||||
)
|
||||
for column_name in evaluate_column_names(df)
|
||||
]
|
||||
except KeyError as e:
|
||||
if error := df._check_columns_exist(evaluate_column_names(df)):
|
||||
raise error from e
|
||||
raise
|
||||
|
||||
return cls(
|
||||
func,
|
||||
depth=0,
|
||||
function_name=function_name,
|
||||
evaluate_output_names=evaluate_column_names,
|
||||
alias_output_names=None,
|
||||
implementation=context._implementation,
|
||||
version=context._version,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_column_indices(cls, *column_indices: int, context: _LimitedContext) -> Self:
|
||||
def func(df: PandasLikeDataFrame) -> list[PandasLikeSeries]:
|
||||
native = df.native
|
||||
return [
|
||||
PandasLikeSeries.from_native(native.iloc[:, i], context=df)
|
||||
for i in column_indices
|
||||
]
|
||||
|
||||
return cls(
|
||||
func,
|
||||
depth=0,
|
||||
function_name="nth",
|
||||
evaluate_output_names=cls._eval_names_indices(column_indices),
|
||||
alias_output_names=None,
|
||||
implementation=context._implementation,
|
||||
version=context._version,
|
||||
)
|
||||
|
||||
def ewm_mean(
|
||||
self,
|
||||
*,
|
||||
com: float | None,
|
||||
span: float | None,
|
||||
half_life: float | None,
|
||||
alpha: float | None,
|
||||
adjust: bool,
|
||||
min_samples: int,
|
||||
ignore_nulls: bool,
|
||||
) -> Self:
|
||||
return self._reuse_series(
|
||||
"ewm_mean",
|
||||
scalar_kwargs={
|
||||
"com": com,
|
||||
"span": span,
|
||||
"half_life": half_life,
|
||||
"alpha": alpha,
|
||||
"adjust": adjust,
|
||||
"min_samples": min_samples,
|
||||
"ignore_nulls": ignore_nulls,
|
||||
},
|
||||
)
|
||||
|
||||
def over( # noqa: C901, PLR0915
|
||||
self, partition_by: Sequence[str], order_by: Sequence[str]
|
||||
) -> Self:
|
||||
if not partition_by:
|
||||
# e.g. `nw.col('a').cum_sum().order_by(key)`
|
||||
# We can always easily support this as it doesn't require grouping.
|
||||
assert order_by # noqa: S101
|
||||
|
||||
def func(df: PandasLikeDataFrame) -> Sequence[PandasLikeSeries]:
|
||||
token = generate_temporary_column_name(8, df.columns)
|
||||
df = df.with_row_index(token, order_by=None).sort(
|
||||
*order_by, descending=False, nulls_last=False
|
||||
)
|
||||
results = self(df.drop([token], strict=True))
|
||||
sorting_indices = df.get_column(token)
|
||||
for s in results:
|
||||
s._scatter_in_place(sorting_indices, s)
|
||||
return results
|
||||
elif not self._is_elementary():
|
||||
msg = (
|
||||
"Only elementary expressions are supported for `.over` in pandas-like backends.\n\n"
|
||||
"Please see: "
|
||||
"https://narwhals-dev.github.io/narwhals/concepts/improve_group_by_operation/"
|
||||
)
|
||||
raise NotImplementedError(msg)
|
||||
else:
|
||||
function_name = PandasLikeGroupBy._leaf_name(self)
|
||||
pandas_function_name = WINDOW_FUNCTIONS_TO_PANDAS_EQUIVALENT.get(
|
||||
function_name, PandasLikeGroupBy._REMAP_AGGS.get(function_name)
|
||||
)
|
||||
if pandas_function_name is None:
|
||||
msg = (
|
||||
f"Unsupported function: {function_name} in `over` context.\n\n"
|
||||
f"Supported functions are {', '.join(WINDOW_FUNCTIONS_TO_PANDAS_EQUIVALENT)}\n"
|
||||
f"and {', '.join(PandasLikeGroupBy._REMAP_AGGS)}."
