Files
dash-api/lib/python3.11/site-packages/narwhals/_dask/utils.py

140 lines
5.4 KiB
Python
Raw Normal View History

2025-09-07 22:09:54 +02:00
from __future__ import annotations
from typing import TYPE_CHECKING, Any
from narwhals._pandas_like.utils import select_columns_by_name
from narwhals._utils import Implementation, Version, isinstance_or_issubclass
from narwhals.dependencies import get_pyarrow
if TYPE_CHECKING:
from collections.abc import Mapping, Sequence
import dask.dataframe as dd
import dask.dataframe.dask_expr as dx
from narwhals._dask.dataframe import DaskLazyFrame, Incomplete
from narwhals._dask.expr import DaskExpr
from narwhals.dtypes import DType
from narwhals.typing import IntoDType
else:
try:
import dask.dataframe.dask_expr as dx
except ModuleNotFoundError: # pragma: no cover
import dask_expr as dx
def maybe_evaluate_expr(df: DaskLazyFrame, obj: DaskExpr | object) -> dx.Series | object:
from narwhals._dask.expr import DaskExpr
if isinstance(obj, DaskExpr):
results = obj._call(df)
assert len(results) == 1 # debug assertion # noqa: S101
return results[0]
return obj
def evaluate_exprs(df: DaskLazyFrame, /, *exprs: DaskExpr) -> list[tuple[str, dx.Series]]:
native_results: list[tuple[str, dx.Series]] = []
for expr in exprs:
native_series_list = expr(df)
aliases = expr._evaluate_aliases(df)
if len(aliases) != len(native_series_list): # pragma: no cover
msg = f"Internal error: got aliases {aliases}, but only got {len(native_series_list)} results"
raise AssertionError(msg)
native_results.extend(zip(aliases, native_series_list))
return native_results
def align_series_full_broadcast(
df: DaskLazyFrame, *series: dx.Series | object
) -> Sequence[dx.Series]:
return [
s if isinstance(s, dx.Series) else df._native_frame.assign(_tmp=s)["_tmp"]
for s in series
] # pyright: ignore[reportReturnType]
def add_row_index(frame: dd.DataFrame, name: str) -> dd.DataFrame:
original_cols = frame.columns
df: Incomplete = frame.assign(**{name: 1})
return select_columns_by_name(
df.assign(**{name: df[name].cumsum(method="blelloch") - 1}),
[name, *original_cols],
Implementation.DASK,
)
def validate_comparand(lhs: dx.Series, rhs: dx.Series) -> None:
if not dx.expr.are_co_aligned(lhs._expr, rhs._expr): # pragma: no cover
# are_co_aligned is a method which cheaply checks if two Dask expressions
# have the same index, and therefore don't require index alignment.
# If someone only operates on a Dask DataFrame via expressions, then this
# should always be the case: expression outputs (by definition) all come from the
# same input dataframe, and Dask Series does not have any operations which
# change the index. Nonetheless, we perform this safety check anyway.
# However, we still need to carefully vet which methods we support for Dask, to
# avoid issues where `are_co_aligned` doesn't do what we want it to do:
# https://github.com/dask/dask-expr/issues/1112.
msg = "Objects are not co-aligned, so this operation is not supported for Dask backend"
raise RuntimeError(msg)
dtypes = Version.MAIN.dtypes
dtypes_v1 = Version.V1.dtypes
NW_TO_DASK_DTYPES: Mapping[type[DType], str] = {
dtypes.Float64: "float64",
dtypes.Float32: "float32",
dtypes.Boolean: "bool",
dtypes.Categorical: "category",
dtypes.Date: "date32[day][pyarrow]",
dtypes.Int8: "int8",
dtypes.Int16: "int16",
dtypes.Int32: "int32",
dtypes.Int64: "int64",
dtypes.UInt8: "uint8",
dtypes.UInt16: "uint16",
dtypes.UInt32: "uint32",
dtypes.UInt64: "uint64",
dtypes.Datetime: "datetime64[us]",
dtypes.Duration: "timedelta64[ns]",
dtypes_v1.Datetime: "datetime64[us]",
dtypes_v1.Duration: "timedelta64[ns]",
}
UNSUPPORTED_DTYPES = (
dtypes.List,
dtypes.Struct,
dtypes.Array,
dtypes.Time,
dtypes.Binary,
)
def narwhals_to_native_dtype(dtype: IntoDType, version: Version) -> Any:
dtypes = version.dtypes
base_type = dtype.base_type()
if dask_type := NW_TO_DASK_DTYPES.get(base_type):
return dask_type
if isinstance_or_issubclass(dtype, dtypes.String):
if Implementation.PANDAS._backend_version() >= (2, 0, 0):
return "string[pyarrow]" if get_pyarrow() else "string[python]"
return "object" # pragma: no cover
if isinstance_or_issubclass(dtype, dtypes.Enum):
if version is Version.V1:
msg = "Converting to Enum is not supported in narwhals.stable.v1"
raise NotImplementedError(msg)
if isinstance(dtype, dtypes.Enum):
import pandas as pd
# NOTE: `pandas-stubs.core.dtypes.dtypes.CategoricalDtype.categories` is too narrow
# Should be one of the `ListLike*` types
# https://github.com/pandas-dev/pandas-stubs/blob/8434bde95460b996323cc8c0fea7b0a8bb00ea26/pandas-stubs/_typing.pyi#L497-L505
return pd.CategoricalDtype(dtype.categories, ordered=True) # type: ignore[arg-type]
msg = "Can not cast / initialize Enum without categories present"
raise ValueError(msg)
if issubclass(base_type, UNSUPPORTED_DTYPES): # pragma: no cover
msg = f"Converting to {base_type.__name__} dtype is not supported for Dask."
raise NotImplementedError(msg)
msg = f"Unknown dtype: {dtype}" # pragma: no cover
raise AssertionError(msg)