3940 lines
117 KiB
Python
3940 lines
117 KiB
Python
|
from builtins import (
|
||
|
bool as _bool,
|
||
|
str as _str,
|
||
|
)
|
||
|
from collections.abc import (
|
||
|
Callable,
|
||
|
Hashable,
|
||
|
Iterable,
|
||
|
Iterator,
|
||
|
KeysView,
|
||
|
Mapping,
|
||
|
MutableMapping,
|
||
|
Sequence,
|
||
|
ValuesView,
|
||
|
)
|
||
|
from datetime import (
|
||
|
date,
|
||
|
datetime,
|
||
|
time,
|
||
|
timedelta,
|
||
|
)
|
||
|
from pathlib import Path
|
||
|
from typing import (
|
||
|
Any,
|
||
|
ClassVar,
|
||
|
Generic,
|
||
|
Literal,
|
||
|
NoReturn,
|
||
|
TypeVar,
|
||
|
final,
|
||
|
overload,
|
||
|
type_check_only,
|
||
|
)
|
||
|
|
||
|
from matplotlib.axes import (
|
||
|
Axes as PlotAxes,
|
||
|
SubplotBase,
|
||
|
)
|
||
|
import numpy as np
|
||
|
from pandas import (
|
||
|
Index,
|
||
|
Period,
|
||
|
PeriodDtype,
|
||
|
Timedelta,
|
||
|
Timestamp,
|
||
|
)
|
||
|
from pandas.core.api import (
|
||
|
Int8Dtype as Int8Dtype,
|
||
|
Int16Dtype as Int16Dtype,
|
||
|
Int32Dtype as Int32Dtype,
|
||
|
Int64Dtype as Int64Dtype,
|
||
|
)
|
||
|
from pandas.core.arrays import TimedeltaArray
|
||
|
from pandas.core.arrays.base import ExtensionArray
|
||
|
from pandas.core.arrays.categorical import CategoricalAccessor
|
||
|
from pandas.core.arrays.datetimes import DatetimeArray
|
||
|
from pandas.core.arrays.interval import IntervalArray
|
||
|
from pandas.core.base import IndexOpsMixin
|
||
|
from pandas.core.frame import DataFrame
|
||
|
from pandas.core.generic import NDFrame
|
||
|
from pandas.core.groupby.generic import SeriesGroupBy
|
||
|
from pandas.core.groupby.groupby import BaseGroupBy
|
||
|
from pandas.core.indexers import BaseIndexer
|
||
|
from pandas.core.indexes.accessors import (
|
||
|
CombinedDatetimelikeProperties,
|
||
|
PeriodProperties,
|
||
|
TimedeltaProperties,
|
||
|
TimestampProperties,
|
||
|
)
|
||
|
from pandas.core.indexes.category import CategoricalIndex
|
||
|
from pandas.core.indexes.datetimes import DatetimeIndex
|
||
|
from pandas.core.indexes.interval import IntervalIndex
|
||
|
from pandas.core.indexes.multi import MultiIndex
|
||
|
from pandas.core.indexes.period import PeriodIndex
|
||
|
from pandas.core.indexes.timedeltas import TimedeltaIndex
|
||
|
from pandas.core.indexing import (
|
||
|
_AtIndexer,
|
||
|
_iAtIndexer,
|
||
|
_iLocIndexer,
|
||
|
_IndexSliceTuple,
|
||
|
_LocIndexer,
|
||
|
)
|
||
|
from pandas.core.strings.accessor import StringMethods
|
||
|
from pandas.core.window import (
|
||
|
Expanding,
|
||
|
ExponentialMovingWindow,
|
||
|
)
|
||
|
from pandas.core.window.rolling import (
|
||
|
Rolling,
|
||
|
Window,
|
||
|
)
|
||
|
from typing_extensions import (
|
||
|
Never,
|
||
|
Self,
|
||
|
TypeAlias,
|
||
|
)
|
||
|
import xarray as xr
|
||
|
|
||
|
from pandas._libs.interval import (
|
||
|
Interval,
|
||
|
_OrderableT,
|
||
|
)
|
||
|
from pandas._libs.lib import _NoDefaultDoNotUse
|
||
|
from pandas._libs.missing import NAType
|
||
|
from pandas._libs.tslibs import BaseOffset
|
||
|
from pandas._libs.tslibs.nattype import NaTType
|
||
|
from pandas._libs.tslibs.offsets import DateOffset
|
||
|
from pandas._typing import (
|
||
|
S1,
|
||
|
S2,
|
||
|
AggFuncTypeBase,
|
||
|
AggFuncTypeDictFrame,
|
||
|
AggFuncTypeSeriesToFrame,
|
||
|
AnyAll,
|
||
|
AnyArrayLike,
|
||
|
ArrayLike,
|
||
|
Axes,
|
||
|
AxesData,
|
||
|
Axis,
|
||
|
AxisColumn,
|
||
|
AxisIndex,
|
||
|
BooleanDtypeArg,
|
||
|
BytesDtypeArg,
|
||
|
CalculationMethod,
|
||
|
CategoryDtypeArg,
|
||
|
ComplexDtypeArg,
|
||
|
CompressionOptions,
|
||
|
DropKeep,
|
||
|
Dtype,
|
||
|
DTypeLike,
|
||
|
DtypeObj,
|
||
|
FilePath,
|
||
|
FillnaOptions,
|
||
|
FloatDtypeArg,
|
||
|
FloatFormatType,
|
||
|
GenericT,
|
||
|
GenericT_co,
|
||
|
GroupByObjectNonScalar,
|
||
|
HashableT1,
|
||
|
IgnoreRaise,
|
||
|
IndexingInt,
|
||
|
IndexKeyFunc,
|
||
|
IndexLabel,
|
||
|
IntDtypeArg,
|
||
|
InterpolateOptions,
|
||
|
IntervalClosedType,
|
||
|
IntervalT,
|
||
|
JoinHow,
|
||
|
JSONSerializable,
|
||
|
JsonSeriesOrient,
|
||
|
Just,
|
||
|
Label,
|
||
|
Level,
|
||
|
ListLike,
|
||
|
ListLikeU,
|
||
|
MaskType,
|
||
|
NaPosition,
|
||
|
NsmallestNlargestKeep,
|
||
|
ObjectDtypeArg,
|
||
|
QuantileInterpolation,
|
||
|
RandomState,
|
||
|
ReindexMethod,
|
||
|
Renamer,
|
||
|
ReplaceValue,
|
||
|
Scalar,
|
||
|
ScalarT,
|
||
|
SequenceNotStr,
|
||
|
SeriesByT,
|
||
|
SortKind,
|
||
|
StrDtypeArg,
|
||
|
StrLike,
|
||
|
Suffixes,
|
||
|
SupportsDType,
|
||
|
T as _T,
|
||
|
TimeAmbiguous,
|
||
|
TimedeltaDtypeArg,
|
||
|
TimestampDtypeArg,
|
||
|
TimeUnit,
|
||
|
TimeZones,
|
||
|
ToTimestampHow,
|
||
|
UIntDtypeArg,
|
||
|
ValueKeyFunc,
|
||
|
VoidDtypeArg,
|
||
|
WriteBuffer,
|
||
|
np_1darray,
|
||
|
np_ndarray_anyint,
|
||
|
np_ndarray_bool,
|
||
|
np_ndarray_complex,
|
||
|
np_ndarray_float,
|
||
|
np_ndarray_str,
|
||
|
np_ndarray_td,
|
||
|
npt,
|
||
|
num,
|
||
|
)
|
||
|
|
||
|
from pandas.core.dtypes.base import ExtensionDtype
|
||
|
from pandas.core.dtypes.dtypes import CategoricalDtype
|
||
|
|
||
|
from pandas.plotting import PlotAccessor
|
||
|
|
||
|
_T_INT = TypeVar("_T_INT", bound=int)
|
||
|
_T_COMPLEX = TypeVar("_T_COMPLEX", bound=complex)
|
||
|
|
||
|
class _iLocIndexerSeries(_iLocIndexer, Generic[S1]):
|
||
|
# get item
|
||
|
@overload
|
||
|
def __getitem__(self, idx: IndexingInt) -> S1: ...
|
||
|
@overload
|
||
|
def __getitem__(self, idx: Index | slice | np_ndarray_anyint) -> Series[S1]: ...
|
||
|
# set item
|
||
|
@overload
|
||
|
def __setitem__(self, idx: int, value: S1 | None) -> None: ...
|
||
|
@overload
|
||
|
def __setitem__(
|
||
|
self,
|
||
|
idx: Index | slice | np_ndarray_anyint | list[int],
|
||
|
value: S1 | Series[S1] | None,
|
||
|
) -> None: ...
|
||
|
|
||
|
class _LocIndexerSeries(_LocIndexer, Generic[S1]):
|
||
|
# ignore needed because of mypy. Overlapping, but we want to distinguish
|
||
|
# having a tuple of just scalars, versus tuples that include slices or Index
|
||
|
@overload
|
||
|
def __getitem__( # type: ignore[overload-overlap] # pyright: ignore[reportOverlappingOverload]
|
||
|
self,
|
||
|
idx: Scalar | tuple[Scalar, ...],
|
||
|
# tuple case is for getting a specific element when using a MultiIndex
|
||
|
) -> S1: ...
|
||
|
@overload
|
||
|
def __getitem__(
|
||
|
self,
|
||
|
idx: (
|
||
|
MaskType
|
||
|
| Index
|
||
|
| SequenceNotStr[float | _str | Timestamp]
|
||
|
| slice
|
||
|
| _IndexSliceTuple
|
||
|
| Sequence[_IndexSliceTuple]
|
||
|
| Callable
|
||
|
),
|
||
|
# _IndexSliceTuple is when having a tuple that includes a slice. Could just
|
||
|
# be s.loc[1, :], or s.loc[pd.IndexSlice[1, :]]
|
||
|
) -> Series[S1]: ...
|
||
|
@overload
|
||
|
def __setitem__(
|
||
|
self,
|
||
|
idx: Index | MaskType | slice,
|
||
|
value: S1 | ArrayLike | Series[S1] | None,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def __setitem__(
|
||
|
self,
|
||
|
idx: _str,
|
||
|
value: S1 | None,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def __setitem__(
|
||
|
self,
|
||
|
idx: MaskType | StrLike | _IndexSliceTuple | list[ScalarT],
|
||
|
value: S1 | ArrayLike | Series[S1] | None,
|
||
|
) -> None: ...
|
||
|
|
||
|
_ListLike: TypeAlias = ArrayLike | dict[_str, np.ndarray] | SequenceNotStr[S1]
|
||
|
_ListLikeS1: TypeAlias = (
|
||
|
ArrayLike | dict[_str, np.ndarray] | Sequence[S1] | IndexOpsMixin[S1]
|
||
|
)
|
||
|
_NumListLike: TypeAlias = (
|
||
|
ExtensionArray
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| np_ndarray_complex
|
||
|
| dict[_str, np.ndarray]
|
||
|
| Sequence[complex]
|
||
|
| IndexOpsMixin[complex]
|
||
|
)
|
||
|
|
||
|
class Series(IndexOpsMixin[S1], NDFrame):
|
||
|
# Define __index__ because mypy thinks Series follows protocol `SupportsIndex` https://github.com/pandas-dev/pandas-stubs/pull/1332#discussion_r2285648790
|
||
|
__index__: ClassVar[None]
|
||
|
__hash__: ClassVar[None]
|
||
|
|
||
|
@overload
|
||
|
def __new__(
|
||
|
cls,
|
||
|
data: npt.NDArray[np.float64],
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: Dtype = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __new__( # type: ignore[overload-overlap] # pyright: ignore[reportOverlappingOverload]
|
||
|
cls,
|
||
|
data: Sequence[Never],
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: Dtype = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def __new__(
|
||
|
cls,
|
||
|
data: Sequence[list[_str]],
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: Dtype = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> Series[list[_str]]: ...
|
||
|
@overload
|
||
|
def __new__(
|
||
|
cls,
|
||
|
data: Sequence[_str],
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: Dtype = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> Series[_str]: ...
|
||
|
@overload
|
||
|
def __new__(
|
||
|
cls,
|
||
|
data: (
|
||
|
DatetimeIndex
|
||
|
| Sequence[np.datetime64 | datetime | date]
|
||
|
| dict[HashableT1, np.datetime64 | datetime | date]
|
||
|
| np.datetime64
|
||
|
| datetime
|
||
|
| date
|
||
|
),
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: TimestampDtypeArg = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> TimestampSeries: ...
|
||
|
@overload
|
||
|
def __new__(
|
||
|
cls,
|
||
|
data: _ListLike,
|
||
|
index: AxesData | None = ...,
|
||
|
*,
|
||
|
dtype: TimestampDtypeArg,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> TimestampSeries: ...
|
||
|
@overload
|
||
|
def __new__(
|
||
|
cls,
|
||
|
data: PeriodIndex | Sequence[Period],
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: PeriodDtype = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> PeriodSeries: ...
