This commit is contained in:
2025-09-07 22:09:54 +02:00
parent e1b817252c
commit 2fc0d000b6
7796 changed files with 2159515 additions and 933 deletions

View File

@ -0,0 +1,432 @@
from __future__ import annotations
import operator
from io import BytesIO
from typing import TYPE_CHECKING, Any, Literal, cast
import ibis
import ibis.expr.types as ir
from narwhals._ibis.utils import evaluate_exprs, native_to_narwhals_dtype
from narwhals._sql.dataframe import SQLLazyFrame
from narwhals._utils import (
Implementation,
ValidateBackendVersion,
Version,
not_implemented,
parse_columns_to_drop,
zip_strict,
)
from narwhals.exceptions import ColumnNotFoundError, InvalidOperationError
if TYPE_CHECKING:
from collections.abc import Iterable, Iterator, Mapping, Sequence
from pathlib import Path
from types import ModuleType
import pandas as pd
import pyarrow as pa
from ibis.expr.operations import Binary
from typing_extensions import Self, TypeAlias, TypeIs
from narwhals._compliant.typing import CompliantDataFrameAny
from narwhals._ibis.expr import IbisExpr
from narwhals._ibis.group_by import IbisGroupBy
from narwhals._ibis.namespace import IbisNamespace
from narwhals._ibis.series import IbisInterchangeSeries
from narwhals._typing import _EagerAllowedImpl
from narwhals._utils import _LimitedContext
from narwhals.dataframe import LazyFrame
from narwhals.dtypes import DType
from narwhals.stable.v1 import DataFrame as DataFrameV1
from narwhals.typing import AsofJoinStrategy, JoinStrategy, LazyUniqueKeepStrategy
JoinPredicates: TypeAlias = "Sequence[ir.BooleanColumn] | Sequence[str]"
class IbisLazyFrame(
SQLLazyFrame["IbisExpr", "ir.Table", "LazyFrame[ir.Table] | DataFrameV1[ir.Table]"],
ValidateBackendVersion,
):
_implementation = Implementation.IBIS
def __init__(
self, df: ir.Table, *, version: Version, validate_backend_version: bool = False
) -> None:
self._native_frame: ir.Table = df
self._version = version
self._cached_schema: dict[str, DType] | None = None
self._cached_columns: list[str] | None = None
if validate_backend_version:
self._validate_backend_version()
@staticmethod
def _is_native(obj: ir.Table | Any) -> TypeIs[ir.Table]:
return isinstance(obj, ir.Table)
@classmethod
def from_native(cls, data: ir.Table, /, *, context: _LimitedContext) -> Self:
return cls(data, version=context._version)
def to_narwhals(self) -> LazyFrame[ir.Table] | DataFrameV1[ir.Table]:
if self._version is Version.V1:
from narwhals.stable.v1 import DataFrame
return DataFrame(self, level="interchange")
return self._version.lazyframe(self, level="lazy")
def __narwhals_dataframe__(self) -> Self: # pragma: no cover
# Keep around for backcompat.
if self._version is not Version.V1:
msg = "__narwhals_dataframe__ is not implemented for IbisLazyFrame"
raise AttributeError(msg)
return self
def __narwhals_lazyframe__(self) -> Self:
return self
def __native_namespace__(self) -> ModuleType:
return ibis
def __narwhals_namespace__(self) -> IbisNamespace:
from narwhals._ibis.namespace import IbisNamespace
return IbisNamespace(version=self._version)
def get_column(self, name: str) -> IbisInterchangeSeries:
from narwhals._ibis.series import IbisInterchangeSeries
return IbisInterchangeSeries(self.native.select(name), version=self._version)
def _iter_columns(self) -> Iterator[ir.Expr]:
for name in self.columns:
yield self.native[name]
def collect(
self, backend: _EagerAllowedImpl | None, **kwargs: Any
) -> CompliantDataFrameAny:
if backend is None or backend is Implementation.PYARROW:
from narwhals._arrow.dataframe import ArrowDataFrame
return ArrowDataFrame(
self.native.to_pyarrow(),
validate_backend_version=True,
version=self._version,
validate_column_names=True,
)
if backend is Implementation.PANDAS:
from narwhals._pandas_like.dataframe import PandasLikeDataFrame
return PandasLikeDataFrame(
self.native.to_pandas(),
implementation=Implementation.PANDAS,
validate_backend_version=True,
version=self._version,
validate_column_names=True,
)
if backend is Implementation.POLARS:
from narwhals._polars.dataframe import PolarsDataFrame
return PolarsDataFrame(
self.native.to_polars(),
validate_backend_version=True,
version=self._version,
)
msg = f"Unsupported `backend` value: {backend}" # pragma: no cover
raise ValueError(msg) # pragma: no cover
def head(self, n: int) -> Self:
return self._with_native(self.native.head(n))
def simple_select(self, *column_names: str) -> Self:
return self._with_native(self.native.select(*column_names))
def aggregate(self, *exprs: IbisExpr) -> Self:
selection = [
cast("ir.Scalar", val.name(name))
for name, val in evaluate_exprs(self, *exprs)
]
return self._with_native(self.native.aggregate(selection))
def select(self, *exprs: IbisExpr) -> Self:
selection = [val.name(name) for name, val in evaluate_exprs(self, *exprs)]
if not selection:
msg = "At least one expression must be provided to `select` with the Ibis backend."
raise ValueError(msg)
t = self.native.select(*selection)
return self._with_native(t)
def drop(self, columns: Sequence[str], *, strict: bool) -> Self:
columns_to_drop = parse_columns_to_drop(self, columns, strict=strict)
selection = (col for col in self.columns if col not in columns_to_drop)
return self._with_native(self.native.select(*selection))
def lazy(self, backend: None = None, **_: None) -> Self:
# The `backend`` argument has no effect but we keep it here for
# backwards compatibility because in `narwhals.stable.v1`
# function `.from_native()` will return a DataFrame for Ibis.
if backend is not None: # pragma: no cover
msg = "`backend` argument is not supported for Ibis"
raise ValueError(msg)
return self
def with_columns(self, *exprs: IbisExpr) -> Self:
new_columns_map = dict(evaluate_exprs(self, *exprs))
return self._with_native(self.native.mutate(**new_columns_map))
def filter(self, predicate: IbisExpr) -> Self:
# `[0]` is safe as the predicate's expression only returns a single column
mask = cast("ir.BooleanValue", predicate(self)[0])
return self._with_native(self.native.filter(mask))
@property
def schema(self) -> dict[str, DType]:
if self._cached_schema is None:
# Note: prefer `self._cached_schema` over `functools.cached_property`
# due to Python3.13 failures.
self._cached_schema = {
name: native_to_narwhals_dtype(dtype, self._version)
for name, dtype in self.native.schema().fields.items()
}
return self._cached_schema
@property
def columns(self) -> list[str]:
if self._cached_columns is None:
self._cached_columns = (
list(self.schema)
if self._cached_schema is not None
else list(self.native.columns)
)
return self._cached_columns
def to_pandas(self) -> pd.DataFrame:
# only if version is v1, keep around for backcompat
return self.native.to_pandas()
def to_arrow(self) -> pa.Table:
# only if version is v1, keep around for backcompat
return self.native.to_pyarrow()
def _with_version(self, version: Version) -> Self:
return self.__class__(self.native, version=version)
