218 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			218 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								import sys
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import pytest
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import numpy as np
							 | 
						||
| 
								 | 
							
								from numpy import random
							 | 
						||
| 
								 | 
							
								from numpy.testing import (
							 | 
						||
| 
								 | 
							
								    assert_,
							 | 
						||
| 
								 | 
							
								    assert_array_equal,
							 | 
						||
| 
								 | 
							
								    assert_raises,
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestRegression:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_VonMises_range(self):
							 | 
						||
| 
								 | 
							
								        # Make sure generated random variables are in [-pi, pi].
							 | 
						||
| 
								 | 
							
								        # Regression test for ticket #986.
							 | 
						||
| 
								 | 
							
								        for mu in np.linspace(-7., 7., 5):
							 | 
						||
| 
								 | 
							
								            r = random.vonmises(mu, 1, 50)
							 | 
						||
| 
								 | 
							
								            assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_hypergeometric_range(self):
							 | 
						||
| 
								 | 
							
								        # Test for ticket #921
							 | 
						||
| 
								 | 
							
								        assert_(np.all(random.hypergeometric(3, 18, 11, size=10) < 4))
							 | 
						||
| 
								 | 
							
								        assert_(np.all(random.hypergeometric(18, 3, 11, size=10) > 0))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Test for ticket #5623
							 | 
						||
| 
								 | 
							
								        args = [
							 | 
						||
| 
								 | 
							
								            (2**20 - 2, 2**20 - 2, 2**20 - 2),  # Check for 32-bit systems
							 | 
						||
| 
								 | 
							
								        ]
							 | 
						||
| 
								 | 
							
								        is_64bits = sys.maxsize > 2**32
							 | 
						||
| 
								 | 
							
								        if is_64bits and sys.platform != 'win32':
							 | 
						||
| 
								 | 
							
								            # Check for 64-bit systems
							 | 
						||
| 
								 | 
							
								            args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
							 | 
						||
| 
								 | 
							
								        for arg in args:
							 | 
						||
| 
								 | 
							
								            assert_(random.hypergeometric(*arg) > 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_logseries_convergence(self):
							 | 
						||
| 
								 | 
							
								        # Test for ticket #923
							 | 
						||
| 
								 | 
							
								        N = 1000
							 | 
						||
| 
								 | 
							
								        random.seed(0)
							 | 
						||
| 
								 | 
							
								        rvsn = random.logseries(0.8, size=N)
							 | 
						||
| 
								 | 
							
								        # these two frequency counts should be close to theoretical
							 | 
						||
| 
								 | 
							
								        # numbers with this large sample
							 | 
						||
| 
								 | 
							
								        # theoretical large N result is 0.49706795
							 | 
						||
| 
								 | 
							
								        freq = np.sum(rvsn == 1) / N
							 | 
						||
| 
								 | 
							
								        msg = f'Frequency was {freq:f}, should be > 0.45'
							 | 
						||
| 
								 | 
							
								        assert_(freq > 0.45, msg)
							 | 
						||
| 
								 | 
							
								        # theoretical large N result is 0.19882718
							 | 
						||
| 
								 | 
							
								        freq = np.sum(rvsn == 2) / N
							 | 
						||
| 
								 | 
							
								        msg = f'Frequency was {freq:f}, should be < 0.23'
							 | 
						||
| 
								 | 
							
								        assert_(freq < 0.23, msg)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_shuffle_mixed_dimension(self):
							 | 
						||
| 
								 | 
							
								        # Test for trac ticket #2074
							 | 
						||
| 
								 | 
							
								        for t in [[1, 2, 3, None],
							 | 
						||
| 
								 | 
							
								                  [(1, 1), (2, 2), (3, 3), None],
							 | 
						||
| 
								 | 
							
								                  [1, (2, 2), (3, 3), None],
							 | 
						||
| 
								 | 
							
								                  [(1, 1), 2, 3, None]]:
							 | 
						||
| 
								 | 
							
								            random.seed(12345)
							 | 
						||
| 
								 | 
							
								            shuffled = list(t)
							 | 
						||
| 
								 | 
							
								            random.shuffle(shuffled)
							 | 
						||
| 
								 | 
							
								            expected = np.array([t[0], t[3], t[1], t[2]], dtype=object)
							 | 
						||
| 
								 | 
							
								            assert_array_equal(np.array(shuffled, dtype=object), expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_call_within_randomstate(self):
							 | 
						||
| 
								 | 
							
								        # Check that custom RandomState does not call into global state
							 | 
						||
| 
								 | 
							
								        m = random.RandomState()
							 | 
						||
| 
								 | 
							
								        res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
							 | 
						||
| 
								 | 
							
								        for i in range(3):
							 | 
						||
| 
								 | 
							
								            random.seed(i)
							 | 
						||
| 
								 | 
							
								            m.seed(4321)
							 | 
						||
| 
								 | 
							
								            # If m.state is not honored, the result will change
							 | 
						||
| 
								 | 
							
								            assert_array_equal(m.choice(10, size=10, p=np.ones(10) / 10.), res)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_multivariate_normal_size_types(self):
							 | 
						||
| 
								 | 
							