|
||
|
@overload
|
||
|
def __new__(
|
||
|
cls,
|
||
|
data: (
|
||
|
TimedeltaIndex
|
||
|
| Sequence[np.timedelta64 | timedelta]
|
||
|
| dict[HashableT1, np.timedelta64 | timedelta]
|
||
|
| np.timedelta64
|
||
|
| timedelta
|
||
|
),
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: TimedeltaDtypeArg = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> TimedeltaSeries: ...
|
||
|
@overload
|
||
|
def __new__(
|
||
|
cls,
|
||
|
data: (
|
||
|
IntervalIndex[Interval[_OrderableT]]
|
||
|
| Interval[_OrderableT]
|
||
|
| Sequence[Interval[_OrderableT]]
|
||
|
| dict[HashableT1, Interval[_OrderableT]]
|
||
|
),
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: Literal["Interval"] = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> IntervalSeries[_OrderableT]: ...
|
||
|
@overload
|
||
|
def __new__( # type: ignore[overload-overlap]
|
||
|
cls,
|
||
|
data: Scalar | _ListLike | dict[HashableT1, Any] | None,
|
||
|
index: AxesData | None = ...,
|
||
|
*,
|
||
|
dtype: type[S1],
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> Self: ...
|
||
|
@overload
|
||
|
def __new__( # type: ignore[overload-overlap] # pyright: ignore[reportOverlappingOverload]
|
||
|
cls,
|
||
|
data: Sequence[bool],
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: Dtype = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def __new__( # type: ignore[overload-overlap]
|
||
|
cls,
|
||
|
data: Sequence[int],
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: Dtype = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __new__(
|
||
|
cls,
|
||
|
data: Sequence[float],
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: Dtype = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __new__( # type: ignore[overload-cannot-match] # pyright: ignore[reportOverlappingOverload]
|
||
|
cls,
|
||
|
data: Sequence[int | float],
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: Dtype = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __new__(
|
||
|
cls,
|
||
|
data: (
|
||
|
S1 | _ListLikeS1[S1] | dict[HashableT1, S1] | KeysView[S1] | ValuesView[S1]
|
||
|
),
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: Dtype = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> Self: ...
|
||
|
@overload
|
||
|
def __new__(
|
||
|
cls,
|
||
|
data: (
|
||
|
Scalar
|
||
|
| _ListLike
|
||
|
| Mapping[HashableT1, Any]
|
||
|
| BaseGroupBy
|
||
|
| NaTType
|
||
|
| NAType
|
||
|
| None
|
||
|
) = ...,
|
||
|
index: AxesData | None = ...,
|
||
|
dtype: Dtype = ...,
|
||
|
name: Hashable = ...,
|
||
|
copy: bool = ...,
|
||
|
) -> Series: ...
|
||
|
@property
|
||
|
def hasnans(self) -> bool: ...
|
||
|
@property
|
||
|
def dtype(self) -> DtypeObj: ...
|
||
|
@property
|
||
|
def dtypes(self) -> DtypeObj: ...
|
||
|
@property
|
||
|
def name(self) -> Hashable | None: ...
|
||
|
@name.setter
|
||
|
def name(self, value: Hashable | None) -> None: ...
|
||
|
@property
|
||
|
def values(self) -> ArrayLike: ...
|
||
|
@property
|
||
|
def array(self) -> ExtensionArray: ...
|
||
|
def ravel(self, order: _str = ...) -> np.ndarray: ...
|
||
|
def __len__(self) -> int: ...
|
||
|
def view(self, dtype=...) -> Series[S1]: ...
|
||
|
@final
|
||
|
def __array_ufunc__(
|
||
|
self, ufunc: Callable, method: _str, *inputs: Any, **kwargs: Any
|
||
|
): ...
|
||
|
def __array__(
|
||
|
self, dtype: _str | np.dtype = ..., copy: bool | None = ...
|
||
|
) -> np_1darray: ...
|
||
|
@property
|
||
|
def axes(self) -> list: ...
|
||
|
@final
|
||
|
def __getattr__(self, name: _str) -> S1: ...
|
||
|
@overload
|
||
|
def __getitem__(
|
||
|
self,
|
||
|
idx: (
|
||
|
list[_str]
|
||
|
| Index
|
||
|
| Series[S1]
|
||
|
| slice
|
||
|
| MaskType
|
||
|
| tuple[Hashable | slice, ...]
|
||
|
),
|
||
|
) -> Self: ...
|
||
|
@overload
|
||
|
def __getitem__(self, idx: Scalar) -> S1: ...
|
||
|
def __setitem__(self, key, value) -> None: ...
|
||
|
@overload
|
||
|
def get(self, key: Hashable, default: None = ...) -> S1 | None: ...
|
||
|
@overload
|
||
|
def get(self, key: Hashable, default: S1) -> S1: ...
|
||
|
@overload
|
||
|
def get(self, key: Hashable, default: _T) -> S1 | _T: ...
|
||
|
def repeat(
|
||
|
self, repeats: int | list[int], axis: AxisIndex | None = 0
|
||
|
) -> Series[S1]: ...
|
||
|
@property
|
||
|
def index(self) -> Index: ...
|
||
|
@index.setter
|
||
|
def index(self, idx: Index) -> None: ...
|
||
|
@overload
|
||
|
def reset_index(
|
||
|
self,
|
||
|
level: Sequence[Level] | Level | None = ...,
|
||
|
*,
|
||
|
drop: Literal[False] = ...,
|
||
|
name: Level = ...,
|
||
|
inplace: Literal[False] = ...,
|
||
|
allow_duplicates: bool = ...,
|
||
|
) -> DataFrame: ...
|
||
|
@overload
|
||
|
def reset_index(
|
||
|
self,
|
||
|
level: Sequence[Level] | Level | None = ...,
|
||
|
*,
|
||
|
drop: Literal[True],
|
||
|
name: Level = ...,
|
||
|
inplace: Literal[False] = ...,
|
||
|
allow_duplicates: bool = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
@overload
|
||
|
def reset_index(
|
||
|
self,
|
||
|
level: Sequence[Level] | Level | None = ...,
|
||
|
*,
|
||
|
drop: bool = ...,
|
||
|
name: Level = ...,
|
||
|
inplace: Literal[True],
|
||
|
allow_duplicates: bool = ...,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def to_string(
|
||
|
self,
|
||
|
buf: FilePath | WriteBuffer[_str],
|
||
|
na_rep: _str = ...,
|
||
|
float_format: FloatFormatType = ...,
|
||
|
header: _bool = ...,
|
||
|
index: _bool = ...,
|
||
|
length: _bool = ...,
|
||
|
dtype: _bool = ...,
|
||
|
name: _bool = ...,
|
||
|
max_rows: int | None = ...,
|
||
|
min_rows: int | None = ...,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def to_string(
|
||
|
self,
|
||
|
buf: None = ...,
|
||
|
na_rep: _str = ...,
|
||
|
float_format: FloatFormatType = ...,
|
||
|
header: _bool = ...,
|
||
|
index: _bool = ...,
|
||
|
length: _bool = ...,
|
||
|
dtype: _bool = ...,
|
||
|
name: _bool = ...,
|
||
|
max_rows: int | None = ...,
|
||
|
min_rows: int | None = ...,
|
||
|
) -> _str: ...
|
||
|
@overload
|
||
|
def to_json(
|
||
|
self,
|
||
|
path_or_buf: FilePath | WriteBuffer[_str],
|
||
|
*,
|
||
|
orient: Literal["records"],
|
||
|
date_format: Literal["epoch", "iso"] | None = ...,
|
||
|
double_precision: int = ...,
|
||
|
force_ascii: _bool = ...,
|
||
|
date_unit: TimeUnit = ...,
|
||
|
default_handler: Callable[[Any], JSONSerializable] | None = ...,
|
||
|
lines: Literal[True],
|
||
|
compression: CompressionOptions = ...,
|
||
|
index: _bool = ...,
|
||
|
indent: int | None = ...,
|
||
|
mode: Literal["a"],
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def to_json(
|
||
|
self,
|
||
|
path_or_buf: None = ...,
|
||
|
*,
|
||
|
orient: Literal["records"],
|
||
|
date_format: Literal["epoch", "iso"] | None = ...,
|
||
|
double_precision: int = ...,
|
||
|
force_ascii: _bool = ...,
|
||
|
date_unit: TimeUnit = ...,
|
||
|
default_handler: Callable[[Any], JSONSerializable] | None = ...,
|
||
|
lines: Literal[True],
|
||
|
compression: CompressionOptions = ...,
|
||
|
index: _bool = ...,
|
||
|
indent: int | None = ...,
|
||
|
mode: Literal["a"],
|
||
|
) -> _str: ...
|
||
|
@overload
|
||
|
def to_json(
|
||
|
self,
|
||
|
path_or_buf: FilePath | WriteBuffer[_str] | WriteBuffer[bytes],
|
||
|
*,
|
||
|
orient: JsonSeriesOrient | None = ...,
|
||
|
date_format: Literal["epoch", "iso"] | None = ...,
|
||
|
double_precision: int = ...,
|
||
|
force_ascii: _bool = ...,
|
||
|
date_unit: TimeUnit = ...,
|
||
|
default_handler: Callable[[Any], JSONSerializable] | None = ...,
|
||
|
lines: _bool = ...,
|
||
|
compression: CompressionOptions = ...,
|
||
|
index: _bool = ...,
|
||
|
indent: int | None = ...,
|
||
|
mode: Literal["w"] = ...,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def to_json(
|
||
|
self,
|
||
|
path_or_buf: None = ...,
|
||
|
*,
|
||
|
orient: JsonSeriesOrient | None = ...,
|
||
|
date_format: Literal["epoch", "iso"] | None = ...,
|
||
|
double_precision: int = ...,
|
||
|
force_ascii: _bool = ...,
|
||
|
date_unit: TimeUnit = ...,
|
||
|
default_handler: Callable[[Any], JSONSerializable] | None = ...,
|
||
|
lines: _bool = ...,
|
||
|
compression: CompressionOptions = ...,
|
||
|
index: _bool = ...,
|
||
|
indent: int | None = ...,
|
||
|
mode: Literal["w"] = ...,
|
||
|
) -> _str: ...
|
||
|
@final
|
||
|
def to_xarray(self) -> xr.DataArray: ...
|
||
|
def items(self) -> Iterator[tuple[Hashable, S1]]: ...
|
||
|
def keys(self) -> Index: ...
|
||
|
@overload
|
||
|
def to_dict(self, *, into: type[dict] = ...) -> dict[Any, S1]: ...
|
||
|
@overload
|
||
|
def to_dict(
|
||
|
self, *, into: type[MutableMapping] | MutableMapping
|
||
|
) -> MutableMapping[Hashable, S1]: ...
|
||
|
def to_frame(self, name: object | None = ...) -> DataFrame: ...
|
||
|
@overload
|
||
|
def groupby(
|
||
|
self,
|
||
|
by: Scalar,
|
||
|
level: IndexLabel | None = ...,
|
||
|
as_index: _bool = ...,
|
||
|
sort: _bool = ...,
|
||
|
group_keys: _bool = ...,
|
||
|
observed: _bool | _NoDefaultDoNotUse = ...,
|
||
|
dropna: _bool = ...,
|
||
|
) -> SeriesGroupBy[S1, Scalar]: ...
|
||
|
@overload
|
||
|
def groupby(
|
||
|
self,
|
||
|
by: DatetimeIndex,
|
||
|
level: IndexLabel | None = ...,
|
||
|
as_index: _bool = ...,
|
||
|
sort: _bool = ...,
|
||
|
group_keys: _bool = ...,
|
||
|
observed: _bool | _NoDefaultDoNotUse = ...,
|
||
|
dropna: _bool = ...,
|
||
|
) -> SeriesGroupBy[S1, Timestamp]: ...
|
||
|
@overload
|
||
|
def groupby(
|
||
|
self,
|
||
|
by: TimedeltaIndex,
|
||
|
level: IndexLabel | None = ...,
|
||
|
as_index: _bool = ...,
|
||
|
sort: _bool = ...,
|
||
|
group_keys: _bool = ...,
|
||
|
observed: _bool | _NoDefaultDoNotUse = ...,
|
||
|
dropna: _bool = ...,
|
||
|
) -> SeriesGroupBy[S1, Timedelta]: ...
|
||
|
@overload
|
||
|
def groupby(
|
||
|
self,
|
||
|
by: PeriodIndex,
|
||
|
level: IndexLabel | None = ...,
|
||
|
as_index: _bool = ...,
|
||
|
sort: _bool = ...,
|
||
|
group_keys: _bool = ...,
|
||
|
observed: _bool | _NoDefaultDoNotUse = ...,
|
||
|
dropna: _bool = ...,
|
||
|
) -> SeriesGroupBy[S1, Period]: ...