def _with_native(self, df: ir.Table) -> Self:
return self.__class__(df, version=self._version)
def group_by(
self, keys: Sequence[str] | Sequence[IbisExpr], *, drop_null_keys: bool
) -> IbisGroupBy:
from narwhals._ibis.group_by import IbisGroupBy
return IbisGroupBy(self, keys, drop_null_keys=drop_null_keys)
def rename(self, mapping: Mapping[str, str]) -> Self:
def _rename(col: str) -> str:
return mapping.get(col, col)
return self._with_native(self.native.rename(_rename))
@staticmethod
def _join_drop_duplicate_columns(df: ir.Table, columns: Iterable[str], /) -> ir.Table:
"""Ibis adds a suffix to the right table col, even when it matches the left during a join."""
duplicates = set(df.columns).intersection(columns)
return df.drop(*duplicates) if duplicates else df
def join(
self,
other: Self,
*,
how: JoinStrategy,
left_on: Sequence[str] | None,
right_on: Sequence[str] | None,
suffix: str,
) -> Self:
how_native = "outer" if how == "full" else how
rname = "{name}" + suffix
if other == self:
# Ibis does not support self-references unless created as a view
other = self._with_native(other.native.view())
if how_native == "cross":
joined = self.native.join(other.native, how=how_native, rname=rname)
return self._with_native(joined)
# help mypy
assert left_on is not None # noqa: S101
assert right_on is not None # noqa: S101
predicates = self._convert_predicates(other, left_on, right_on)
joined = self.native.join(other.native, predicates, how=how_native, rname=rname)
if how_native == "left":
right_names = (n + suffix for n in right_on)
joined = self._join_drop_duplicate_columns(joined, right_names)
it = (cast("Binary", p.op()) for p in predicates if not isinstance(p, str))
to_drop = []
for pred in it:
right = pred.right.name
# Mirrors how polars works.
if right not in self.columns and pred.left.name != right:
to_drop.append(right)
if to_drop:
joined = joined.drop(*to_drop)
return self._with_native(joined)
def join_asof(
self,
other: Self,
*,
left_on: str,
right_on: str,
by_left: Sequence[str] | None,
by_right: Sequence[str] | None,
strategy: AsofJoinStrategy,
suffix: str,
) -> Self:
rname = "{name}" + suffix
strategy_op = {"backward": operator.ge, "forward": operator.le}
predicates: JoinPredicates = []
if op := strategy_op.get(strategy):
on: ir.BooleanColumn = op(self.native[left_on], other.native[right_on])
else:
msg = "Only `backward` and `forward` strategies are currently supported for Ibis"
raise NotImplementedError(msg)
if by_left is not None and by_right is not None:
predicates = self._convert_predicates(other, by_left, by_right)
joined = self.native.asof_join(other.native, on, predicates, rname=rname)
joined = self._join_drop_duplicate_columns(joined, [right_on + suffix])
if by_right is not None:
right_names = (n + suffix for n in by_right)
joined = self._join_drop_duplicate_columns(joined, right_names)
return self._with_native(joined)
def _convert_predicates(
self, other: Self, left_on: Sequence[str], right_on: Sequence[str]
) -> JoinPredicates:
if left_on == right_on:
return left_on
return [
cast("ir.BooleanColumn", (self.native[left] == other.native[right]))
for left, right in zip_strict(left_on, right_on)
]
def collect_schema(self) -> dict[str, DType]:
return {
name: native_to_narwhals_dtype(dtype, self._version)
for name, dtype in self.native.schema().fields.items()
}
def unique(
self, subset: Sequence[str] | None, *, keep: LazyUniqueKeepStrategy
) -> Self:
if subset_ := subset if keep == "any" else (subset or self.columns):
# Sanitise input
if any(x not in self.columns for x in subset_):
msg = f"Columns {set(subset_).difference(self.columns)} not found in {self.columns}."
raise ColumnNotFoundError(msg)
mapped_keep: dict[str, Literal["first"] | None] = {
"any": "first",
"none": None,
}
to_keep = mapped_keep[keep]
return self._with_native(self.native.distinct(on=subset_, keep=to_keep))
return self._with_native(self.native.distinct(on=subset))
def sort(self, *by: str, descending: bool | Sequence[bool], nulls_last: bool) -> Self:
if isinstance(descending, bool):
descending = [descending for _ in range(len(by))]
sort_cols: list[Any] = []
for i in range(len(by)):
direction_fn = ibis.desc if descending[i] else ibis.asc
col = direction_fn(by[i], nulls_first=not nulls_last)
sort_cols.append(col)
return self._with_native(self.native.order_by(*sort_cols))
def top_k(self, k: int, *, by: Iterable[str], reverse: bool | Sequence[bool]) -> Self:
if isinstance(reverse, bool):
reverse = [reverse] * len(list(by))
sort_cols = []
for is_reverse, by_col in zip_strict(reverse, by):
direction_fn = ibis.asc if is_reverse else ibis.desc
col = direction_fn(by_col, nulls_first=False)
sort_cols.append(cast("ir.Column", col))
return self._with_native(self.native.order_by(*sort_cols).head(k))
def drop_nulls(self, subset: Sequence[str] | None) -> Self:
subset_ = subset if subset is not None else self.columns
return self._with_native(self.native.drop_null(subset_))
def explode(self, columns: Sequence[str]) -> Self:
dtypes = self._version.dtypes
schema = self.collect_schema()
for col in columns:
dtype = schema[col]
if dtype != dtypes.List:
msg = (
f"`explode` operation not supported for dtype `{dtype}`, "
"expected List type"
)
raise InvalidOperationError(msg)
if len(columns) != 1:
msg = (
"Exploding on multiple columns is not supported with Ibis backend since "
"we cannot guarantee that the exploded columns have matching element counts."
)
raise NotImplementedError(msg)
return self._with_native(self.native.unnest(columns[0], keep_empty=True))
def unpivot(
self,
on: Sequence[str] | None,
index: Sequence[str] | None,
variable_name: str,
value_name: str,
) -> Self:
import ibis.selectors as s
index_: Sequence[str] = [] if index is None else index
on_: Sequence[str] = (
[c for c in self.columns if c not in index_] if on is None else on
)
# Discard columns not in the index
final_columns = list(dict.fromkeys([*index_, variable_name, value_name]))
unpivoted = self.native.pivot_longer(
s.cols(*on_), names_to=variable_name, values_to=value_name
)
return self._with_native(unpivoted.select(*final_columns))
def with_row_index(self, name: str, order_by: Sequence[str]) -> Self:
to_select = [
ibis.row_number().over(ibis.window(order_by=order_by)).name(name),
ibis.selectors.all(),
]
return self._with_native(self.native.select(*to_select))
def sink_parquet(self, file: str | Path | BytesIO) -> None:
if isinstance(file, BytesIO): # pragma: no cover
msg = "Writing to BytesIO is not supported for Ibis backend."
raise NotImplementedError(msg)
self.native.to_parquet(file)
gather_every = not_implemented.deprecated(
"`LazyFrame.gather_every` is deprecated and will be removed in a future version."
)
tail = not_implemented.deprecated(
"`LazyFrame.tail` is deprecated and will be removed in a future version."
)
# Intentionally not implemented, as Ibis does its own expression rewriting.
_evaluate_window_expr = not_implemented()

