188 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			188 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								"""
							 | 
						||
| 
								 | 
							
								A sub-package for efficiently dealing with polynomials.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Within the documentation for this sub-package, a "finite power series,"
							 | 
						||
| 
								 | 
							
								i.e., a polynomial (also referred to simply as a "series") is represented
							 | 
						||
| 
								 | 
							
								by a 1-D numpy array of the polynomial's coefficients, ordered from lowest
							 | 
						||
| 
								 | 
							
								order term to highest.  For example, array([1,2,3]) represents
							 | 
						||
| 
								 | 
							
								``P_0 + 2*P_1 + 3*P_2``, where P_n is the n-th order basis polynomial
							 | 
						||
| 
								 | 
							
								applicable to the specific module in question, e.g., `polynomial` (which
							 | 
						||
| 
								 | 
							
								"wraps" the "standard" basis) or `chebyshev`.  For optimal performance,
							 | 
						||
| 
								 | 
							
								all operations on polynomials, including evaluation at an argument, are
							 | 
						||
| 
								 | 
							
								implemented as operations on the coefficients.  Additional (module-specific)
							 | 
						||
| 
								 | 
							
								information can be found in the docstring for the module of interest.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								This package provides *convenience classes* for each of six different kinds
							 | 
						||
| 
								 | 
							
								of polynomials:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								========================    ================
							 | 
						||
| 
								 | 
							
								**Name**                    **Provides**
							 | 
						||
| 
								 | 
							
								========================    ================
							 | 
						||
| 
								 | 
							
								`~polynomial.Polynomial`    Power series
							 | 
						||
| 
								 | 
							
								`~chebyshev.Chebyshev`      Chebyshev series
							 | 
						||
| 
								 | 
							
								`~legendre.Legendre`        Legendre series
							 | 
						||
| 
								 | 
							
								`~laguerre.Laguerre`        Laguerre series
							 | 
						||
| 
								 | 
							
								`~hermite.Hermite`          Hermite series
							 | 
						||
| 
								 | 
							
								`~hermite_e.HermiteE`       HermiteE series
							 | 
						||
| 
								 | 
							
								========================    ================
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								These *convenience classes* provide a consistent interface for creating,
							 | 
						||
| 
								 | 
							
								manipulating, and fitting data with polynomials of different bases.
							 | 
						||
| 
								 | 
							
								The convenience classes are the preferred interface for the `~numpy.polynomial`
							 | 
						||
| 
								 | 
							
								package, and are available from the ``numpy.polynomial`` namespace.
							 | 
						||
| 
								 | 
							
								This eliminates the need to navigate to the corresponding submodules, e.g.
							 | 
						||
| 
								 | 
							
								``np.polynomial.Polynomial`` or ``np.polynomial.Chebyshev`` instead of
							 | 
						||
| 
								 | 
							
								``np.polynomial.polynomial.Polynomial`` or
							 | 
						||
| 
								 | 
							
								``np.polynomial.chebyshev.Chebyshev``, respectively.
							 | 
						||
| 
								 | 
							
								The classes provide a more consistent and concise interface than the
							 | 
						||
| 
								 | 
							
								type-specific functions defined in the submodules for each type of polynomial.
							 | 
						||
| 
								 | 
							
								For example, to fit a Chebyshev polynomial with degree ``1`` to data given
							 | 
						||
| 
								 | 
							
								by arrays ``xdata`` and ``ydata``, the
							 | 
						||
| 
								 | 
							
								`~chebyshev.Chebyshev.fit` class method::
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial import Chebyshev
							 | 
						||
| 
								 | 
							
								    >>> xdata = [1, 2, 3, 4]
							 | 
						||
| 
								 | 
							
								    >>> ydata = [1, 4, 9, 16]
							 | 
						||
| 
								 | 
							
								    >>> c = Chebyshev.fit(xdata, ydata, deg=1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								is preferred over the `chebyshev.chebfit` function from the
							 | 
						||
| 
								 | 
							
								``np.polynomial.chebyshev`` module::
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    >>> from numpy.polynomial.chebyshev import chebfit
							 | 
						||
| 
								 | 
							
								    >>> c = chebfit(xdata, ydata, deg=1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								See :doc:`routines.polynomials.classes` for more details.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Convenience Classes
							 | 
						||
| 
								 | 
							
								===================
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The following lists the various constants and methods common to all of
							 | 
						||
| 
								 | 
							
								the classes representing the various kinds of polynomials. In the following,
							 | 
						||
| 
								 | 
							
								the term ``Poly`` represents any one of the convenience classes (e.g.
							 | 
						||
| 
								 | 
							