								        # Test for multivariate_normal issue with 'size' argument.
							 | 
						||
| 
								 | 
							
								        # Check that the multivariate_normal size argument can be a
							 | 
						||
| 
								 | 
							
								        # numpy integer.
							 | 
						||
| 
								 | 
							
								        random.multivariate_normal([0], [[0]], size=1)
							 | 
						||
| 
								 | 
							
								        random.multivariate_normal([0], [[0]], size=np.int_(1))
							 | 
						||
| 
								 | 
							
								        random.multivariate_normal([0], [[0]], size=np.int64(1))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_beta_small_parameters(self):
							 | 
						||
| 
								 | 
							
								        # Test that beta with small a and b parameters does not produce
							 | 
						||
| 
								 | 
							
								        # NaNs due to roundoff errors causing 0 / 0, gh-5851
							 | 
						||
| 
								 | 
							
								        random.seed(1234567890)
							 | 
						||
| 
								 | 
							
								        x = random.beta(0.0001, 0.0001, size=100)
							 | 
						||
| 
								 | 
							
								        assert_(not np.any(np.isnan(x)), 'Nans in random.beta')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_choice_sum_of_probs_tolerance(self):
							 | 
						||
| 
								 | 
							
								        # The sum of probs should be 1.0 with some tolerance.
							 | 
						||
| 
								 | 
							
								        # For low precision dtypes the tolerance was too tight.
							 | 
						||
| 
								 | 
							
								        # See numpy github issue 6123.
							 | 
						||
| 
								 | 
							
								        random.seed(1234)
							 | 
						||
| 
								 | 
							
								        a = [1, 2, 3]
							 | 
						||
| 
								 | 
							
								        counts = [4, 4, 2]
							 | 
						||
| 
								 | 
							
								        for dt in np.float16, np.float32, np.float64:
							 | 
						||
| 
								 | 
							
								            probs = np.array(counts, dtype=dt) / sum(counts)
							 | 
						||
| 
								 | 
							
								            c = random.choice(a, p=probs)
							 | 
						||
| 
								 | 
							
								            assert_(c in a)
							 | 
						||
| 
								 | 
							
								            assert_raises(ValueError, random.choice, a, p=probs * 0.9)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_shuffle_of_array_of_different_length_strings(self):
							 | 
						||
| 
								 | 
							
								        # Test that permuting an array of different length strings
							 | 
						||
| 
								 | 
							
								        # will not cause a segfault on garbage collection
							 | 
						||
| 
								 | 
							
								        # Tests gh-7710
							 | 
						||
| 
								 | 
							
								        random.seed(1234)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        a = np.array(['a', 'a' * 1000])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for _ in range(100):
							 | 
						||
| 
								 | 
							
								            random.shuffle(a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Force Garbage Collection - should not segfault.
							 | 
						||
| 
								 | 
							
								        import gc
							 | 
						||
| 
								 | 
							
								        gc.collect()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_shuffle_of_array_of_objects(self):
							 | 
						||
| 
								 | 
							
								        # Test that permuting an array of objects will not cause
							 | 
						||
| 
								 | 
							
								        # a segfault on garbage collection.
							 | 
						||
| 
								 | 
							
								        # See gh-7719
							 | 
						||
| 
								 | 
							
								        random.seed(1234)
							 | 
						||
| 
								 | 
							
								        a = np.array([np.arange(1), np.arange(4)], dtype=object)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for _ in range(1000):
							 | 
						||
| 
								 | 
							
								            random.shuffle(a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Force Garbage Collection - should not segfault.
							 | 
						||
| 
								 | 
							
								        import gc
							 | 
						||
| 
								 | 
							
								        gc.collect()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_permutation_subclass(self):
							 | 
						||
| 
								 | 
							
								        class N(np.ndarray):
							 | 
						||
| 
								 | 
							
								            pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        random.seed(1)
							 | 
						||
| 
								 | 
							
								        orig = np.arange(3).view(N)
							 | 
						||
| 
								 | 
							
								        perm = random.permutation(orig)
							 | 
						||
| 
								 | 
							
								        assert_array_equal(perm, np.array([0, 2, 1]))
							 | 
						||
| 
								 | 
							
								        assert_array_equal(orig, np.arange(3).view(N))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        class M:
							 | 
						||
| 
								 | 
							
								            a = np.arange(5)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            def __array__(self, dtype=None, copy=None):
							 | 
						||
| 
								 | 
							
								                return self.a
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        random.seed(1)
							 | 
						||
| 
								 | 
							
								        m = M()
							 | 
						||
| 
								 | 
							
								        perm = random.permutation(m)
							 | 
						||
| 
								 | 
							
								        assert_array_equal(perm, np.array([2, 1, 4, 0, 3]))
							 | 
						||
| 
								 | 
							
								        assert_array_equal(m.__array__(), np.arange(5))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_warns_byteorder(self):
							 | 
						||
| 
								 | 
							