View File

@ -0,0 +1,347 @@
from __future__ import annotations
import operator
from functools import partial
from typing import TYPE_CHECKING, Any, Callable, Literal, TypeVar, cast
import ibis
from narwhals._ibis.expr_dt import IbisExprDateTimeNamespace
from narwhals._ibis.expr_list import IbisExprListNamespace
from narwhals._ibis.expr_str import IbisExprStringNamespace
from narwhals._ibis.expr_struct import IbisExprStructNamespace
from narwhals._ibis.utils import is_floating, lit, narwhals_to_native_dtype
from narwhals._sql.expr import SQLExpr
from narwhals._utils import Implementation, Version, not_implemented, zip_strict
if TYPE_CHECKING:
from collections.abc import Iterator, Sequence
import ibis.expr.types as ir
from typing_extensions import Self
from narwhals._compliant import WindowInputs
from narwhals._compliant.typing import (
AliasNames,
EvalNames,
EvalSeries,
WindowFunction,
)
from narwhals._expression_parsing import ExprKind, ExprMetadata
from narwhals._ibis.dataframe import IbisLazyFrame
from narwhals._ibis.namespace import IbisNamespace
from narwhals._utils import _LimitedContext
from narwhals.typing import IntoDType, RankMethod, RollingInterpolationMethod
ExprT = TypeVar("ExprT", bound=ir.Value)
IbisWindowFunction = WindowFunction[IbisLazyFrame, ir.Value]
IbisWindowInputs = WindowInputs[ir.Value]
class IbisExpr(SQLExpr["IbisLazyFrame", "ir.Value"]):
_implementation = Implementation.IBIS
def __init__(
self,
call: EvalSeries[IbisLazyFrame, ir.Value],
window_function: IbisWindowFunction | None = None,
*,
evaluate_output_names: EvalNames[IbisLazyFrame],
alias_output_names: AliasNames | None,
version: Version,
implementation: Implementation = Implementation.IBIS,
) -> None:
self._call = call
self._evaluate_output_names = evaluate_output_names
self._alias_output_names = alias_output_names
self._version = version
self._metadata: ExprMetadata | None = None
self._window_function: IbisWindowFunction | None = window_function
@property
def window_function(self) -> IbisWindowFunction:
def default_window_func(
df: IbisLazyFrame, window_inputs: IbisWindowInputs
) -> Sequence[ir.Value]:
return [
expr.over(
ibis.window(
group_by=window_inputs.partition_by,
order_by=self._sort(*window_inputs.order_by),
)
)
for expr in self(df)
]
return self._window_function or default_window_func
def _window_expression(
self,
expr: ir.Value,
partition_by: Sequence[str | ir.Value] = (),
order_by: Sequence[str | ir.Column] = (),
rows_start: int | None = None,
rows_end: int | None = None,
*,
descending: Sequence[bool] | None = None,
nulls_last: Sequence[bool] | None = None,
) -> ir.Value:
if rows_start is not None and rows_end is not None:
rows_between = {"preceding": -rows_start, "following": rows_end}
elif rows_end is not None:
rows_between = {"following": rows_end}
elif rows_start is not None: # pragma: no cover
rows_between = {"preceding": -rows_start}
else:
rows_between = {}
window = ibis.window(
group_by=partition_by,
order_by=self._sort(*order_by, descending=descending, nulls_last=nulls_last),
**rows_between,
)
return expr.over(window)
def __narwhals_namespace__(self) -> IbisNamespace: # pragma: no cover
from narwhals._ibis.namespace import IbisNamespace
return IbisNamespace(version=self._version)
def broadcast(self, kind: Literal[ExprKind.AGGREGATION, ExprKind.LITERAL]) -> Self:
# Ibis does its own broadcasting.
return self
def _sort(
self,
*cols: ir.Column | str,
descending: Sequence[bool] | None = None,
nulls_last: Sequence[bool] | None = None,
) -> Iterator[ir.Column]:
descending = descending or [False] * len(cols)
nulls_last = nulls_last or [False] * len(cols)
mapping = {
(False, False): partial(ibis.asc, nulls_first=True),
(False, True): partial(ibis.asc, nulls_first=False),
(True, False): partial(ibis.desc, nulls_first=True),
(True, True): partial(ibis.desc, nulls_first=False),
}
yield from (
cast("ir.Column", mapping[(_desc, _nulls_last)](col))
for col, _desc, _nulls_last in zip_strict(cols, descending, nulls_last)
)
@classmethod
def from_column_names(
cls: type[Self],
evaluate_column_names: EvalNames[IbisLazyFrame],
/,
*,
context: _LimitedContext,
) -> Self:
def func(df: IbisLazyFrame) -> Sequence[ir.Column]:
return [df.native[name] for name in evaluate_column_names(df)]
return cls(
func,
evaluate_output_names=evaluate_column_names,
alias_output_names=None,
version=context._version,
)
@classmethod
def from_column_indices(cls, *column_indices: int, context: _LimitedContext) -> Self:
def func(df: IbisLazyFrame) -> Sequence[ir.Column]:
return [df.native[i] for i in column_indices]
return cls(
func,
evaluate_output_names=cls._eval_names_indices(column_indices),
alias_output_names=None,
version=context._version,
)
def _with_binary(self, op: Callable[..., ir.Value], other: Self | Any) -> Self:
return self._with_callable(op, other=other)
def _with_elementwise(
self, op: Callable[..., ir.Value], /, **expressifiable_args: Self | Any
) -> Self:
return self._with_callable(op, **expressifiable_args)
@classmethod
def _alias_native(cls, expr: ExprT, name: str, /) -> ExprT:
return cast("ExprT", expr.name(name))
def __invert__(self) -> Self:
invert = cast("Callable[..., ir.Value]", operator.invert)
return self._with_callable(invert)
def all(self) -> Self:
return self._with_callable(lambda expr: expr.all().fill_null(lit(True)))