|
||
|
@overload
|
||
|
def groupby(
|
||
|
self,
|
||
|
by: IntervalIndex[IntervalT],
|
||
|
level: IndexLabel | None = ...,
|
||
|
as_index: _bool = ...,
|
||
|
sort: _bool = ...,
|
||
|
group_keys: _bool = ...,
|
||
|
observed: _bool | _NoDefaultDoNotUse = ...,
|
||
|
dropna: _bool = ...,
|
||
|
) -> SeriesGroupBy[S1, IntervalT]: ...
|
||
|
@overload
|
||
|
def groupby(
|
||
|
self,
|
||
|
by: MultiIndex | GroupByObjectNonScalar,
|
||
|
level: IndexLabel | None = ...,
|
||
|
as_index: _bool = ...,
|
||
|
sort: _bool = ...,
|
||
|
group_keys: _bool = ...,
|
||
|
observed: _bool | _NoDefaultDoNotUse = ...,
|
||
|
dropna: _bool = ...,
|
||
|
) -> SeriesGroupBy[S1, tuple]: ...
|
||
|
@overload
|
||
|
def groupby(
|
||
|
self,
|
||
|
by: None,
|
||
|
level: IndexLabel, # level is required when by=None (passed as positional)
|
||
|
as_index: _bool = ...,
|
||
|
sort: _bool = ...,
|
||
|
group_keys: _bool = ...,
|
||
|
observed: _bool | _NoDefaultDoNotUse = ...,
|
||
|
dropna: _bool = ...,
|
||
|
) -> SeriesGroupBy[S1, Scalar]: ...
|
||
|
@overload
|
||
|
def groupby(
|
||
|
self,
|
||
|
by: None = ...,
|
||
|
*,
|
||
|
level: IndexLabel, # level is required when by=None (passed as keyword)
|
||
|
as_index: _bool = ...,
|
||
|
sort: _bool = ...,
|
||
|
group_keys: _bool = ...,
|
||
|
observed: _bool | _NoDefaultDoNotUse = ...,
|
||
|
dropna: _bool = ...,
|
||
|
) -> SeriesGroupBy[S1, Scalar]: ...
|
||
|
@overload
|
||
|
def groupby(
|
||
|
self,
|
||
|
by: Series[SeriesByT],
|
||
|
level: IndexLabel | None = ...,
|
||
|
as_index: _bool = ...,
|
||
|
sort: _bool = ...,
|
||
|
group_keys: _bool = ...,
|
||
|
observed: _bool | _NoDefaultDoNotUse = ...,
|
||
|
dropna: _bool = ...,
|
||
|
) -> SeriesGroupBy[S1, SeriesByT]: ...
|
||
|
@overload
|
||
|
def groupby(
|
||
|
self,
|
||
|
by: CategoricalIndex | Index | Series,
|
||
|
level: IndexLabel | None = ...,
|
||
|
as_index: _bool = ...,
|
||
|
sort: _bool = ...,
|
||
|
group_keys: _bool = ...,
|
||
|
observed: _bool | _NoDefaultDoNotUse = ...,
|
||
|
dropna: _bool = ...,
|
||
|
) -> SeriesGroupBy[S1, Any]: ...
|
||
|
def count(self) -> int: ...
|
||
|
def mode(self, dropna=True) -> Series[S1]: ...
|
||
|
def unique(self) -> np.ndarray: ...
|
||
|
@overload
|
||
|
def drop_duplicates(
|
||
|
self,
|
||
|
*,
|
||
|
keep: DropKeep = ...,
|
||
|
inplace: Literal[True],
|
||
|
ignore_index: _bool = ...,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def drop_duplicates(
|
||
|
self,
|
||
|
*,
|
||
|
keep: DropKeep = ...,
|
||
|
inplace: Literal[False] = ...,
|
||
|
ignore_index: _bool = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
def duplicated(self, keep: DropKeep = "first") -> Series[_bool]: ...
|
||
|
def idxmax(
|
||
|
self,
|
||
|
axis: AxisIndex = 0,
|
||
|
skipna: _bool = True,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> int | _str: ...
|
||
|
def idxmin(
|
||
|
self,
|
||
|
axis: AxisIndex = 0,
|
||
|
skipna: _bool = True,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> int | _str: ...
|
||
|
def round(self, decimals: int = 0, *args: Any, **kwargs: Any) -> Series[S1]: ...
|
||
|
@overload
|
||
|
def quantile(
|
||
|
self,
|
||
|
q: float = ...,
|
||
|
interpolation: QuantileInterpolation = ...,
|
||
|
) -> float: ...
|
||
|
@overload
|
||
|
def quantile(
|
||
|
self,
|
||
|
q: _ListLike,
|
||
|
interpolation: QuantileInterpolation = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
def corr(
|
||
|
self,
|
||
|
other: Series[S1],
|
||
|
method: Literal["pearson", "kendall", "spearman"] = ...,
|
||
|
min_periods: int | None = ...,
|
||
|
) -> float: ...
|
||
|
def cov(
|
||
|
self, other: Series[S1], min_periods: int | None = None, ddof: int = 1
|
||
|
) -> float: ...
|
||
|
@overload
|
||
|
def diff(self: Series[_bool], periods: int = ...) -> Series[type[object]]: ... # type: ignore[overload-overlap]
|
||
|
@overload
|
||
|
def diff(self: Series[complex], periods: int = ...) -> Series[complex]: ... # type: ignore[overload-overlap]
|
||
|
@overload
|
||
|
def diff(self: Series[bytes], periods: int = ...) -> Never: ...
|
||
|
@overload
|
||
|
def diff(self: Series[type], periods: int = ...) -> Never: ...
|
||
|
@overload
|
||
|
def diff(self: Series[_str], periods: int = ...) -> Never: ...
|
||
|
@overload
|
||
|
def diff(self, periods: int = ...) -> Series[float]: ...
|
||
|
def autocorr(self, lag: int = 1) -> float: ...
|
||
|
@overload
|
||
|
def dot(self, other: Series[S1]) -> Scalar: ...
|
||
|
@overload
|
||
|
def dot(self, other: DataFrame) -> Series[S1]: ...
|
||
|
@overload
|
||
|
def dot(
|
||
|
self, other: ArrayLike | dict[_str, np.ndarray] | Sequence[S1] | Index[S1]
|
||
|
) -> np.ndarray: ...
|
||
|
@overload
|
||
|
def __matmul__(self, other: Series) -> Scalar: ...
|
||
|
@overload
|
||
|
def __matmul__(self, other: DataFrame) -> Series: ...
|
||
|
@overload
|
||
|
def __matmul__(self, other: np.ndarray) -> np.ndarray: ...
|
||
|
@overload
|
||
|
def __rmatmul__(self, other: Series) -> Scalar: ...
|
||
|
@overload
|
||
|
def __rmatmul__(self, other: DataFrame) -> Series: ...
|
||
|
@overload
|
||
|
def __rmatmul__(self, other: np.ndarray) -> np.ndarray: ...
|
||
|
@overload
|
||
|
def searchsorted(
|
||
|
self,
|
||
|
value: _ListLike,
|
||
|
side: Literal["left", "right"] = ...,
|
||
|
sorter: _ListLike | None = ...,
|
||
|
) -> list[int]: ...
|
||
|
@overload
|
||
|
def searchsorted(
|
||
|
self,
|
||
|
value: Scalar,
|
||
|
side: Literal["left", "right"] = ...,
|
||
|
sorter: _ListLike | None = ...,
|
||
|
) -> int: ...
|
||
|
@overload
|
||
|
def compare(
|
||
|
self,
|
||
|
other: Series,
|
||
|
align_axis: AxisIndex,
|
||
|
keep_shape: bool = ...,
|
||
|
keep_equal: bool = ...,
|
||
|
result_names: Suffixes = ...,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def compare(
|
||
|
self,
|
||
|
other: Series,
|
||
|
align_axis: AxisColumn = ...,
|
||
|
keep_shape: bool = ...,
|
||
|
keep_equal: bool = ...,
|
||
|
result_names: Suffixes = ...,
|
||
|
) -> DataFrame: ...
|
||
|
def combine(
|
||
|
self, other: Series[S1], func: Callable, fill_value: Scalar | None = ...
|
||
|
) -> Series[S1]: ...
|
||
|
def combine_first(self, other: Series[S1]) -> Series[S1]: ...
|
||
|
def update(self, other: Series[S1] | Sequence[S1] | Mapping[int, S1]) -> None: ...
|
||
|
@overload
|
||
|
def sort_values(
|
||
|
self,
|
||
|
*,
|
||
|
axis: Axis = ...,
|
||
|
ascending: _bool | Sequence[_bool] = ...,
|
||
|
kind: SortKind = ...,
|
||
|
na_position: NaPosition = ...,
|
||
|
ignore_index: _bool = ...,
|
||
|
inplace: Literal[True],
|
||
|
key: ValueKeyFunc = ...,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def sort_values(
|
||
|
self,
|
||
|
*,
|
||
|
axis: Axis = ...,
|
||
|
ascending: _bool | Sequence[_bool] = ...,
|
||
|
kind: SortKind = ...,
|
||
|
na_position: NaPosition = ...,
|
||
|
ignore_index: _bool = ...,
|
||
|
inplace: Literal[False] = ...,
|
||
|
key: ValueKeyFunc = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
@overload
|
||
|
def sort_index(
|
||
|
self,
|
||
|
*,
|
||
|
axis: Axis = ...,
|
||
|
level: Level | None = ...,
|
||
|
ascending: _bool | Sequence[_bool] = ...,
|
||
|
kind: SortKind = ...,
|
||
|
na_position: NaPosition = ...,
|
||
|
sort_remaining: _bool = ...,
|
||
|
ignore_index: _bool = ...,
|
||
|
inplace: Literal[True],
|
||
|
key: IndexKeyFunc = ...,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def sort_index(
|
||
|
self,
|
||
|
*,
|
||
|
axis: Axis = ...,
|
||
|
level: Level | list[int] | list[_str] | None = ...,
|
||
|
ascending: _bool | Sequence[_bool] = ...,
|
||
|
kind: SortKind = ...,
|
||
|
na_position: NaPosition = ...,
|
||
|
sort_remaining: _bool = ...,
|
||
|
ignore_index: _bool = ...,
|
||
|
inplace: Literal[False] = ...,
|
||
|
key: IndexKeyFunc = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
def argsort(
|
||
|
self,
|
||
|
axis: AxisIndex = 0,
|
||
|
kind: SortKind = "quicksort",
|
||
|
order: None = None,
|
||
|
stable: None = None,
|
||
|
) -> Series[int]: ...
|
||
|
def nlargest(
|
||
|
self, n: int = 5, keep: NsmallestNlargestKeep = "first"
|
||
|
) -> Series[S1]: ...
|
||
|
def nsmallest(
|
||
|
self, n: int = 5, keep: NsmallestNlargestKeep = "first"
|
||
|
) -> Series[S1]: ...
|
||
|
def swaplevel(
|
||
|
self, i: Level = -2, j: Level = -1, copy: _bool = True
|
||
|
) -> Series[S1]: ...
|
||
|
def reorder_levels(self, order: list) -> Series[S1]: ...
|
||
|
def explode(self, ignore_index: _bool = ...) -> Series[S1]: ...
|
||
|
def unstack(
|
||
|
self,
|
||
|
level: IndexLabel = -1,
|
||
|
fill_value: int | _str | dict | None = None,
|
||
|
sort: _bool = True,
|
||
|
) -> DataFrame: ...
|
||
|
@overload
|
||
|
def map(
|
||
|
self,
|
||
|
arg: Callable[[S1], S2 | NAType] | Mapping[S1, S2] | Series[S2],
|
||
|
na_action: Literal["ignore"] = ...,
|
||
|
) -> Series[S2]: ...
|
||
|
@overload
|
||
|
def map(
|
||
|
self,
|
||
|
arg: Callable[[S1 | NAType], S2 | NAType] | Mapping[S1, S2] | Series[S2],
|
||
|
na_action: None = ...,
|
||
|
) -> Series[S2]: ...
|
||
|
@overload
|
||
|
def map(
|
||
|
self,
|
||
|
arg: Callable[[Any], Any] | Mapping[Any, Any] | Series,
|
||
|
na_action: Literal["ignore"] | None = ...,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def aggregate(
|
||
|
self: Series[int],
|
||
|
func: Literal["mean"],
|
||
|
axis: AxisIndex = ...,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> float: ...
|
||
|
@overload
|
||
|
def aggregate(
|
||
|
self,
|
||
|
func: AggFuncTypeBase,
|
||
|
axis: AxisIndex = ...,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> S1: ...
|
||
|
@overload
|
||
|
def aggregate(
|
||
|
self,
|
||
|
func: AggFuncTypeSeriesToFrame = ...,
|
||
|
axis: AxisIndex = ...,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> Series: ...
|
||
|
agg = aggregate
|
||
|
@overload
|
||
|
def transform(
|
||
|
self,
|
||
|
func: AggFuncTypeBase,
|
||
|
axis: AxisIndex = ...,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> Series[S1]: ...