|
||||
)
|
||||
raise NotImplementedError(msg)
|
||||
pandas_kwargs = window_kwargs_to_pandas_equivalent(
|
||||
function_name, self._scalar_kwargs
|
||||
)
|
||||
|
||||
def func(df: PandasLikeDataFrame) -> Sequence[PandasLikeSeries]: # noqa: C901, PLR0912, PLR0914, PLR0915
|
||||
output_names, aliases = evaluate_output_names_and_aliases(self, df, [])
|
||||
if function_name == "cum_count":
|
||||
plx = self.__narwhals_namespace__()
|
||||
df = df.with_columns(~plx.col(*output_names).is_null())
|
||||
|
||||
if function_name.startswith("cum_"):
|
||||
assert "reverse" in self._scalar_kwargs # noqa: S101
|
||||
reverse = self._scalar_kwargs["reverse"]
|
||||
else:
|
||||
assert "reverse" not in self._scalar_kwargs # noqa: S101
|
||||
reverse = False
|
||||
|
||||
if order_by:
|
||||
columns = list(set(partition_by).union(output_names).union(order_by))
|
||||
token = generate_temporary_column_name(8, columns)
|
||||
df = (
|
||||
df.simple_select(*columns)
|
||||
.with_row_index(token, order_by=None)
|
||||
.sort(*order_by, descending=reverse, nulls_last=reverse)
|
||||
)
|
||||
sorting_indices = df.get_column(token)
|
||||
elif reverse:
|
||||
columns = list(set(partition_by).union(output_names))
|
||||
df = df.simple_select(*columns)._gather_slice(slice(None, None, -1))
|
||||
grouped = df._native_frame.groupby(partition_by)
|
||||
if function_name.startswith("rolling"):
|
||||
rolling = grouped[list(output_names)].rolling(**pandas_kwargs)
|
||||
assert pandas_function_name is not None # help mypy # noqa: S101
|
||||
if pandas_function_name in {"std", "var"}:
|
||||
assert "ddof" in self._scalar_kwargs # noqa: S101
|
||||
res_native = getattr(rolling, pandas_function_name)(
|
||||
ddof=self._scalar_kwargs["ddof"]
|
||||
)
|
||||
else:
|
||||
res_native = getattr(rolling, pandas_function_name)()
|
||||
elif function_name.startswith("ewm"):
|
||||
if self._implementation.is_pandas() and (
|
||||
self._implementation._backend_version()
|
||||
) < (1, 2): # pragma: no cover
|
||||
msg = (
|
||||
"Exponentially weighted calculation is not available in over "
|
||||
f"context for pandas versions older than 1.2.0, found {self._implementation._backend_version()}."
|
||||
)
|
||||
raise NotImplementedError(msg)
|
||||
ewm = grouped[list(output_names)].ewm(**pandas_kwargs)
|
||||
assert pandas_function_name is not None # help mypy # noqa: S101
|
||||
res_native = getattr(ewm, pandas_function_name)()
|
||||
elif function_name == "fill_null":
|
||||
assert "strategy" in self._scalar_kwargs # noqa: S101
|
||||
assert "limit" in self._scalar_kwargs # noqa: S101
|
||||
df_grouped = grouped[list(output_names)]
|
||||
if self._scalar_kwargs["strategy"] == "forward":
|
||||
res_native = df_grouped.ffill(limit=self._scalar_kwargs["limit"])
|
||||
elif self._scalar_kwargs["strategy"] == "backward":
|
||||
res_native = df_grouped.bfill(limit=self._scalar_kwargs["limit"])
|
||||
else: # pragma: no cover
|
||||
# This is deprecated in pandas. Indeed, `nw.col('a').fill_null(3).over('b')`
|
||||
# does not seem very useful, and DuckDB doesn't support it either.
|
||||
msg = "`fill_null` with `over` without `strategy` specified is not supported."
|
||||
raise NotImplementedError(msg)
|
||||
elif function_name == "len":
|
||||
if len(output_names) != 1: # pragma: no cover
|
||||
msg = "Safety check failed, please report a bug."
|
||||
raise AssertionError(msg)
|
||||
res_native = grouped.transform("size").to_frame(aliases[0])
|
||||
else:
|
||||
res_native = grouped[list(output_names)].transform(
|
||||
pandas_function_name, **pandas_kwargs
|
||||
)
|
||||
result_frame = df._with_native(res_native).rename(
|
||||
dict(zip(output_names, aliases))
|
||||
)
|
||||
results = [result_frame.get_column(name) for name in aliases]
|
||||
if order_by:
|
||||
for s in results:
|
||||
s._scatter_in_place(sorting_indices, s)
|
||||
return results
|
||||
if reverse:
|
||||
return [s._gather_slice(slice(None, None, -1)) for s in results]
|
||||
return results
|
||||
|
||||
return self.__class__(
|
||||
func,
|
||||
depth=self._depth + 1,
|
||||
function_name=self._function_name + "->over",
|
||||
evaluate_output_names=self._evaluate_output_names,
|
||||
alias_output_names=self._alias_output_names,
|
||||
implementation=self._implementation,
|
||||
version=self._version,
|
||||
)
|
Reference in New Issue
Block a user