def any(self) -> Self:
return self._with_callable(lambda expr: expr.any().fill_null(lit(False)))
def quantile(
self, quantile: float, interpolation: RollingInterpolationMethod
) -> Self:
if interpolation != "linear":
msg = "Only linear interpolation methods are supported for Ibis quantile."
raise NotImplementedError(msg)
return self._with_callable(lambda expr: expr.quantile(quantile))
def clip(self, lower_bound: Any, upper_bound: Any) -> Self:
def _clip(
expr: ir.NumericValue, lower: Any | None = None, upper: Any | None = None
) -> ir.NumericValue:
return expr.clip(lower=lower, upper=upper)
if lower_bound is None:
return self._with_callable(_clip, upper=upper_bound)
if upper_bound is None:
return self._with_callable(_clip, lower=lower_bound)
return self._with_callable(_clip, lower=lower_bound, upper=upper_bound)
def n_unique(self) -> Self:
return self._with_callable(
lambda expr: expr.nunique() + expr.isnull().any().cast("int8")
)
def len(self) -> Self:
def func(df: IbisLazyFrame) -> Sequence[ir.IntegerScalar]:
return [df.native.count() for _ in self._evaluate_output_names(df)]
return self.__class__(
func,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
version=self._version,
)
def std(self, ddof: int) -> Self:
def _std(expr: ir.NumericColumn, ddof: int) -> ir.Value:
if ddof == 0:
return expr.std(how="pop")
if ddof == 1:
return expr.std(how="sample")
n_samples = expr.count()
std_pop = expr.std(how="pop")
ddof_lit = lit(ddof)
return std_pop * n_samples.sqrt() / (n_samples - ddof_lit).sqrt()
return self._with_callable(lambda expr: _std(expr, ddof))
def var(self, ddof: int) -> Self:
def _var(expr: ir.NumericColumn, ddof: int) -> ir.Value:
if ddof == 0:
return expr.var(how="pop")
if ddof == 1:
return expr.var(how="sample")
n_samples = expr.count()
var_pop = expr.var(how="pop")
ddof_lit = lit(ddof)
return var_pop * n_samples / (n_samples - ddof_lit)
return self._with_callable(lambda expr: _var(expr, ddof))
def null_count(self) -> Self:
return self._with_callable(lambda expr: expr.isnull().sum())
def is_nan(self) -> Self:
def func(expr: ir.FloatingValue | Any) -> ir.Value:
otherwise = expr.isnan() if is_floating(expr.type()) else False
return ibis.ifelse(expr.isnull(), None, otherwise)
return self._with_callable(func)
def is_finite(self) -> Self:
return self._with_callable(lambda expr: ~(expr.isinf() | expr.isnan()))
def is_in(self, other: Sequence[Any]) -> Self:
return self._with_callable(lambda expr: expr.isin(other))
def fill_null(self, value: Self | Any, strategy: Any, limit: int | None) -> Self:
# Ibis doesn't yet allow ignoring nulls in first/last with window functions, which makes forward/backward
# strategies inconsistent when there are nulls present: https://github.com/ibis-project/ibis/issues/9539
if strategy is not None:
msg = "`strategy` is not supported for the Ibis backend"
raise NotImplementedError(msg)
if limit is not None:
msg = "`limit` is not supported for the Ibis backend" # pragma: no cover
raise NotImplementedError(msg)
def _fill_null(expr: ir.Value, value: ir.Scalar) -> ir.Value:
return expr.fill_null(value)
return self._with_callable(_fill_null, value=value)
def cast(self, dtype: IntoDType) -> Self:
def _func(expr: ir.Column) -> ir.Value:
native_dtype = narwhals_to_native_dtype(dtype, self._version)
# ibis `cast` overloads do not include DataType, only literals
return expr.cast(native_dtype) # type: ignore[unused-ignore]
return self._with_callable(_func)
def is_unique(self) -> Self:
return self._with_callable(
lambda expr: expr.isnull().count().over(ibis.window(group_by=(expr))) == 1
)
def rank(self, method: RankMethod, *, descending: bool) -> Self:
def _rank(expr: ir.Column) -> ir.Value:
order_by = next(self._sort(expr, descending=[descending], nulls_last=[True]))
window = ibis.window(order_by=order_by)
if method == "dense":
rank_ = order_by.dense_rank()
elif method == "ordinal":
rank_ = ibis.row_number().over(window)
else:
rank_ = order_by.rank()
# Ibis uses 0-based ranking. Add 1 to match polars 1-based rank.
rank_ = rank_ + lit(1)
# For "max" and "average", adjust using the count of rows in the partition.
if method == "max":
# Define a window partitioned by expr (i.e. each distinct value)
partition = ibis.window(group_by=[expr])
cnt = expr.count().over(partition)
rank_ = rank_ + cnt - lit(1)
elif method == "average":
partition = ibis.window(group_by=[expr])
cnt = expr.count().over(partition)
avg = cast("ir.NumericValue", (cnt - lit(1)) / lit(2.0))
rank_ = rank_ + avg
return ibis.cases((expr.notnull(), rank_))
return self._with_callable(_rank)
@property
def str(self) -> IbisExprStringNamespace:
return IbisExprStringNamespace(self)
@property
def dt(self) -> IbisExprDateTimeNamespace:
return IbisExprDateTimeNamespace(self)
@property
def list(self) -> IbisExprListNamespace:
return IbisExprListNamespace(self)
@property
def struct(self) -> IbisExprStructNamespace:
return IbisExprStructNamespace(self)
# NOTE: https://github.com/ibis-project/ibis/issues/10542
cum_prod = not_implemented()
# NOTE: https://github.com/ibis-project/ibis/issues/11176
skew = not_implemented()
kurtosis = not_implemented()
_count_star = not_implemented()
# Intentionally not implemented, as Ibis does its own expression rewriting.
_push_down_window_function = not_implemented()