|
||
|
@overload
|
||
|
def transform(
|
||
|
self,
|
||
|
func: list[AggFuncTypeBase] | AggFuncTypeDictFrame,
|
||
|
axis: AxisIndex = ...,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> DataFrame: ...
|
||
|
@overload
|
||
|
def apply(
|
||
|
self,
|
||
|
func: Callable[
|
||
|
..., Scalar | Sequence | set | Mapping | NAType | frozenset | None
|
||
|
],
|
||
|
convertDType: _bool = ...,
|
||
|
args: tuple = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def apply(
|
||
|
self,
|
||
|
func: Callable[..., BaseOffset],
|
||
|
convertDType: _bool = ...,
|
||
|
args: tuple = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> OffsetSeries: ...
|
||
|
@overload
|
||
|
def apply(
|
||
|
self,
|
||
|
func: Callable[..., Series],
|
||
|
convertDType: _bool = ...,
|
||
|
args: tuple = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> DataFrame: ...
|
||
|
@final
|
||
|
def align(
|
||
|
self,
|
||
|
other: DataFrame | Series,
|
||
|
join: JoinHow = "outer",
|
||
|
axis: Axis | None = 0,
|
||
|
level: Level | None = None,
|
||
|
copy: _bool = True,
|
||
|
fill_value: Scalar | NAType | None = None,
|
||
|
) -> tuple[Series, Series]: ...
|
||
|
@overload
|
||
|
def rename(
|
||
|
self,
|
||
|
index: Callable[[Any], Label],
|
||
|
*,
|
||
|
axis: Axis | None = ...,
|
||
|
copy: bool = ...,
|
||
|
inplace: Literal[True],
|
||
|
level: Level | None = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def rename(
|
||
|
self,
|
||
|
index: Mapping[Any, Label],
|
||
|
*,
|
||
|
axis: Axis | None = ...,
|
||
|
copy: bool = ...,
|
||
|
inplace: Literal[True],
|
||
|
level: Level | None = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def rename(
|
||
|
self,
|
||
|
index: Scalar | tuple[Hashable, ...] | None = None,
|
||
|
*,
|
||
|
axis: Axis | None = ...,
|
||
|
copy: bool = ...,
|
||
|
inplace: Literal[True],
|
||
|
level: Level | None = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> Self: ...
|
||
|
@overload
|
||
|
def rename(
|
||
|
self,
|
||
|
index: Renamer | Scalar | tuple[Hashable, ...] | None = ...,
|
||
|
*,
|
||
|
axis: Axis | None = ...,
|
||
|
copy: bool = ...,
|
||
|
inplace: Literal[False] = ...,
|
||
|
level: Level | None = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> Self: ...
|
||
|
@final
|
||
|
def reindex_like(
|
||
|
self,
|
||
|
other: Series[S1],
|
||
|
method: FillnaOptions | Literal["nearest"] | None = None,
|
||
|
copy: _bool = True,
|
||
|
limit: int | None = None,
|
||
|
tolerance: Scalar | AnyArrayLike | Sequence[Scalar] | None = None,
|
||
|
) -> Self: ...
|
||
|
@overload
|
||
|
def fillna(
|
||
|
self,
|
||
|
value: Scalar | NAType | dict | Series[S1] | DataFrame | None = ...,
|
||
|
*,
|
||
|
axis: AxisIndex = ...,
|
||
|
limit: int | None = ...,
|
||
|
inplace: Literal[True],
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def fillna(
|
||
|
self,
|
||
|
value: Scalar | NAType | dict | Series[S1] | DataFrame | None = ...,
|
||
|
*,
|
||
|
axis: AxisIndex = ...,
|
||
|
limit: int | None = ...,
|
||
|
inplace: Literal[False] = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
@overload
|
||
|
def replace(
|
||
|
self,
|
||
|
to_replace: ReplaceValue = ...,
|
||
|
value: ReplaceValue = ...,
|
||
|
*,
|
||
|
regex: ReplaceValue = ...,
|
||
|
inplace: Literal[True],
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def replace(
|
||
|
self,
|
||
|
to_replace: ReplaceValue = ...,
|
||
|
value: ReplaceValue = ...,
|
||
|
*,
|
||
|
regex: ReplaceValue = ...,
|
||
|
inplace: Literal[False] = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
def shift(
|
||
|
self,
|
||
|
periods: int | Sequence[int] = ...,
|
||
|
freq: BaseOffset | timedelta | _str | None = None,
|
||
|
axis: Axis = 0,
|
||
|
fill_value: Scalar | NAType | None = ...,
|
||
|
) -> Series: ...
|
||
|
def info(
|
||
|
self,
|
||
|
verbose: bool | None = ...,
|
||
|
buf: WriteBuffer[_str] | None = ...,
|
||
|
memory_usage: bool | Literal["deep"] | None = ...,
|
||
|
show_counts: bool | None = ...,
|
||
|
) -> None: ...
|
||
|
def memory_usage(self, index: _bool = True, deep: _bool = False) -> int: ...
|
||
|
def isin(self, values: Iterable | Series[S1] | dict) -> Series[_bool]: ...
|
||
|
def between(
|
||
|
self,
|
||
|
left: Scalar | ListLikeU,
|
||
|
right: Scalar | ListLikeU,
|
||
|
inclusive: Literal["both", "neither", "left", "right"] = ...,
|
||
|
) -> Series[_bool]: ...
|
||
|
def isna(self) -> Series[_bool]: ...
|
||
|
def isnull(self) -> Series[_bool]: ...
|
||
|
def notna(self) -> Series[_bool]: ...
|
||
|
def notnull(self) -> Series[_bool]: ...
|
||
|
@overload
|
||
|
def dropna(
|
||
|
self,
|
||
|
*,
|
||
|
axis: AxisIndex = ...,
|
||
|
inplace: Literal[True],
|
||
|
how: AnyAll | None = ...,
|
||
|
ignore_index: _bool = ...,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def dropna(
|
||
|
self,
|
||
|
*,
|
||
|
axis: AxisIndex = ...,
|
||
|
inplace: Literal[False] = ...,
|
||
|
how: AnyAll | None = ...,
|
||
|
ignore_index: _bool = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
def to_timestamp(
|
||
|
self,
|
||
|
freq=...,
|
||
|
how: ToTimestampHow = "start",
|
||
|
copy: _bool = True,
|
||
|
) -> Series[S1]: ...
|
||
|
def to_period(self, freq: _str | None = None, copy: _bool = True) -> DataFrame: ...
|
||
|
@property
|
||
|
def str(
|
||
|
self,
|
||
|
) -> StringMethods[
|
||
|
Self,
|
||
|
DataFrame,
|
||
|
Series[bool],
|
||
|
Series[list[_str]],
|
||
|
Series[int],
|
||
|
Series[bytes],
|
||
|
Series[_str],
|
||
|
Series,
|
||
|
]: ...
|
||
|
@property
|
||
|
def dt(self) -> CombinedDatetimelikeProperties: ...
|
||
|
@property
|
||
|
def plot(self) -> PlotAccessor: ...
|
||
|
sparse = ...
|
||
|
def hist(
|
||
|
self,
|
||
|
by: object | None = None,
|
||
|
ax: PlotAxes | None = None,
|
||
|
grid: _bool = True,
|
||
|
xlabelsize: float | _str | None = None,
|
||
|
xrot: float | None = None,
|
||
|
ylabelsize: float | _str | None = None,
|
||
|
yrot: float | None = None,
|
||
|
figsize: tuple[float, float] | None = None,
|
||
|
bins: int | Sequence = 10,
|
||
|
backend: _str | None = None,
|
||
|
legend: _bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> SubplotBase: ...
|
||
|
@final
|
||
|
def swapaxes(
|
||
|
self, axis1: AxisIndex, axis2: AxisIndex, copy: _bool = ...
|
||
|
) -> Series[S1]: ...
|
||
|
@final
|
||
|
def droplevel(self, level: Level | list[Level], axis: AxisIndex = 0) -> Self: ...
|
||
|
def pop(self, item: Hashable) -> S1: ...
|
||
|
@final
|
||
|
def squeeze(self, axis: None = None) -> Series[S1] | Scalar: ...
|
||
|
@final
|
||
|
def __abs__(self) -> Series[S1]: ...
|
||
|
@final
|
||
|
def add_prefix(self, prefix: _str, axis: AxisIndex | None = None) -> Series[S1]: ...
|
||
|
@final
|
||
|
def add_suffix(self, suffix: _str, axis: AxisIndex | None = None) -> Series[S1]: ...
|
||
|
def reindex(
|
||
|
self,
|
||
|
index: Axes | None = None,
|
||
|
method: ReindexMethod | None = None,
|
||
|
copy: bool = True,
|
||
|
level: int | _str | None = None,
|
||
|
fill_value: Scalar | None = None,
|
||
|
limit: int | None = None,
|
||
|
tolerance: float | Timedelta | None = None,
|
||
|
) -> Series[S1]: ...
|
||
|
def filter(
|
||
|
self,
|
||
|
items: _ListLike | None = None,
|
||
|
like: _str | None = None,
|
||
|
regex: _str | None = None,
|
||
|
axis: AxisIndex | None = None,
|
||
|
) -> Series[S1]: ...
|
||
|
@final
|
||
|
def head(self, n: int = 5) -> Series[S1]: ...
|
||
|
@final
|
||
|
def tail(self, n: int = 5) -> Series[S1]: ...
|
||
|
@final
|
||
|
def sample(
|
||
|
self,
|
||
|
n: int | None = None,
|
||
|
frac: float | None = None,
|
||
|
replace: _bool = False,
|
||
|
weights: _str | _ListLike | np.ndarray | None = None,
|
||
|
random_state: RandomState | None = None,
|
||
|
axis: AxisIndex | None = None,
|
||
|
ignore_index: _bool = False,
|
||
|
) -> Series[S1]: ...
|
||
|
@overload
|
||
|
def astype(
|
||
|
self,
|
||
|
dtype: BooleanDtypeArg,
|
||
|
copy: _bool = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def astype(
|
||
|
self,
|
||
|
dtype: IntDtypeArg | UIntDtypeArg,
|
||
|
copy: _bool = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def astype(
|
||
|
self,
|
||
|
dtype: StrDtypeArg,
|
||
|
copy: _bool = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> Series[_str]: ...
|
||
|
@overload
|
||
|
def astype(
|
||
|
self,
|
||
|
dtype: BytesDtypeArg,
|
||
|
copy: _bool = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> Series[bytes]: ...
|
||
|
@overload
|
||
|
def astype(
|
||
|
self,
|
||
|
dtype: FloatDtypeArg,
|
||
|
copy: _bool = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def astype(
|
||
|
self,
|
||
|
dtype: ComplexDtypeArg,
|
||
|
copy: _bool = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def astype(
|
||
|
self,
|
||
|
dtype: TimedeltaDtypeArg,
|
||
|
copy: _bool = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> TimedeltaSeries: ...
|
||
|
@overload
|
||
|
def astype(
|
||
|
self,
|
||
|
dtype: TimestampDtypeArg,
|
||
|
copy: _bool = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> TimestampSeries: ...
|
||
|
@overload
|
||
|
def astype(
|
||
|
self,
|
||
|
dtype: CategoryDtypeArg,
|
||
|
copy: _bool = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> Series[CategoricalDtype]: ...
|
||
|
@overload
|
||
|
def astype(
|
||
|
self,
|
||
|
dtype: ObjectDtypeArg | VoidDtypeArg | ExtensionDtype | DtypeObj,
|
||
|
copy: _bool = ...,
|
||
|
errors: IgnoreRaise = ...,
|
||
|
) -> Series: ...
|
||
|
@final
|
||
|
def copy(self, deep: _bool = True) -> Series[S1]: ...
|
||
|
@final
|
||
|
def infer_objects(self, copy: _bool = True) -> Series[S1]: ...
|
||
|
@overload
|
||
|
def ffill(
|
||
|
self,
|
||
|
*,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
inplace: Literal[True],
|
||
|
limit: int | None = ...,
|
||
|
limit_area: Literal["inside", "outside"] | None = ...,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def ffill(
|
||
|
self,
|
||
|
*,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
inplace: Literal[False] = ...,
|
||
|
limit: int | None = ...,
|
||
|
limit_area: Literal["inside", "outside"] | None = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
@overload
|
||
|
def bfill(
|
||
|
self,
|
||
|
*,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
inplace: Literal[True],
|
||
|
limit: int | None = ...,
|
||
|
limit_area: Literal["inside", "outside"] | None = ...,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def bfill(
|
||
|
self,
|
||
|
*,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
inplace: Literal[False] = ...,
|
||
|
limit: int | None = ...,
|
||
|
limit_area: Literal["inside", "outside"] | None = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
@overload
|
||
|
def interpolate(
|
||
|
self,
|
||
|
method: InterpolateOptions = ...,
|
||
|
*,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
limit: int | None = ...,
|
||
|
inplace: Literal[True],
|
||
|
limit_direction: Literal["forward", "backward", "both"] | None = ...,
|
||
|
limit_area: Literal["inside", "outside"] | None = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def interpolate(
|
||
|
self,
|
||
|
method: InterpolateOptions = ...,
|
||
|
*,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
limit: int | None = ...,
|
||
|
inplace: Literal[False] = ...,
|
||
|
limit_direction: Literal["forward", "backward", "both"] | None = ...,
|
||
|
limit_area: Literal["inside", "outside"] | None = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> Series[S1]: ...