								        # GH 13159
							 | 
						||
| 
								 | 
							
								        other_byteord_dt = '<i4' if sys.byteorder == 'big' else '>i4'
							 | 
						||
| 
								 | 
							
								        with pytest.deprecated_call(match='non-native byteorder is not'):
							 | 
						||
| 
								 | 
							
								            random.randint(0, 200, size=10, dtype=other_byteord_dt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_named_argument_initialization(self):
							 | 
						||
| 
								 | 
							
								        # GH 13669
							 | 
						||
| 
								 | 
							
								        rs1 = np.random.RandomState(123456789)
							 | 
						||
| 
								 | 
							
								        rs2 = np.random.RandomState(seed=123456789)
							 | 
						||
| 
								 | 
							
								        assert rs1.randint(0, 100) == rs2.randint(0, 100)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_choice_retun_dtype(self):
							 | 
						||
| 
								 | 
							
								        # GH 9867, now long since the NumPy default changed.
							 | 
						||
| 
								 | 
							
								        c = np.random.choice(10, p=[.1] * 10, size=2)
							 | 
						||
| 
								 | 
							
								        assert c.dtype == np.dtype(np.long)
							 | 
						||
| 
								 | 
							
								        c = np.random.choice(10, p=[.1] * 10, replace=False, size=2)
							 | 
						||
| 
								 | 
							
								        assert c.dtype == np.dtype(np.long)
							 | 
						||
| 
								 | 
							
								        c = np.random.choice(10, size=2)
							 | 
						||
| 
								 | 
							
								        assert c.dtype == np.dtype(np.long)
							 | 
						||
| 
								 | 
							
								        c = np.random.choice(10, replace=False, size=2)
							 | 
						||
| 
								 | 
							
								        assert c.dtype == np.dtype(np.long)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.skipif(np.iinfo('l').max < 2**32,
							 | 
						||
| 
								 | 
							
								                        reason='Cannot test with 32-bit C long')
							 | 
						||
| 
								 | 
							
								    def test_randint_117(self):
							 | 
						||
| 
								 | 
							
								        # GH 14189
							 | 
						||
| 
								 | 
							
								        random.seed(0)
							 | 
						||
| 
								 | 
							
								        expected = np.array([2357136044, 2546248239, 3071714933, 3626093760,
							 | 
						||
| 
								 | 
							
								                             2588848963, 3684848379, 2340255427, 3638918503,
							 | 
						||
| 
								 | 
							
								                             1819583497, 2678185683], dtype='int64')
							 | 
						||
| 
								 | 
							
								        actual = random.randint(2**32, size=10)
							 | 
						||
| 
								 | 
							
								        assert_array_equal(actual, expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_p_zero_stream(self):
							 | 
						||
| 
								 | 
							
								        # Regression test for gh-14522.  Ensure that future versions
							 | 
						||
| 
								 | 
							
								        # generate the same variates as version 1.16.
							 | 
						||
| 
								 | 
							
								        np.random.seed(12345)
							 | 
						||
| 
								 | 
							
								        assert_array_equal(random.binomial(1, [0, 0.25, 0.5, 0.75, 1]),
							 | 
						||
| 
								 | 
							
								                           [0, 0, 0, 1, 1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_n_zero_stream(self):
							 | 
						||
| 
								 | 
							
								        # Regression test for gh-14522.  Ensure that future versions
							 | 
						||
| 
								 | 
							
								        # generate the same variates as version 1.16.
							 | 
						||
| 
								 | 
							
								        np.random.seed(8675309)
							 | 
						||
| 
								 | 
							
								        expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
							 | 
						||
| 
								 | 
							
								                             [3, 4, 2, 3, 3, 1, 5, 3, 1, 3]])
							 | 
						||
| 
								 | 
							
								        assert_array_equal(random.binomial([[0], [10]], 0.25, size=(2, 10)),
							 | 
						||
| 
								 | 
							
								                           expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_multinomial_empty():
							 | 
						||
| 
								 | 
							
								    # gh-20483
							 | 
						||
| 
								 | 
							
								    # Ensure that empty p-vals are correctly handled
							 | 
						||
| 
								 | 
							
								    assert random.multinomial(10, []).shape == (0,)
							 | 
						||
| 
								 | 
							
								    assert random.multinomial(3, [], size=(7, 5, 3)).shape == (7, 5, 3, 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_multinomial_1d_pval():
							 | 
						||
| 
								 | 
							
								    # gh-20483
							 | 
						||
| 
								 | 
							
								    with pytest.raises(TypeError, match="pvals must be a 1-d"):
							 | 
						||
| 
								 | 
							
								        random.multinomial(10, 0.3)
							 |