View File

@ -0,0 +1,83 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable
from narwhals._duration import Interval
from narwhals._ibis.utils import (
UNITS_DICT_BUCKET,
UNITS_DICT_TRUNCATE,
timedelta_to_ibis_interval,
)
from narwhals._sql.expr_dt import SQLExprDateTimeNamesSpace
from narwhals._utils import not_implemented
if TYPE_CHECKING:
import ibis.expr.types as ir
from narwhals._ibis.expr import IbisExpr
from narwhals._ibis.utils import BucketUnit, TruncateUnit
class IbisExprDateTimeNamespace(SQLExprDateTimeNamesSpace["IbisExpr"]):
def millisecond(self) -> IbisExpr:
return self.compliant._with_callable(lambda expr: expr.millisecond())
def microsecond(self) -> IbisExpr:
return self.compliant._with_callable(lambda expr: expr.microsecond())
def to_string(self, format: str) -> IbisExpr:
return self.compliant._with_callable(lambda expr: expr.strftime(format))
def weekday(self) -> IbisExpr:
# Ibis uses 0-6 for Monday-Sunday. Add 1 to match polars.
return self.compliant._with_callable(lambda expr: expr.day_of_week.index() + 1)
def _bucket(self, kwds: dict[BucketUnit, Any], /) -> Callable[..., ir.TimestampValue]:
def fn(expr: ir.TimestampValue) -> ir.TimestampValue:
return expr.bucket(**kwds)
return fn
def _truncate(self, unit: TruncateUnit, /) -> Callable[..., ir.TimestampValue]:
def fn(expr: ir.TimestampValue) -> ir.TimestampValue:
return expr.truncate(unit)
return fn
def truncate(self, every: str) -> IbisExpr:
interval = Interval.parse(every)
multiple, unit = interval.multiple, interval.unit
if unit == "q":
multiple, unit = 3 * multiple, "mo"
if multiple != 1:
if self.compliant._backend_version < (7, 1): # pragma: no cover
msg = "Truncating datetimes with multiples of the unit is only supported in Ibis >= 7.1."
raise NotImplementedError(msg)
fn = self._bucket({UNITS_DICT_BUCKET[unit]: multiple})
else:
fn = self._truncate(UNITS_DICT_TRUNCATE[unit])
return self.compliant._with_callable(fn)
def offset_by(self, every: str) -> IbisExpr:
interval = Interval.parse_no_constraints(every)
unit = interval.unit
if unit in {"y", "q", "mo", "d", "ns"}:
msg = f"Offsetting by {unit} is not yet supported for ibis."
raise NotImplementedError(msg)
offset = timedelta_to_ibis_interval(interval.to_timedelta())
return self.compliant._with_callable(lambda expr: expr.add(offset))
def replace_time_zone(self, time_zone: str | None) -> IbisExpr:
if time_zone is None:
return self.compliant._with_callable(lambda expr: expr.cast("timestamp"))
msg = "`replace_time_zone` with non-null `time_zone` not yet implemented for Ibis" # pragma: no cover
raise NotImplementedError(msg)
nanosecond = not_implemented()
total_minutes = not_implemented()
total_seconds = not_implemented()
total_milliseconds = not_implemented()
total_microseconds = not_implemented()
total_nanoseconds = not_implemented()
convert_time_zone = not_implemented()
timestamp = not_implemented()

View File

@ -0,0 +1,29 @@
from __future__ import annotations
from typing import TYPE_CHECKING
from narwhals._compliant import LazyExprNamespace
from narwhals._compliant.any_namespace import ListNamespace
if TYPE_CHECKING:
import ibis.expr.types as ir
from narwhals._ibis.expr import IbisExpr
from narwhals.typing import NonNestedLiteral
class IbisExprListNamespace(LazyExprNamespace["IbisExpr"], ListNamespace["IbisExpr"]):
def len(self) -> IbisExpr:
return self.compliant._with_callable(lambda expr: expr.length())
def unique(self) -> IbisExpr:
return self.compliant._with_callable(lambda expr: expr.unique())
def contains(self, item: NonNestedLiteral) -> IbisExpr:
return self.compliant._with_callable(lambda expr: expr.contains(item))
def get(self, index: int) -> IbisExpr:
def _get(expr: ir.ArrayColumn) -> ir.Column:
return expr[index]
return self.compliant._with_callable(_get)

View File

@ -0,0 +1,83 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable
from ibis.expr.datatypes import Timestamp
from narwhals._sql.expr_str import SQLExprStringNamespace
from narwhals._utils import _is_naive_format, not_implemented
if TYPE_CHECKING:
import ibis.expr.types as ir
from typing_extensions import TypeAlias
from narwhals._ibis.expr import IbisExpr
IntoStringValue: TypeAlias = "str | ir.StringValue"
class IbisExprStringNamespace(SQLExprStringNamespace["IbisExpr"]):
def strip_chars(self, characters: str | None) -> IbisExpr:
if characters is not None:
msg = "Ibis does not support `characters` argument in `str.strip_chars`"
raise NotImplementedError(msg)
return self.compliant._with_callable(lambda expr: expr.strip())
def _replace_all(
self, pattern: IntoStringValue, value: IntoStringValue
) -> Callable[..., ir.StringValue]:
def fn(expr: ir.StringColumn) -> ir.StringValue:
return expr.re_replace(pattern, value)
return fn
def _replace_all_literal(
self, pattern: IntoStringValue, value: IntoStringValue
) -> Callable[..., ir.StringValue]:
def fn(expr: ir.StringColumn) -> ir.StringValue:
return expr.replace(pattern, value) # pyright: ignore[reportArgumentType]
return fn
def replace_all(
self, pattern: str, value: str | IbisExpr, *, literal: bool
) -> IbisExpr:
fn = self._replace_all_literal if literal else self._replace_all
if isinstance(value, str):
return self.compliant._with_callable(fn(pattern, value))
return self.compliant._with_elementwise(
lambda expr, value: fn(pattern, value)(expr), value=value
)
def _to_datetime(self, format: str) -> Callable[..., ir.TimestampValue]:
def fn(expr: ir.StringColumn) -> ir.TimestampValue:
return expr.as_timestamp(format)
return fn
def _to_datetime_naive(self, format: str) -> Callable[..., ir.TimestampValue]:
def fn(expr: ir.StringColumn) -> ir.TimestampValue:
dtype: Any = Timestamp(timezone=None)
return expr.as_timestamp(format).cast(dtype)
return fn
def to_datetime(self, format: str | None) -> IbisExpr:
if format is None:
msg = "Cannot infer format with Ibis backend"
raise NotImplementedError(msg)
fn = self._to_datetime_naive if _is_naive_format(format) else self._to_datetime
return self.compliant._with_callable(fn(format))
def to_date(self, format: str | None) -> IbisExpr:
if format is None:
msg = "Cannot infer format with Ibis backend"
raise NotImplementedError(msg)
def fn(expr: ir.StringColumn) -> ir.DateValue:
return expr.as_date(format)
return self.compliant._with_callable(fn)
replace = not_implemented()