|
||
|
@final
|
||
|
def asof(
|
||
|
self,
|
||
|
where: Scalar | Sequence[Scalar],
|
||
|
subset: _str | Sequence[_str] | None = None,
|
||
|
) -> Scalar | Series[S1]: ...
|
||
|
@overload
|
||
|
def clip( # pyright: ignore[reportOverlappingOverload]
|
||
|
self,
|
||
|
lower: None = ...,
|
||
|
upper: None = ...,
|
||
|
*,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
inplace: Literal[True],
|
||
|
**kwargs: Any,
|
||
|
) -> Self: ...
|
||
|
@overload
|
||
|
def clip(
|
||
|
self,
|
||
|
lower: AnyArrayLike | float | None = ...,
|
||
|
upper: AnyArrayLike | float | None = ...,
|
||
|
*,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
inplace: Literal[True],
|
||
|
**kwargs: Any,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def clip(
|
||
|
self,
|
||
|
lower: AnyArrayLike | float | None = ...,
|
||
|
upper: AnyArrayLike | float | None = ...,
|
||
|
*,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
inplace: Literal[False] = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> Series[S1]: ...
|
||
|
@final
|
||
|
def asfreq(
|
||
|
self,
|
||
|
freq: DateOffset | _str,
|
||
|
method: FillnaOptions | None = None,
|
||
|
how: Literal["start", "end"] | None = None,
|
||
|
normalize: _bool = False,
|
||
|
fill_value: Scalar | None = None,
|
||
|
) -> Series[S1]: ...
|
||
|
@final
|
||
|
def at_time(
|
||
|
self,
|
||
|
time: _str | time,
|
||
|
asof: _bool = False,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
) -> Series[S1]: ...
|
||
|
@final
|
||
|
def between_time(
|
||
|
self,
|
||
|
start_time: _str | time,
|
||
|
end_time: _str | time,
|
||
|
inclusive: IntervalClosedType = "both",
|
||
|
axis: AxisIndex | None = 0,
|
||
|
) -> Series[S1]: ...
|
||
|
@final
|
||
|
def first(self, offset) -> Series[S1]: ...
|
||
|
@final
|
||
|
def last(self, offset) -> Series[S1]: ...
|
||
|
@final
|
||
|
def rank(
|
||
|
self,
|
||
|
axis: AxisIndex = 0,
|
||
|
method: Literal["average", "min", "max", "first", "dense"] = "average",
|
||
|
numeric_only: _bool = False,
|
||
|
na_option: Literal["keep", "top", "bottom"] = "keep",
|
||
|
ascending: _bool = True,
|
||
|
pct: _bool = False,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def where(
|
||
|
self,
|
||
|
cond: (
|
||
|
Series[S1]
|
||
|
| Series[_bool]
|
||
|
| np.ndarray
|
||
|
| Callable[[Series[S1]], Series[bool]]
|
||
|
| Callable[[S1], bool]
|
||
|
),
|
||
|
other=...,
|
||
|
*,
|
||
|
inplace: Literal[True],
|
||
|
axis: AxisIndex | None = 0,
|
||
|
level: Level | None = ...,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def where(
|
||
|
self,
|
||
|
cond: (
|
||
|
Series[S1]
|
||
|
| Series[_bool]
|
||
|
| np.ndarray
|
||
|
| Callable[[Series[S1]], Series[bool]]
|
||
|
| Callable[[S1], bool]
|
||
|
),
|
||
|
other=...,
|
||
|
*,
|
||
|
inplace: Literal[False] = ...,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
level: Level | None = ...,
|
||
|
) -> Self: ...
|
||
|
@overload
|
||
|
def mask(
|
||
|
self,
|
||
|
cond: (
|
||
|
Series[S1]
|
||
|
| Series[_bool]
|
||
|
| np.ndarray
|
||
|
| Callable[[Series[S1]], Series[bool]]
|
||
|
| Callable[[S1], bool]
|
||
|
),
|
||
|
other: Scalar | Series[S1] | DataFrame | Callable | NAType | None = ...,
|
||
|
*,
|
||
|
inplace: Literal[True],
|
||
|
axis: AxisIndex | None = 0,
|
||
|
level: Level | None = ...,
|
||
|
) -> None: ...
|
||
|
@overload
|
||
|
def mask(
|
||
|
self,
|
||
|
cond: (
|
||
|
Series[S1]
|
||
|
| Series[_bool]
|
||
|
| np.ndarray
|
||
|
| Callable[[Series[S1]], Series[bool]]
|
||
|
| Callable[[S1], bool]
|
||
|
),
|
||
|
other: Scalar | Series[S1] | DataFrame | Callable | NAType | None = ...,
|
||
|
*,
|
||
|
inplace: Literal[False] = ...,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
level: Level | None = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
def case_when(
|
||
|
self,
|
||
|
caselist: list[
|
||
|
tuple[
|
||
|
Sequence[bool]
|
||
|
| Series[bool]
|
||
|
| Callable[[Series], Series | np.ndarray | Sequence[bool]],
|
||
|
ListLikeU | Scalar | Callable[[Series], Series | np.ndarray],
|
||
|
],
|
||
|
],
|
||
|
) -> Series: ...
|
||
|
@final
|
||
|
def truncate(
|
||
|
self,
|
||
|
before: date | _str | int | None = ...,
|
||
|
after: date | _str | int | None = ...,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
copy: _bool = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
@final
|
||
|
def tz_convert(
|
||
|
self,
|
||
|
tz: TimeZones,
|
||
|
axis: AxisIndex = 0,
|
||
|
level: Level | None = None,
|
||
|
copy: _bool = True,
|
||
|
) -> Series[S1]: ...
|
||
|
@final
|
||
|
def tz_localize(
|
||
|
self,
|
||
|
tz: TimeZones,
|
||
|
axis: AxisIndex = 0,
|
||
|
level: Level | None = None,
|
||
|
copy: _bool = True,
|
||
|
ambiguous: TimeAmbiguous = "raise",
|
||
|
nonexistent: _str = "raise",
|
||
|
) -> Series[S1]: ...
|
||
|
@final
|
||
|
def abs(self) -> Series[S1]: ...
|
||
|
@final
|
||
|
def describe(
|
||
|
self,
|
||
|
percentiles: list[float] | None = ...,
|
||
|
include: Literal["all"] | list[S1] | None = ...,
|
||
|
exclude: S1 | list[S1] | None = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
@final
|
||
|
def pct_change(
|
||
|
self,
|
||
|
periods: int = 1,
|
||
|
fill_method: None = None,
|
||
|
freq: DateOffset | timedelta | _str | None = None,
|
||
|
) -> Series[float]: ...
|
||
|
@final
|
||
|
def first_valid_index(self) -> Scalar: ...
|
||
|
@final
|
||
|
def last_valid_index(self) -> Scalar: ...
|
||
|
@overload
|
||
|
def value_counts( # pyrefly: ignore
|
||
|
self,
|
||
|
normalize: Literal[False] = ...,
|
||
|
sort: _bool = ...,
|
||
|
ascending: _bool = ...,
|
||
|
bins: int | None = ...,
|
||
|
dropna: _bool = ...,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def value_counts(
|
||
|
self,
|
||
|
normalize: Literal[True],
|
||
|
sort: _bool = ...,
|
||
|
ascending: _bool = ...,
|
||
|
bins: int | None = ...,
|
||
|
dropna: _bool = ...,
|
||
|
) -> Series[float]: ...
|
||
|
@final
|
||
|
@property
|
||
|
def T(self) -> Self: ...
|
||
|
# The rest of these were left over from the old
|
||
|
# stubs we shipped in preview. They may belong in
|
||
|
# the base classes in some cases; I expect stubgen
|
||
|
# just failed to generate these so I couldn't match
|
||
|
# them up.
|
||
|
@overload
|
||
|
def __add__(self: Series[Never], other: _str) -> Never: ...
|
||
|
@overload
|
||
|
def __add__(self: Series[Never], other: complex | _ListLike | Series) -> Series: ...
|
||
|
@overload
|
||
|
def __add__(self, other: Series[Never]) -> Series: ...
|
||
|
@overload
|
||
|
def __add__(
|
||
|
self: Series[bool],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __add__(self: Series[bool], other: np_ndarray_bool) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def __add__(self: Series[bool], other: np_ndarray_anyint) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __add__(self: Series[bool], other: np_ndarray_float) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __add__(self: Series[bool], other: np_ndarray_complex) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __add__(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
bool | Sequence[bool] | np_ndarray_bool | np_ndarray_anyint | Series[bool]
|
||
|
),
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __add__(
|
||
|
self: Series[int],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __add__(self: Series[int], other: np_ndarray_float) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __add__(self: Series[int], other: np_ndarray_complex) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __add__(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __add__(
|
||
|
self: Series[float],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __add__(self: Series[float], other: np_ndarray_complex) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __add__(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| np_ndarray_complex
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __add__(
|
||
|
self: Series[_str],
|
||
|
other: (
|
||
|
np_ndarray_bool | np_ndarray_anyint | np_ndarray_float | np_ndarray_complex
|
||
|
),
|
||
|
) -> Never: ...
|
||
|
@overload
|
||
|
def __add__(
|
||
|
self: Series[_str], other: _str | Sequence[_str] | np_ndarray_str | Series[_str]
|
||
|
) -> Series[_str]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[Never],
|
||
|
other: _str,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Never: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[Never],
|
||
|
other: complex | _ListLike | Series,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self,
|
||
|
other: Series[Never],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[bool],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[bool],
|
||
|
other: np_ndarray_bool,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[bool],
|
||
|
other: np_ndarray_anyint,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[bool],
|
||
|
other: np_ndarray_float,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[bool],
|
||
|
other: np_ndarray_complex,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
bool | Sequence[bool] | np_ndarray_bool | np_ndarray_anyint | Series[bool]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[int],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[int],
|
||
|
other: np_ndarray_float,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[int],
|
||
|
other: np_ndarray_complex,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[float],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[float],
|
||
|
other: np_ndarray_complex,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| np_ndarray_complex
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def add(
|
||
|
self: Series[_str],
|
||
|
other: _str | Sequence[_str] | np_ndarray_str | Series[_str],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_str]: ...
|
||
|
@overload # type: ignore[override]
|
||
|
def __radd__(self: Series[Never], other: _str) -> Never: ...
|
||
|
@overload
|
||
|
def __radd__(
|
||
|
self: Series[Never], other: complex | _ListLike | Series
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def __radd__(
|
||
|
self: Series[bool],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __radd__(self: Series[bool], other: np_ndarray_bool) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def __radd__(self: Series[bool], other: np_ndarray_anyint) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __radd__(self: Series[bool], other: np_ndarray_float) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __radd__(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
bool | Sequence[bool] | np_ndarray_bool | np_ndarray_anyint | Series[bool]
|
||
|
),
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __radd__(
|
||
|
self: Series[int], other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX]
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __radd__(self: Series[int], other: np_ndarray_float) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __radd__(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __radd__(
|
||
|
self: Series[float],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __radd__(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __radd__(
|
||
|
self: Series[_T_COMPLEX], other: np_ndarray_complex
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __radd__(
|
||
|
self: Series[_str],
|
||
|
other: (
|
||
|
np_ndarray_bool | np_ndarray_anyint | np_ndarray_float | np_ndarray_complex
|
||
|
),
|
||
|
) -> Never: ...
|
||
|
@overload
|
||
|
def __radd__(
|
||
|
self: Series[_str], other: _str | Sequence[_str] | np_ndarray_str | Series[_str]
|
||
|
) -> Series[_str]: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[Never],
|
||
|
other: _str,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Never: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[Never],
|
||
|
other: complex | _ListLike | Series,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[S1],
|
||
|
other: Series[Never],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[bool],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[bool],
|
||
|
other: np_ndarray_bool,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[bool],
|
||
|
other: np_ndarray_float,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[bool],
|
||
|
other: np_ndarray_anyint,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
bool | Sequence[bool] | np_ndarray_bool | np_ndarray_anyint | Series[bool]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[int],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[int],
|
||
|
other: np_ndarray_float,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[float],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[_T_COMPLEX],
|
||
|
other: np_ndarray_complex,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def radd(
|
||
|
self: Series[_str],
|
||
|
other: _str | Sequence[_str] | np_ndarray_str | Series[_str],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_str]: ...