View File

@ -0,0 +1,19 @@
from __future__ import annotations
from typing import TYPE_CHECKING
from narwhals._compliant import LazyExprNamespace
from narwhals._compliant.any_namespace import StructNamespace
if TYPE_CHECKING:
import ibis.expr.types as ir
from narwhals._ibis.expr import IbisExpr
class IbisExprStructNamespace(LazyExprNamespace["IbisExpr"], StructNamespace["IbisExpr"]):
def field(self, name: str) -> IbisExpr:
def func(expr: ir.StructColumn) -> ir.Column:
return expr[name]
return self.compliant._with_callable(func).alias(name)

View File

@ -0,0 +1,32 @@
from __future__ import annotations
from typing import TYPE_CHECKING
from narwhals._sql.group_by import SQLGroupBy
if TYPE_CHECKING:
from collections.abc import Sequence
import ibis.expr.types as ir # noqa: F401
from narwhals._ibis.dataframe import IbisLazyFrame
from narwhals._ibis.expr import IbisExpr
class IbisGroupBy(SQLGroupBy["IbisLazyFrame", "IbisExpr", "ir.Value"]):
def __init__(
self,
df: IbisLazyFrame,
keys: Sequence[str] | Sequence[IbisExpr],
/,
*,
drop_null_keys: bool,
) -> None:
frame, self._keys, self._output_key_names = self._parse_keys(df, keys=keys)
self._compliant_frame = frame.drop_nulls(self._keys) if drop_null_keys else frame
def agg(self, *exprs: IbisExpr) -> IbisLazyFrame:
native = self.compliant.native
return self.compliant._with_native(
native.group_by(self._keys).aggregate(*self._evaluate_exprs(exprs))
).rename(dict(zip(self._keys, self._output_key_names)))

View File

@ -0,0 +1,160 @@
from __future__ import annotations
import operator
from functools import reduce
from itertools import chain
from typing import TYPE_CHECKING, Any
import ibis
import ibis.expr.types as ir
from narwhals._expression_parsing import (
combine_alias_output_names,
combine_evaluate_output_names,
)
from narwhals._ibis.dataframe import IbisLazyFrame
from narwhals._ibis.expr import IbisExpr
from narwhals._ibis.selectors import IbisSelectorNamespace
from narwhals._ibis.utils import function, lit, narwhals_to_native_dtype
from narwhals._sql.namespace import SQLNamespace
from narwhals._sql.when_then import SQLThen, SQLWhen
from narwhals._utils import Implementation, requires
if TYPE_CHECKING:
from collections.abc import Iterable, Sequence
from narwhals._utils import Version
from narwhals.typing import ConcatMethod, IntoDType, PythonLiteral
class IbisNamespace(SQLNamespace[IbisLazyFrame, IbisExpr, "ir.Table", "ir.Value"]):
_implementation: Implementation = Implementation.IBIS
def __init__(self, *, version: Version) -> None:
self._version = version
@property
def selectors(self) -> IbisSelectorNamespace:
return IbisSelectorNamespace.from_namespace(self)
@property
def _expr(self) -> type[IbisExpr]:
return IbisExpr
@property
def _lazyframe(self) -> type[IbisLazyFrame]:
return IbisLazyFrame
def _function(self, name: str, *args: ir.Value | PythonLiteral) -> ir.Value:
return function(name, *args)
def _lit(self, value: Any) -> ir.Value:
return lit(value)
def _when(
self, condition: ir.Value, value: ir.Value, otherwise: ir.Expr | None = None
) -> ir.Value:
if otherwise is None:
return ibis.cases((condition, value))
return ibis.cases((condition, value), else_=otherwise) # pragma: no cover
def _coalesce(self, *exprs: ir.Value) -> ir.Value:
return ibis.coalesce(*exprs)
def concat(
self, items: Iterable[IbisLazyFrame], *, how: ConcatMethod
) -> IbisLazyFrame:
if how == "diagonal":
msg = "diagonal concat not supported for Ibis. Please join instead."
raise NotImplementedError(msg)
items = list(items)
native_items = [item.native for item in items]
schema = items[0].schema
if not all(x.schema == schema for x in items[1:]):
msg = "inputs should all have the same schema"
raise TypeError(msg)
return self._lazyframe.from_native(ibis.union(*native_items), context=self)
def concat_str(
self, *exprs: IbisExpr, separator: str, ignore_nulls: bool
) -> IbisExpr:
def func(df: IbisLazyFrame) -> list[ir.Value]:
cols = list(chain.from_iterable(expr(df) for expr in exprs))
cols_casted = [s.cast("string") for s in cols]
if not ignore_nulls:
result = cols_casted[0]
for col in cols_casted[1:]:
result = result + separator + col
else:
result = lit(separator).join(cols_casted)
return [result]
return self._expr(
call=func,
evaluate_output_names=combine_evaluate_output_names(*exprs),
alias_output_names=combine_alias_output_names(*exprs),
version=self._version,
)
def mean_horizontal(self, *exprs: IbisExpr) -> IbisExpr:
def func(cols: Iterable[ir.Value]) -> ir.Value:
cols = list(cols)
return reduce(operator.add, (col.fill_null(lit(0)) for col in cols)) / reduce(
operator.add, (col.isnull().ifelse(lit(0), lit(1)) for col in cols)
)
return self._expr._from_elementwise_horizontal_op(func, *exprs)
@requires.backend_version((10, 0))
def when(self, predicate: IbisExpr) -> IbisWhen:
return IbisWhen.from_expr(predicate, context=self)
def lit(self, value: Any, dtype: IntoDType | None) -> IbisExpr:
def func(_df: IbisLazyFrame) -> Sequence[ir.Value]:
ibis_dtype = narwhals_to_native_dtype(dtype, self._version) if dtype else None
return [lit(value, ibis_dtype)]
return self._expr(
func,
evaluate_output_names=lambda _df: ["literal"],
alias_output_names=None,
version=self._version,
)
def len(self) -> IbisExpr:
def func(_df: IbisLazyFrame) -> list[ir.Value]:
return [_df.native.count()]
return self._expr(
call=func,
evaluate_output_names=lambda _df: ["len"],
alias_output_names=None,
version=self._version,
)
class IbisWhen(SQLWhen["IbisLazyFrame", "ir.Value", IbisExpr]):
lit = lit
@property
def _then(self) -> type[IbisThen]:
return IbisThen
def __call__(self, df: IbisLazyFrame) -> Sequence[ir.Value]:
is_expr = self._condition._is_expr
condition = df._evaluate_expr(self._condition)
then_ = self._then_value
then = df._evaluate_expr(then_) if is_expr(then_) else lit(then_)
other_ = self._otherwise_value
if other_ is None:
result = ibis.cases((condition, then))
else:
otherwise = df._evaluate_expr(other_) if is_expr(other_) else lit(other_)
result = ibis.cases((condition, then), else_=otherwise)
return [result]
class IbisThen(SQLThen["IbisLazyFrame", "ir.Value", IbisExpr], IbisExpr): ...

View File

@ -0,0 +1,32 @@
from __future__ import annotations
from typing import TYPE_CHECKING
from narwhals._compliant import CompliantSelector, LazySelectorNamespace
from narwhals._ibis.expr import IbisExpr
if TYPE_CHECKING:
import ibis.expr.types as ir # noqa: F401
from narwhals._ibis.dataframe import IbisLazyFrame # noqa: F401
from narwhals._ibis.expr import IbisWindowFunction
class IbisSelectorNamespace(LazySelectorNamespace["IbisLazyFrame", "ir.Value"]):
@property
def _selector(self) -> type[IbisSelector]:
return IbisSelector
class IbisSelector( # type: ignore[misc]
CompliantSelector["IbisLazyFrame", "ir.Value"], IbisExpr
):
_window_function: IbisWindowFunction | None = None
def _to_expr(self) -> IbisExpr:
return IbisExpr(
self._call,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
version=self._version,
)

View File

@ -0,0 +1,41 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Any, NoReturn
from narwhals._ibis.utils import native_to_narwhals_dtype
from narwhals.dependencies import get_ibis
if TYPE_CHECKING:
from types import ModuleType
from typing_extensions import Self
from narwhals._utils import Version
from narwhals.dtypes import DType
class IbisInterchangeSeries:
def __init__(self, df: Any, version: Version) -> None:
self._native_series = df
self._version = version
def __narwhals_series__(self) -> Self:
return self
def __native_namespace__(self) -> ModuleType:
return get_ibis()
@property
def dtype(self) -> DType:
return native_to_narwhals_dtype(
self._native_series.schema().types[0], self._version
)
def __getattr__(self, attr: str) -> NoReturn:
msg = (
f"Attribute {attr} is not supported for interchange-level dataframes.\n\n"
"If you would like to see this kind of object better supported in "
"Narwhals, please open a feature request "
"at https://github.com/narwhals-dev/narwhals/issues."
)
raise NotImplementedError(msg)