|
||
|
# ignore needed for mypy as we want different results based on the arguments
|
||
|
@overload # type: ignore[override]
|
||
|
def __and__( # pyright: ignore[reportOverlappingOverload]
|
||
|
self, other: bool | list[int] | MaskType
|
||
|
) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def __and__(self, other: int | np_ndarray_anyint | Series[int]) -> Series[int]: ...
|
||
|
def __eq__(self, other: object) -> Series[_bool]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def __floordiv__(self, other: num | _ListLike | Series[S1]) -> Series[int]: ...
|
||
|
def __ge__( # type: ignore[override]
|
||
|
self, other: S1 | _ListLike | Series[S1] | datetime | timedelta | date
|
||
|
) -> Series[_bool]: ...
|
||
|
def __gt__( # type: ignore[override]
|
||
|
self, other: S1 | _ListLike | Series[S1] | datetime | timedelta | date
|
||
|
) -> Series[_bool]: ...
|
||
|
def __le__( # type: ignore[override]
|
||
|
self, other: S1 | _ListLike | Series[S1] | datetime | timedelta | date
|
||
|
) -> Series[_bool]: ...
|
||
|
def __lt__( # type: ignore[override]
|
||
|
self, other: S1 | _ListLike | Series[S1] | datetime | timedelta | date
|
||
|
) -> Series[_bool]: ...
|
||
|
@overload
|
||
|
def __mul__(
|
||
|
self: Series[Never], other: complex | _NumListLike | Series
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def __mul__(self, other: Series[Never]) -> Series: ... # type: ignore[overload-overlap]
|
||
|
@overload
|
||
|
def __mul__(
|
||
|
self: Series[bool],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __mul__(self: Series[bool], other: np_ndarray_bool) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def __mul__(self: Series[bool], other: np_ndarray_anyint) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __mul__(self: Series[bool], other: np_ndarray_float) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __mul__(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
bool | Sequence[bool] | np_ndarray_bool | np_ndarray_anyint | Series[bool]
|
||
|
),
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __mul__(
|
||
|
self: Series[int],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __mul__(self: Series[int], other: np_ndarray_float) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __mul__(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __mul__(
|
||
|
self: Series[float],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __mul__(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __mul__(
|
||
|
self: Series[_T_COMPLEX], other: np_ndarray_complex
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __mul__(
|
||
|
self, other: timedelta | Timedelta | TimedeltaSeries | np.timedelta64
|
||
|
) -> TimedeltaSeries: ...
|
||
|
@overload
|
||
|
def mul(
|
||
|
self: Series[Never],
|
||
|
other: complex | _ListLike | Series,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def mul( # type: ignore[overload-overlap]
|
||
|
self,
|
||
|
other: Series[Never],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def mul(
|
||
|
self: Series[bool],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def mul(
|
||
|
self: Series[bool],
|
||
|
other: np_ndarray_bool,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def mul(
|
||
|
self: Series[bool],
|
||
|
other: np_ndarray_anyint,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def mul(
|
||
|
self: Series[bool],
|
||
|
other: np_ndarray_float,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def mul(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
bool | Sequence[bool] | np_ndarray_bool | np_ndarray_anyint | Series[bool]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def mul(
|
||
|
self: Series[int],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def mul(
|
||
|
self: Series[int],
|
||
|
other: np_ndarray_float,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def mul(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def mul(
|
||
|
self: Series[float],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def mul(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def mul(
|
||
|
self: Series[_T_COMPLEX],
|
||
|
other: np_ndarray_complex,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def mul(
|
||
|
self,
|
||
|
other: timedelta | Timedelta | TimedeltaSeries | np.timedelta64,
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
) -> TimedeltaSeries: ...
|
||
|
@overload
|
||
|
def __rmul__(
|
||
|
self: Series[Never], other: complex | _NumListLike | Series
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def __rmul__(self, other: Series[Never]) -> Series: ... # type: ignore[overload-overlap]
|
||
|
@overload
|
||
|
def __rmul__(
|
||
|
self: Series[bool],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __rmul__(self: Series[bool], other: np_ndarray_bool) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def __rmul__(self: Series[bool], other: np_ndarray_anyint) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __rmul__(self: Series[bool], other: np_ndarray_float) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __rmul__(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
bool | Sequence[bool] | np_ndarray_bool | np_ndarray_anyint | Series[bool]
|
||
|
),
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __rmul__(
|
||
|
self: Series[int], other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX]
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __rmul__(self: Series[int], other: np_ndarray_float) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __rmul__(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __rmul__(
|
||
|
self: Series[float],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __rmul__(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __rmul__(
|
||
|
self: Series[_T_COMPLEX], other: np_ndarray_complex
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __rmul__(
|
||
|
self, other: timedelta | Timedelta | TimedeltaSeries | np.timedelta64
|
||
|
) -> TimedeltaSeries: ...
|
||
|
@overload
|
||
|
def rmul(
|
||
|
self: Series[Never],
|
||
|
other: complex | _ListLike | Series,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def rmul( # type: ignore[overload-overlap]
|
||
|
self,
|
||
|
other: Series[Never],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def rmul(
|
||
|
self: Series[bool],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def rmul(
|
||
|
self: Series[bool],
|
||
|
other: np_ndarray_bool,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def rmul(
|
||
|
self: Series[bool],
|
||
|
other: np_ndarray_anyint,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def rmul(
|
||
|
self: Series[bool],
|
||
|
other: np_ndarray_float,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def rmul(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
bool | Sequence[bool] | np_ndarray_bool | np_ndarray_anyint | Series[bool]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def rmul(
|
||
|
self: Series[int],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def rmul(
|
||
|
self: Series[int],
|
||
|
other: np_ndarray_float,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def rmul(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def rmul(
|
||
|
self: Series[float],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def rmul(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def rmul(
|
||
|
self: Series[_T_COMPLEX],
|
||
|
other: np_ndarray_complex,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def rmul(
|
||
|
self,
|
||
|
other: timedelta | Timedelta | TimedeltaSeries | np.timedelta64,
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = ...,
|
||
|
) -> TimedeltaSeries: ...
|
||
|
def __mod__(self, other: num | _ListLike | Series[S1]) -> Series[S1]: ...
|
||
|
def __ne__(self, other: object) -> Series[_bool]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def __pow__(self, other: num | _ListLike | Series[S1]) -> Series[S1]: ...
|
||
|
# ignore needed for mypy as we want different results based on the arguments
|
||
|
@overload # type: ignore[override]
|
||
|
def __or__( # pyright: ignore[reportOverlappingOverload]
|
||
|
self, other: bool | list[int] | MaskType
|
||
|
) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def __or__(self, other: int | np_ndarray_anyint | Series[int]) -> Series[int]: ...
|
||
|
# ignore needed for mypy as we want different results based on the arguments
|
||
|
@overload # type: ignore[override]
|
||
|
def __rand__( # pyright: ignore[reportOverlappingOverload]
|
||
|
self, other: bool | MaskType | list[int]
|
||
|
) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def __rand__(self, other: int | np_ndarray_anyint | Series[int]) -> Series[int]: ...
|
||
|
def __rdivmod__(self, other: num | _ListLike | Series[S1]) -> Series[S1]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def __rfloordiv__(self, other: num | _ListLike | Series[S1]) -> Series[S1]: ...
|
||
|
def __rmod__(self, other: num | _ListLike | Series[S1]) -> Series[S1]: ...
|
||
|
def __rpow__(self, other: num | _ListLike | Series[S1]) -> Series[S1]: ...
|
||
|
# ignore needed for mypy as we want different results based on the arguments
|
||
|
@overload # type: ignore[override]
|
||
|
def __ror__( # pyright: ignore[reportOverlappingOverload]
|
||
|
self, other: bool | MaskType | list[int]
|
||
|
) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def __ror__(self, other: int | np_ndarray_anyint | Series[int]) -> Series[int]: ...
|
||
|
# ignore needed for mypy as we want different results based on the arguments
|
||
|
@overload # type: ignore[override]
|
||
|
def __rxor__( # pyright: ignore[reportOverlappingOverload]
|
||
|
self, other: bool | MaskType | list[int]
|
||
|
) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def __rxor__(self, other: int | np_ndarray_anyint | Series[int]) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __sub__(self: Series[Never], other: TimestampSeries) -> Never: ...
|
||
|
@overload
|
||
|
def __sub__(
|
||
|
self: Series[Never], other: complex | _NumListLike | Series
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def __sub__(self, other: Series[Never]) -> Series: ... # type: ignore[overload-overlap]
|
||
|
@overload
|
||
|
def __sub__(
|
||
|
self: Series[bool],
|
||
|
other: Just[int] | Sequence[Just[int]] | np_ndarray_anyint | Series[int],
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __sub__(
|
||
|
self: Series[bool],
|
||
|
other: Just[float] | Sequence[Just[float]] | np_ndarray_float | Series[float],
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __sub__(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| Series[bool]
|
||
|
| Series[int]
|
||
|
),
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __sub__(
|
||
|
self: Series[int],
|
||
|
other: Just[float] | Sequence[Just[float]] | np_ndarray_float | Series[float],
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __sub__(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
float
|
||
|
| Sequence[float]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[bool]
|
||
|
| Series[int]
|
||
|
| Series[float]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __sub__(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __sub__(
|
||
|
self: Series[_T_COMPLEX],
|
||
|
other: (
|
||
|
Just[complex]
|
||
|
| Sequence[Just[complex]]
|
||
|
| np_ndarray_complex
|
||
|
| Series[complex]
|
||
|
),
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __sub__(
|
||
|
self: Series[Timestamp],
|
||
|
other: (
|
||
|
timedelta
|
||
|
| np.timedelta64
|
||
|
| np_ndarray_td
|
||
|
| TimedeltaSeries
|
||
|
| TimedeltaIndex
|
||
|
),
|
||
|
) -> TimestampSeries: ...
|
||
|
@overload
|
||
|
def __sub__(
|
||
|
self: Series[Timedelta],
|
||
|
other: (
|
||
|
timedelta
|
||
|
| np.timedelta64
|
||
|
| np_ndarray_td
|
||
|
| TimedeltaSeries
|
||
|
| TimedeltaIndex
|
||
|
),
|
||
|
) -> TimedeltaSeries: ...
|
||
|
@overload
|
||
|
def sub(
|
||
|
self: Series[Never],
|
||
|
other: TimestampSeries,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Never: ...
|
||
|
@overload
|
||
|
def sub(
|
||
|
self: Series[Never],
|
||
|
other: complex | _NumListLike | Series,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def sub( # type: ignore[overload-overlap]
|
||
|
self,
|
||
|
other: Series[Never],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def sub(
|
||
|
self: Series[bool],
|
||
|
other: Just[int] | Sequence[Just[int]] | np_ndarray_anyint | Series[int],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def sub(
|
||
|
self: Series[bool],
|
||
|
other: Just[float] | Sequence[Just[float]] | np_ndarray_float | Series[float],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def sub(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| Series[bool]
|
||
|
| Series[int]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def sub(
|
||
|
self: Series[int],
|
||
|
other: Just[float] | Sequence[Just[float]] | np_ndarray_float | Series[float],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def sub(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
float
|
||
|
| Sequence[float]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[bool]
|
||
|
| Series[int]
|
||
|
| Series[float]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def sub(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def sub(
|
||
|
self: Series[_T_COMPLEX],
|
||
|
other: (
|
||
|
Just[complex]
|
||
|
| Sequence[Just[complex]]
|
||
|
| np_ndarray_complex
|
||
|
| Series[complex]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def sub(
|
||
|
self: Series[Timestamp],
|
||
|
other: (
|
||
|
timedelta
|
||
|
| np.timedelta64
|
||
|
| np_ndarray_td
|
||
|
| TimedeltaSeries
|
||
|
| TimedeltaIndex
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> TimestampSeries: ...
|
||
|
@overload
|
||
|
def sub(
|
||
|
self: Series[Timedelta],
|
||
|
other: (
|
||
|
timedelta
|
||
|
| np.timedelta64
|
||
|
| np_ndarray_td
|
||
|
| TimedeltaSeries
|
||
|
| TimedeltaIndex
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> TimedeltaSeries: ...
|
||
|
@overload
|
||
|
def __rsub__(self: Series[Never], other: TimestampSeries) -> Never: ... # type: ignore[misc]
|
||
|
@overload
|
||
|
def __rsub__(
|
||
|
self: Series[Never], other: complex | _NumListLike | Series
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def __rsub__(self, other: Series[Never]) -> Series: ...
|
||
|
@overload
|
||
|
def __rsub__(
|
||
|
self: Series[bool],
|
||
|
other: Just[int] | Sequence[Just[int]] | np_ndarray_anyint | Series[int],
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __rsub__(
|
||
|
self: Series[bool],
|
||
|
other: Just[float] | Sequence[Just[float]] | np_ndarray_float | Series[float],
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __rsub__(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| Series[bool]
|
||
|
| Series[int]
|
||
|
),
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def __rsub__(
|
||
|
self: Series[int],
|
||
|
other: Just[float] | Sequence[Just[float]] | np_ndarray_float | Series[float],
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __rsub__(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
float
|
||
|
| Sequence[float]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[bool]
|
||
|
| Series[int]
|
||
|
| Series[float]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __rsub__(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __rsub__(
|
||
|
self: Series[_T_COMPLEX],
|
||
|
other: (
|
||
|
Just[complex]
|
||
|
| Sequence[Just[complex]]
|
||
|
| np_ndarray_complex
|
||
|
| Series[complex]
|
||
|
),
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def rsub(
|
||
|
self: Series[Never],
|
||
|
other: TimestampSeries,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Never: ...
|
||
|
@overload
|
||
|
def rsub(
|
||
|
self: Series[Never],
|
||
|
other: complex | _NumListLike | Series,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def rsub(
|
||
|
self,
|
||
|
other: Series[Never],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def rsub(
|
||
|
self: Series[bool],
|
||
|
other: Just[int] | Sequence[Just[int]] | np_ndarray_anyint | Series[int],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def rsub(
|
||
|
self: Series[bool],
|
||
|
other: Just[float] | Sequence[Just[float]] | np_ndarray_float | Series[float],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def rsub(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| Series[bool]
|
||
|
| Series[int]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[int]: ...
|
||
|
@overload
|
||
|
def rsub(
|
||
|
self: Series[int],
|
||
|
other: Just[float] | Sequence[Just[float]] | np_ndarray_float | Series[float],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def rsub(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
float
|
||
|
| Sequence[float]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[bool]
|
||
|
| Series[int]
|
||
|
| Series[float]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def rsub(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def rsub(
|
||
|
self: Series[_T_COMPLEX],
|
||
|
other: (
|
||
|
Just[complex]
|
||
|
| Sequence[Just[complex]]
|
||
|
| np_ndarray_complex
|
||
|
| Series[complex]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: int = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __truediv__( # type:ignore[overload-overlap]
|
||
|
self: Series[Never], other: complex | _NumListLike | Series
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def __truediv__(self, other: Series[Never]) -> Series: ...
|
||
|
@overload
|
||
|
def __truediv__(self: Series[bool], other: np_ndarray_bool) -> Never: ...
|
||
|
@overload
|
||
|
def __truediv__(
|
||
|
self: Series[bool],
|
||
|
other: (
|
||
|
Just[int]
|
||
|
| Just[float]
|
||
|
| Sequence[float]
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[int]
|
||
|
| Series[float]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __truediv__(
|
||
|
self: Series[bool],
|
||
|
other: Just[complex] | Sequence[Just[complex]] | Series[complex],
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __truediv__(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __truediv__(
|
||
|
self: Series[int],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __truediv__(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __truediv__(
|
||
|
self: Series[float],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __truediv__(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __truediv__(
|
||
|
self: Series[_T_COMPLEX], other: np_ndarray_complex
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __truediv__(self, other: Path) -> Series: ...
|
||
|
@overload
|
||
|
def truediv(
|
||
|
self: Series[Never],
|
||
|
other: complex | _ListLike | Series,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def truediv(
|
||
|
self,
|
||
|
other: Series[Never],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def truediv(
|
||
|
self: Series[bool],
|
||
|
other: (
|
||
|
Just[int]
|
||
|
| Just[float]
|
||
|
| Sequence[float]
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[int]
|
||
|
| Series[float]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def truediv(
|
||
|
self: Series[bool],
|
||
|
other: Just[complex] | Sequence[Just[complex]] | Series[complex],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def truediv(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def truediv(
|
||
|
self: Series[int],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def truediv(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def truediv(
|
||
|
self: Series[float],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def truediv(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def truediv(
|
||
|
self: Series[_T_COMPLEX],
|
||
|
other: np_ndarray_complex,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def truediv(
|
||
|
self,
|
||
|
other: Path,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series: ...
|
||
|
div = truediv
|
||
|
@overload
|
||
|
def __rtruediv__( # type:ignore[overload-overlap]
|
||
|
self: Series[Never], other: complex | _NumListLike | Series
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def __rtruediv__(self, other: Series[Never]) -> Series: ...
|
||
|
@overload
|
||
|
def __rtruediv__(self: Series[bool], other: np_ndarray_bool) -> Never: ...
|
||
|
@overload
|
||
|
def __rtruediv__(
|
||
|
self: Series[bool],
|
||
|
other: (
|
||
|
Just[int]
|
||
|
| Just[float]
|
||
|
| Sequence[float]
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[int]
|
||
|
| Series[float]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __rtruediv__(
|
||
|
self: Series[bool],
|
||
|
other: Just[complex] | Sequence[Just[complex]] | Series[complex],
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __rtruediv__(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __rtruediv__(
|
||
|
self: Series[int], other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX]
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __rtruediv__(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def __rtruediv__(
|
||
|
self: Series[float],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def __rtruediv__(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __rtruediv__(
|
||
|
self: Series[_T_COMPLEX], other: np_ndarray_complex
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def __rtruediv__(self, other: Path) -> Series: ...
|
||
|
@overload
|
||
|
def rtruediv(
|
||
|
self: Series[Never],
|
||
|
other: complex | _ListLike | Series,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def rtruediv(
|
||
|
self,
|
||
|
other: Series[Never],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series: ...
|
||
|
@overload
|
||
|
def rtruediv(
|
||
|
self: Series[bool],
|
||
|
other: (
|
||
|
Just[int]
|
||
|
| Just[float]
|
||
|
| Sequence[float]
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[int]
|
||
|
| Series[float]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def rtruediv(
|
||
|
self: Series[bool],
|
||
|
other: Just[complex] | Sequence[Just[complex]] | Series[complex],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def rtruediv(
|
||
|
self: Series[int],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def rtruediv(
|
||
|
self: Series[int],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def rtruediv(
|
||
|
self: Series[float],
|
||
|
other: (
|
||
|
int
|
||
|
| Sequence[int]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_INT]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[float]: ...
|
||
|
@overload
|
||
|
def rtruediv(
|
||
|
self: Series[float],
|
||
|
other: _T_COMPLEX | Sequence[_T_COMPLEX] | Series[_T_COMPLEX],
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[_T_COMPLEX]: ...
|
||
|
@overload
|
||
|
def rtruediv(
|
||
|
self: Series[complex],
|
||
|
other: (
|
||
|
_T_COMPLEX
|
||
|
| Sequence[_T_COMPLEX]
|
||
|
| np_ndarray_bool
|
||
|
| np_ndarray_anyint
|
||
|
| np_ndarray_float
|
||
|
| Series[_T_COMPLEX]
|
||
|
),
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def rtruediv(
|
||
|
self: Series[_T_COMPLEX],
|
||
|
other: np_ndarray_complex,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series[complex]: ...
|
||
|
@overload
|
||
|
def rtruediv(
|
||
|
self,
|
||
|
other: Path,
|
||
|
level: Level | None = None,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = 0,
|
||
|
) -> Series: ...
|
||
|
rdiv = rtruediv
|
||
|
# ignore needed for mypy as we want different results based on the arguments
|
||
|
@overload # type: ignore[override]
|
||
|
def __xor__( # pyright: ignore[reportOverlappingOverload]
|
||
|
self, other: bool | MaskType | list[int]
|
||
|
) -> Series[bool]: ...
|
||
|
@overload
|
||
|
def __xor__(self, other: int | np_ndarray_anyint | Series[int]) -> Series[int]: ...
|
||
|
@final
|
||
|
def __invert__(self) -> Series[bool]: ...
|
||
|
# properties
|
||
|
# @property
|
||
|
# def array(self) -> _npndarray
|
||
|
@property
|
||
|
def at(self) -> _AtIndexer: ...
|
||
|
@property
|
||
|
def cat(self) -> CategoricalAccessor: ...
|
||
|
@property
|
||
|
def iat(self) -> _iAtIndexer: ...
|
||
|
@property
|
||
|
def iloc(self) -> _iLocIndexerSeries[S1]: ...
|
||
|
@property
|
||
|
def loc(self) -> _LocIndexerSeries[S1]: ...
|
||
|
def all(
|
||
|
self,
|
||
|
axis: AxisIndex = 0,
|
||
|
bool_only: _bool | None = False,
|
||
|
skipna: _bool = True,
|
||
|
**kwargs: Any,
|
||
|
) -> np.bool: ...
|
||
|
def any(
|
||
|
self,
|
||
|
*,
|
||
|
axis: AxisIndex = ...,
|
||
|
bool_only: _bool | None = ...,
|
||
|
skipna: _bool = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> np.bool: ...
|
||
|
def cummax(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = True,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> Series[S1]: ...
|
||
|
def cummin(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = True,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> Series[S1]: ...
|
||
|
@overload
|
||
|
def cumprod(
|
||
|
self: Series[_str],
|
||
|
axis: AxisIndex = ...,
|
||
|
skipna: _bool = ...,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> Never: ...
|
||
|
@overload
|
||
|
def cumprod(
|
||
|
self,
|
||
|
axis: AxisIndex = ...,
|
||
|
skipna: _bool = ...,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> Series[S1]: ...
|
||
|
def cumsum(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = True,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> Series[S1]: ...
|
||
|
def divmod(
|
||
|
self,
|
||
|
other: num | _ListLike | Series[S1],
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
def eq(
|
||
|
self,
|
||
|
other: Scalar | Series[S1],
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = ...,
|
||
|
) -> Series[_bool]: ...
|
||
|
@final
|
||
|
def ewm(
|
||
|
self,
|
||
|
com: float | None = None,
|
||
|
span: float | None = None,
|
||
|
halflife: float | None = None,
|
||
|
alpha: float | None = None,
|
||
|
min_periods: int = 0,
|
||
|
adjust: _bool = True,
|
||
|
ignore_na: _bool = False,
|
||
|
axis: Axis = 0,
|
||
|
times: np.ndarray | Series | None = None,
|
||
|
method: CalculationMethod = "single",
|
||
|
) -> ExponentialMovingWindow[Series]: ...
|
||
|
@final
|
||
|
def expanding(
|
||
|
self,
|
||
|
min_periods: int = 1,
|
||
|
axis: Literal[0] = 0,
|
||
|
method: CalculationMethod = "single",
|
||
|
) -> Expanding[Series]: ...
|
||
|
def floordiv(
|
||
|
self,
|
||
|
other: num | _ListLike | Series[S1],
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
) -> Series[int]: ...
|
||
|
def ge(
|
||
|
self,
|
||
|
other: Scalar | Series[S1],
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = ...,
|
||
|
) -> Series[_bool]: ...
|
||
|
def gt(
|
||
|
self,
|
||
|
other: Scalar | Series[S1],
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = ...,
|
||
|
) -> Series[_bool]: ...
|
||
|
@final
|
||
|
def item(self) -> S1: ...
|
||
|
def kurt(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = True,
|
||
|
numeric_only: _bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> Scalar: ...
|
||
|
def kurtosis(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = True,
|
||
|
numeric_only: _bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> Scalar: ...
|
||
|
def le(
|
||
|
self,
|
||
|
other: Scalar | Series[S1],
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = ...,
|
||
|
) -> Series[_bool]: ...
|
||
|
def lt(
|
||
|
self,
|
||
|
other: Scalar | Series[S1],
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = ...,
|
||
|
) -> Series[_bool]: ...
|
||
|
def max(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = True,
|
||
|
level: None = ...,
|
||
|
numeric_only: _bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> S1: ...
|
||
|
def mean(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = True,
|
||
|
level: None = ...,
|
||
|
numeric_only: _bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> float: ...
|
||
|
def median(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = True,
|
||
|
level: None = ...,
|
||
|
numeric_only: _bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> float: ...
|
||
|
def min(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = True,
|
||
|
level: None = ...,
|
||
|
numeric_only: _bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> S1: ...
|
||
|
def mod(
|
||
|
self,
|
||
|
other: num | _ListLike | Series[S1],
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
) -> Series[S1]: ...
|
||
|
def ne(
|
||
|
self,
|
||
|
other: Scalar | Series[S1],
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = ...,
|
||
|
) -> Series[_bool]: ...
|
||
|
@final
|
||
|
def nunique(self, dropna: _bool = True) -> int: ...
|
||
|
def pow(
|
||
|
self,
|
||
|
other: num | _ListLike | Series[S1],
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
) -> Series[S1]: ...
|
||
|
def prod(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool | None = True,
|
||
|
numeric_only: _bool = False,
|
||
|
min_count: int = 0,
|
||
|
**kwargs: Any,
|
||
|
) -> Scalar: ...
|
||
|
def product(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool | None = True,
|
||
|
numeric_only: _bool = False,
|
||
|
min_count: int = 0,
|
||
|
**kwargs: Any,
|
||
|
) -> Scalar: ...