View File

@ -0,0 +1,270 @@
from __future__ import annotations
from functools import lru_cache
from typing import TYPE_CHECKING, Any, Literal, cast, overload
import ibis
import ibis.expr.datatypes as ibis_dtypes
from narwhals._utils import Version, isinstance_or_issubclass
if TYPE_CHECKING:
from collections.abc import Mapping
from datetime import timedelta
import ibis.expr.types as ir
from ibis.common.temporal import TimestampUnit
from ibis.expr.datatypes import DataType as IbisDataType
from typing_extensions import TypeAlias, TypeIs
from narwhals._duration import IntervalUnit
from narwhals._ibis.dataframe import IbisLazyFrame
from narwhals._ibis.expr import IbisExpr
from narwhals.dtypes import DType
from narwhals.typing import IntoDType, PythonLiteral
Incomplete: TypeAlias = Any
"""Marker for upstream issues."""
@overload
def lit(value: bool, dtype: None = ...) -> ir.BooleanScalar: ... # noqa: FBT001
@overload
def lit(value: int, dtype: None = ...) -> ir.IntegerScalar: ...
@overload
def lit(value: float, dtype: None = ...) -> ir.FloatingScalar: ...
@overload
def lit(value: str, dtype: None = ...) -> ir.StringScalar: ...
@overload
def lit(value: PythonLiteral | ir.Value, dtype: None = ...) -> ir.Scalar: ...
@overload
def lit(value: Any, dtype: Any) -> Incomplete: ...
def lit(value: Any, dtype: Any | None = None) -> Incomplete:
"""Alias for `ibis.literal`."""
literal: Incomplete = ibis.literal
return literal(value, dtype)
BucketUnit: TypeAlias = Literal[
"years",
"quarters",
"months",
"days",
"hours",
"minutes",
"seconds",
"milliseconds",
"microseconds",
"nanoseconds",
]
TruncateUnit: TypeAlias = Literal[
"Y", "Q", "M", "W", "D", "h", "m", "s", "ms", "us", "ns"
]
UNITS_DICT_BUCKET: Mapping[IntervalUnit, BucketUnit] = {
"y": "years",
"q": "quarters",
"mo": "months",
"d": "days",
"h": "hours",
"m": "minutes",
"s": "seconds",
"ms": "milliseconds",
"us": "microseconds",
"ns": "nanoseconds",
}
UNITS_DICT_TRUNCATE: Mapping[IntervalUnit, TruncateUnit] = {
"y": "Y",
"q": "Q",
"mo": "M",
"d": "D",
"h": "h",
"m": "m",
"s": "s",
"ms": "ms",
"us": "us",
"ns": "ns",
}
FUNCTION_REMAPPING = {
"starts_with": "startswith",
"ends_with": "endswith",
"regexp_matches": "re_search",
"str_split": "split",
"dayofyear": "day_of_year",
"to_date": "date",
}
def evaluate_exprs(df: IbisLazyFrame, /, *exprs: IbisExpr) -> list[tuple[str, ir.Value]]:
native_results: list[tuple[str, ir.Value]] = []
for expr in exprs:
native_series_list = expr(df)
output_names = expr._evaluate_output_names(df)
if expr._alias_output_names is not None:
output_names = expr._alias_output_names(output_names)
if len(output_names) != len(native_series_list): # pragma: no cover
msg = f"Internal error: got output names {output_names}, but only got {len(native_series_list)} results"
raise AssertionError(msg)
native_results.extend(zip(output_names, native_series_list))
return native_results
@lru_cache(maxsize=16)
def native_to_narwhals_dtype(ibis_dtype: IbisDataType, version: Version) -> DType: # noqa: C901, PLR0912
dtypes = version.dtypes
if ibis_dtype.is_int64():
return dtypes.Int64()
if ibis_dtype.is_int32():
return dtypes.Int32()
if ibis_dtype.is_int16():
return dtypes.Int16()
if ibis_dtype.is_int8():
return dtypes.Int8()
if ibis_dtype.is_uint64():
return dtypes.UInt64()
if ibis_dtype.is_uint32():
return dtypes.UInt32()
if ibis_dtype.is_uint16():
return dtypes.UInt16()
if ibis_dtype.is_uint8():
return dtypes.UInt8()
if ibis_dtype.is_boolean():
return dtypes.Boolean()
if ibis_dtype.is_float64():
return dtypes.Float64()
if ibis_dtype.is_float32():
return dtypes.Float32()
if ibis_dtype.is_string():
return dtypes.String()
if ibis_dtype.is_date():
return dtypes.Date()
if is_timestamp(ibis_dtype):
_unit = cast("TimestampUnit", ibis_dtype.unit)
return dtypes.Datetime(time_unit=_unit.value, time_zone=ibis_dtype.timezone)
if is_interval(ibis_dtype):
_time_unit = ibis_dtype.unit.value
if _time_unit not in {"ns", "us", "ms", "s"}: # pragma: no cover
msg = f"Unsupported interval unit: {_time_unit}"
raise NotImplementedError(msg)
return dtypes.Duration(_time_unit)
if is_array(ibis_dtype):
if ibis_dtype.length:
return dtypes.Array(
native_to_narwhals_dtype(ibis_dtype.value_type, version),
ibis_dtype.length,
)
return dtypes.List(native_to_narwhals_dtype(ibis_dtype.value_type, version))
if is_struct(ibis_dtype):
return dtypes.Struct(
[
dtypes.Field(name, native_to_narwhals_dtype(dtype, version))
for name, dtype in ibis_dtype.items()
]
)
if ibis_dtype.is_decimal(): # pragma: no cover
return dtypes.Decimal()
if ibis_dtype.is_time():
return dtypes.Time()
if ibis_dtype.is_binary():
return dtypes.Binary()
return dtypes.Unknown() # pragma: no cover
def is_timestamp(obj: IbisDataType) -> TypeIs[ibis_dtypes.Timestamp]:
return obj.is_timestamp()
def is_interval(obj: IbisDataType) -> TypeIs[ibis_dtypes.Interval]:
return obj.is_interval()
def is_array(obj: IbisDataType) -> TypeIs[ibis_dtypes.Array[Any]]:
return obj.is_array()
def is_struct(obj: IbisDataType) -> TypeIs[ibis_dtypes.Struct]:
return obj.is_struct()
def is_floating(obj: IbisDataType) -> TypeIs[ibis_dtypes.Floating]:
return obj.is_floating()
dtypes = Version.MAIN.dtypes
NW_TO_IBIS_DTYPES: Mapping[type[DType], IbisDataType] = {
dtypes.Float64: ibis_dtypes.Float64(),
dtypes.Float32: ibis_dtypes.Float32(),
dtypes.Binary: ibis_dtypes.Binary(),
dtypes.String: ibis_dtypes.String(),
dtypes.Boolean: ibis_dtypes.Boolean(),
dtypes.Date: ibis_dtypes.Date(),
dtypes.Time: ibis_dtypes.Time(),
dtypes.Int8: ibis_dtypes.Int8(),
dtypes.Int16: ibis_dtypes.Int16(),
dtypes.Int32: ibis_dtypes.Int32(),
dtypes.Int64: ibis_dtypes.Int64(),
dtypes.UInt8: ibis_dtypes.UInt8(),
dtypes.UInt16: ibis_dtypes.UInt16(),
dtypes.UInt32: ibis_dtypes.UInt32(),
dtypes.UInt64: ibis_dtypes.UInt64(),
dtypes.Decimal: ibis_dtypes.Decimal(),
}
# Enum support: https://github.com/ibis-project/ibis/issues/10991
UNSUPPORTED_DTYPES = (dtypes.Int128, dtypes.UInt128, dtypes.Categorical, dtypes.Enum)
def narwhals_to_native_dtype(dtype: IntoDType, version: Version) -> IbisDataType:
dtypes = version.dtypes
base_type = dtype.base_type()
if ibis_type := NW_TO_IBIS_DTYPES.get(base_type):
return ibis_type
if isinstance_or_issubclass(dtype, dtypes.Datetime):
return ibis_dtypes.Timestamp.from_unit(dtype.time_unit, timezone=dtype.time_zone)
if isinstance_or_issubclass(dtype, dtypes.Duration):
return ibis_dtypes.Interval(unit=dtype.time_unit) # pyright: ignore[reportArgumentType]
if isinstance_or_issubclass(dtype, dtypes.List):
inner = narwhals_to_native_dtype(dtype.inner, version)
return ibis_dtypes.Array(value_type=inner)
if isinstance_or_issubclass(dtype, dtypes.Struct):
fields = [
(field.name, narwhals_to_native_dtype(field.dtype, version))
for field in dtype.fields
]
return ibis_dtypes.Struct.from_tuples(fields)
if isinstance_or_issubclass(dtype, dtypes.Array):
inner = narwhals_to_native_dtype(dtype.inner, version)
return ibis_dtypes.Array(value_type=inner, length=dtype.size)
if issubclass(base_type, UNSUPPORTED_DTYPES):
msg = f"Converting to {base_type.__name__} dtype is not supported for Ibis."
raise NotImplementedError(msg)
msg = f"Unknown dtype: {dtype}" # pragma: no cover
raise AssertionError(msg)
def timedelta_to_ibis_interval(td: timedelta) -> ibis.expr.types.temporal.IntervalScalar:
return ibis.interval(days=td.days, seconds=td.seconds, microseconds=td.microseconds)
def function(name: str, *args: ir.Value | PythonLiteral) -> ir.Value:
# Workaround SQL vs Ibis differences.
if name == "row_number":
return ibis.row_number() + lit(1)
if name == "least":
return ibis.least(*args)
if name == "greatest":
return ibis.greatest(*args)
expr = args[0]
if name == "var_pop":
return cast("ir.NumericColumn", expr).var(how="pop")
if name == "var_samp":
return cast("ir.NumericColumn", expr).var(how="sample")
if name == "stddev_pop":
return cast("ir.NumericColumn", expr).std(how="pop")
if name == "stddev_samp":
return cast("ir.NumericColumn", expr).std(how="sample")
if name == "substr":
# Ibis is 0-indexed here, SQL is 1-indexed
return cast("ir.StringColumn", expr).substr(args[1] - 1, *args[2:]) # type: ignore[operator] # pyright: ignore[reportArgumentType]
return getattr(expr, FUNCTION_REMAPPING.get(name, name))(*args[1:])