|
||
|
def rdivmod(
|
||
|
self,
|
||
|
other: Series[S1] | Scalar,
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
def rfloordiv(
|
||
|
self,
|
||
|
other,
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
def rmod(
|
||
|
self,
|
||
|
other: Series[S1] | Scalar,
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
@overload
|
||
|
def rolling(
|
||
|
self,
|
||
|
window: int | _str | timedelta | BaseOffset | BaseIndexer,
|
||
|
min_periods: int | None = ...,
|
||
|
center: _bool = ...,
|
||
|
on: _str | None = ...,
|
||
|
closed: IntervalClosedType | None = ...,
|
||
|
step: int | None = ...,
|
||
|
method: CalculationMethod = ...,
|
||
|
*,
|
||
|
win_type: _str,
|
||
|
) -> Window[Series]: ...
|
||
|
@overload
|
||
|
def rolling(
|
||
|
self,
|
||
|
window: int | _str | timedelta | BaseOffset | BaseIndexer,
|
||
|
min_periods: int | None = ...,
|
||
|
center: _bool = ...,
|
||
|
on: _str | None = ...,
|
||
|
closed: IntervalClosedType | None = ...,
|
||
|
step: int | None = ...,
|
||
|
method: CalculationMethod = ...,
|
||
|
*,
|
||
|
win_type: None = ...,
|
||
|
) -> Rolling[Series]: ...
|
||
|
def rpow(
|
||
|
self,
|
||
|
other: Series[S1] | Scalar,
|
||
|
level: Level | None = ...,
|
||
|
fill_value: float | None = None,
|
||
|
axis: AxisIndex = ...,
|
||
|
) -> Series[S1]: ...
|
||
|
def sem(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool | None = True,
|
||
|
ddof: int = 1,
|
||
|
numeric_only: _bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> Scalar: ...
|
||
|
def skew(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool | None = True,
|
||
|
numeric_only: _bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> Scalar: ...
|
||
|
def std(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool | None = True,
|
||
|
ddof: int = 1,
|
||
|
numeric_only: _bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> float: ...
|
||
|
@overload
|
||
|
def sum(
|
||
|
self: Series[Never],
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool | None = ...,
|
||
|
numeric_only: _bool = ...,
|
||
|
min_count: int = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> Any: ...
|
||
|
# between `Series[bool]` and `Series[int]`.
|
||
|
@overload
|
||
|
def sum(
|
||
|
self: Series[bool],
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool | None = ...,
|
||
|
numeric_only: _bool = ...,
|
||
|
min_count: int = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> int: ...
|
||
|
@overload
|
||
|
def sum(
|
||
|
self: Series[S1],
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool | None = ...,
|
||
|
numeric_only: _bool = ...,
|
||
|
min_count: int = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> S1: ...
|
||
|
def to_list(self) -> list[S1]: ...
|
||
|
def tolist(self) -> list[S1]: ...
|
||
|
def var(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool | None = True,
|
||
|
ddof: int = 1,
|
||
|
numeric_only: _bool = False,
|
||
|
**kwargs: Any,
|
||
|
) -> Scalar: ...
|
||
|
# Rename axis with `mapper`, `axis`, and `inplace=True`
|
||
|
@overload
|
||
|
def rename_axis(
|
||
|
self,
|
||
|
mapper: Scalar | ListLike | None = ...,
|
||
|
*,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
copy: _bool = ...,
|
||
|
inplace: Literal[True],
|
||
|
) -> None: ...
|
||
|
# Rename axis with `mapper`, `axis`, and `inplace=False`
|
||
|
@overload
|
||
|
def rename_axis(
|
||
|
self,
|
||
|
mapper: Scalar | ListLike | None = ...,
|
||
|
*,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
copy: _bool = ...,
|
||
|
inplace: Literal[False] = ...,
|
||
|
) -> Self: ...
|
||
|
# Rename axis with `index` and `inplace=True`
|
||
|
@overload
|
||
|
def rename_axis(
|
||
|
self,
|
||
|
*,
|
||
|
index: Scalar | ListLike | Callable | dict | None = ...,
|
||
|
copy: _bool = ...,
|
||
|
inplace: Literal[True],
|
||
|
) -> None: ...
|
||
|
# Rename axis with `index` and `inplace=False`
|
||
|
@overload
|
||
|
def rename_axis(
|
||
|
self,
|
||
|
*,
|
||
|
index: Scalar | ListLike | Callable | dict | None = ...,
|
||
|
copy: _bool = ...,
|
||
|
inplace: Literal[False] = ...,
|
||
|
) -> Self: ...
|
||
|
def set_axis(self, labels, *, axis: Axis = ..., copy: _bool = ...) -> Self: ...
|
||
|
def __iter__(self) -> Iterator[S1]: ...
|
||
|
@final
|
||
|
def xs(
|
||
|
self,
|
||
|
key: Hashable,
|
||
|
axis: AxisIndex = 0,
|
||
|
level: Level | None = ...,
|
||
|
drop_level: _bool = True,
|
||
|
) -> Self: ...
|
||
|
@final
|
||
|
def __bool__(self) -> NoReturn: ...
|
||
|
|
||
|
@type_check_only
|
||
|
class _SeriesSubclassBase(Series[S1], Generic[S1, GenericT_co]):
|
||
|
@overload
|
||
|
def to_numpy( # pyrefly: ignore
|
||
|
self,
|
||
|
dtype: None = None,
|
||
|
copy: bool = False,
|
||
|
na_value: Scalar = ...,
|
||
|
**kwargs,
|
||
|
) -> np_1darray[GenericT_co]: ...
|
||
|
@overload
|
||
|
def to_numpy(
|
||
|
self,
|
||
|
dtype: np.dtype[GenericT] | SupportsDType[GenericT] | type[GenericT],
|
||
|
copy: bool = False,
|
||
|
na_value: Scalar = ...,
|
||
|
**kwargs,
|
||
|
) -> np_1darray[GenericT]: ...
|
||
|
@overload
|
||
|
def to_numpy(
|
||
|
self,
|
||
|
dtype: DTypeLike,
|
||
|
copy: bool = False,
|
||
|
na_value: Scalar = ...,
|
||
|
**kwargs,
|
||
|
) -> np_1darray: ...
|
||
|
|
||
|
class TimestampSeries(_SeriesSubclassBase[Timestamp, np.datetime64]):
|
||
|
@property
|
||
|
def dt(self) -> TimestampProperties: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def __add__(self, other: TimedeltaSeries | np.timedelta64 | timedelta | BaseOffset) -> TimestampSeries: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def __radd__(self, other: TimedeltaSeries | np.timedelta64 | timedelta) -> TimestampSeries: ... # type: ignore[override]
|
||
|
@overload # type: ignore[override]
|
||
|
def __sub__(
|
||
|
self, other: Timestamp | datetime | TimestampSeries
|
||
|
) -> TimedeltaSeries: ...
|
||
|
@overload
|
||
|
def __sub__( # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self,
|
||
|
other: (
|
||
|
timedelta | TimedeltaSeries | TimedeltaIndex | np.timedelta64 | BaseOffset
|
||
|
),
|
||
|
) -> TimestampSeries: ...
|
||
|
def __mul__(self, other: float | Series[int] | Series[float] | Sequence[float]) -> TimestampSeries: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def __truediv__(self, other: float | Series[int] | Series[float] | Sequence[float]) -> TimestampSeries: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def unique(self) -> DatetimeArray: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def mean( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = ...,
|
||
|
level: None = ...,
|
||
|
numeric_only: _bool = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> Timestamp: ...
|
||
|
def median( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = ...,
|
||
|
level: None = ...,
|
||
|
numeric_only: _bool = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> Timestamp: ...
|
||
|
def std( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool | None = ...,
|
||
|
ddof: int = ...,
|
||
|
numeric_only: _bool = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> Timedelta: ...
|
||
|
def diff(self, periods: int = ...) -> TimedeltaSeries: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def cumprod(
|
||
|
self,
|
||
|
axis: AxisIndex = ...,
|
||
|
skipna: _bool = ...,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> Never: ...
|
||
|
|
||
|
class TimedeltaSeries(_SeriesSubclassBase[Timedelta, np.timedelta64]):
|
||
|
# ignores needed because of mypy
|
||
|
@overload # type: ignore[override]
|
||
|
def __add__(self, other: Period) -> PeriodSeries: ...
|
||
|
@overload
|
||
|
def __add__(
|
||
|
self, other: datetime | Timestamp | TimestampSeries | DatetimeIndex
|
||
|
) -> TimestampSeries: ...
|
||
|
@overload
|
||
|
def __add__( # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self, other: timedelta | Timedelta | np.timedelta64
|
||
|
) -> TimedeltaSeries: ...
|
||
|
def __radd__(self, other: datetime | Timestamp | TimestampSeries) -> TimestampSeries: ... # type: ignore[override]
|
||
|
def __mul__( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self, other: num | Sequence[num] | Series[int] | Series[float]
|
||
|
) -> TimedeltaSeries: ...
|
||
|
def unique(self) -> TimedeltaArray: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def __sub__( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self,
|
||
|
other: (
|
||
|
timedelta | Timedelta | TimedeltaSeries | TimedeltaIndex | np.timedelta64
|
||
|
),
|
||
|
) -> TimedeltaSeries: ...
|
||
|
@overload # type: ignore[override]
|
||
|
def __truediv__(self, other: float | Sequence[float]) -> Self: ...
|
||
|
@overload
|
||
|
def __truediv__( # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self,
|
||
|
other: (
|
||
|
timedelta
|
||
|
| TimedeltaSeries
|
||
|
| np.timedelta64
|
||
|
| TimedeltaIndex
|
||
|
| Sequence[timedelta]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
def __rtruediv__( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self,
|
||
|
other: (
|
||
|
timedelta
|
||
|
| TimedeltaSeries
|
||
|
| np.timedelta64
|
||
|
| TimedeltaIndex
|
||
|
| Sequence[timedelta]
|
||
|
),
|
||
|
) -> Series[float]: ...
|
||
|
@overload # type: ignore[override]
|
||
|
def __floordiv__(self, other: float | Sequence[float]) -> Self: ...
|
||
|
@overload
|
||
|
def __floordiv__( # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self,
|
||
|
other: (
|
||
|
timedelta
|
||
|
| TimedeltaSeries
|
||
|
| np.timedelta64
|
||
|
| TimedeltaIndex
|
||
|
| Sequence[timedelta]
|
||
|
),
|
||
|
) -> Series[int]: ...
|
||
|
def __rfloordiv__( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self,
|
||
|
other: (
|
||
|
timedelta
|
||
|
| TimedeltaSeries
|
||
|
| np.timedelta64
|
||
|
| TimedeltaIndex
|
||
|
| Sequence[timedelta]
|
||
|
),
|
||
|
) -> Series[int]: ...
|
||
|
@property
|
||
|
def dt(self) -> TimedeltaProperties: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def mean( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = ...,
|
||
|
level: None = ...,
|
||
|
numeric_only: _bool = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> Timedelta: ...
|
||
|
def median( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = ...,
|
||
|
level: None = ...,
|
||
|
numeric_only: _bool = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> Timedelta: ...
|
||
|
def std( # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool | None = ...,
|
||
|
level: None = ...,
|
||
|
ddof: int = ...,
|
||
|
numeric_only: _bool = ...,
|
||
|
**kwargs: Any,
|
||
|
) -> Timedelta: ...
|
||
|
def diff(self, periods: int = ...) -> TimedeltaSeries: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def cumsum(
|
||
|
self,
|
||
|
axis: AxisIndex | None = 0,
|
||
|
skipna: _bool = ...,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> TimedeltaSeries: ...
|
||
|
def cumprod(
|
||
|
self,
|
||
|
axis: AxisIndex = ...,
|
||
|
skipna: _bool = ...,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> Never: ...
|
||
|
|
||
|
class PeriodSeries(_SeriesSubclassBase[Period, np.object_]):
|
||
|
@property
|
||
|
def dt(self) -> PeriodProperties: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def __sub__(self, other: PeriodSeries) -> OffsetSeries: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def diff(self, periods: int = ...) -> OffsetSeries: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride]
|
||
|
def cumprod(
|
||
|
self,
|
||
|
axis: AxisIndex = ...,
|
||
|
skipna: _bool = ...,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> Never: ...
|
||
|
|
||
|
class OffsetSeries(_SeriesSubclassBase[BaseOffset, np.object_]):
|
||
|
@overload # type: ignore[override]
|
||
|
def __radd__(self, other: Period) -> PeriodSeries: ...
|
||
|
@overload
|
||
|
def __radd__(self, other: BaseOffset) -> OffsetSeries: ...
|
||
|
def cumprod(
|
||
|
self,
|
||
|
axis: AxisIndex = ...,
|
||
|
skipna: _bool = ...,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> Never: ...
|
||
|
|
||
|
class IntervalSeries(
|
||
|
_SeriesSubclassBase[Interval[_OrderableT], np.object_], Generic[_OrderableT]
|
||
|
):
|
||
|
@property
|
||
|
def array(self) -> IntervalArray: ...
|
||
|
def diff(self, periods: int = ...) -> Never: ...
|