								`~polynomial.Polynomial`, `~chebyshev.Chebyshev`, `~hermite.Hermite`, etc.)
							 | 
						||
| 
								 | 
							
								while the lowercase ``p`` represents an **instance** of a polynomial class.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Constants
							 | 
						||
| 
								 | 
							
								---------
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								- ``Poly.domain``     -- Default domain
							 | 
						||
| 
								 | 
							
								- ``Poly.window``     -- Default window
							 | 
						||
| 
								 | 
							
								- ``Poly.basis_name`` -- String used to represent the basis
							 | 
						||
| 
								 | 
							
								- ``Poly.maxpower``   -- Maximum value ``n`` such that ``p**n`` is allowed
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Creation
							 | 
						||
| 
								 | 
							
								--------
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Methods for creating polynomial instances.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								- ``Poly.basis(degree)``    -- Basis polynomial of given degree
							 | 
						||
| 
								 | 
							
								- ``Poly.identity()``       -- ``p`` where ``p(x) = x`` for all ``x``
							 | 
						||
| 
								 | 
							
								- ``Poly.fit(x, y, deg)``   -- ``p`` of degree ``deg`` with coefficients
							 | 
						||
| 
								 | 
							
								  determined by the least-squares fit to the data ``x``, ``y``
							 | 
						||
| 
								 | 
							
								- ``Poly.fromroots(roots)`` -- ``p`` with specified roots
							 | 
						||
| 
								 | 
							
								- ``p.copy()``              -- Create a copy of ``p``
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Conversion
							 | 
						||
| 
								 | 
							
								----------
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Methods for converting a polynomial instance of one kind to another.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								- ``p.cast(Poly)``    -- Convert ``p`` to instance of kind ``Poly``
							 | 
						||
| 
								 | 
							
								- ``p.convert(Poly)`` -- Convert ``p`` to instance of kind ``Poly`` or map
							 | 
						||
| 
								 | 
							
								  between ``domain`` and ``window``
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Calculus
							 | 
						||
| 
								 | 
							
								--------
							 | 
						||
| 
								 | 
							
								- ``p.deriv()`` -- Take the derivative of ``p``
							 | 
						||
| 
								 | 
							
								- ``p.integ()`` -- Integrate ``p``
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Validation
							 | 
						||
| 
								 | 
							
								----------
							 | 
						||
| 
								 | 
							
								- ``Poly.has_samecoef(p1, p2)``   -- Check if coefficients match
							 | 
						||
| 
								 | 
							
								- ``Poly.has_samedomain(p1, p2)`` -- Check if domains match
							 | 
						||
| 
								 | 
							
								- ``Poly.has_sametype(p1, p2)``   -- Check if types match
							 | 
						||
| 
								 | 
							
								- ``Poly.has_samewindow(p1, p2)`` -- Check if windows match
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Misc
							 | 
						||
| 
								 | 
							
								----
							 | 
						||
| 
								 | 
							
								- ``p.linspace()`` -- Return ``x, p(x)`` at equally-spaced points in ``domain``
							 | 
						||
| 
								 | 
							
								- ``p.mapparms()`` -- Return the parameters for the linear mapping between
							 | 
						||
| 
								 | 
							
								  ``domain`` and ``window``.
							 | 
						||
| 
								 | 
							
								- ``p.roots()``    -- Return the roots of ``p``.
							 | 
						||
| 
								 | 
							
								- ``p.trim()``     -- Remove trailing coefficients.
							 | 
						||
| 
								 | 
							
								- ``p.cutdeg(degree)`` -- Truncate ``p`` to given degree
							 | 
						||
| 
								 | 
							
								- ``p.truncate(size)`` -- Truncate ``p`` to given size
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								"""
							 | 
						||
| 
								 | 
							
								from .chebyshev import Chebyshev
							 | 
						||
| 
								 | 
							
								from .hermite import Hermite
							 | 
						||
| 
								 | 
							
								from .hermite_e import HermiteE
							 | 
						||
| 
								 | 
							
								from .laguerre import Laguerre
							 | 
						||
| 
								 | 
							
								from .legendre import Legendre
							 | 
						||
| 
								 | 
							
								from .polynomial import Polynomial
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								__all__ = [  # noqa: F822
							 | 
						||
| 
								 | 
							
								    "set_default_printstyle",
							 | 
						||
| 
								 | 
							
								    "polynomial", "Polynomial",
							 | 
						||
| 
								 | 
							
								    "chebyshev", "Chebyshev",
							 | 
						||
| 
								 | 
							
								    "legendre", "Legendre",
							 | 
						||
| 
								 | 
							
								    "hermite", "Hermite",
							 | 
						||
| 
								 | 
							
								    "hermite_e", "HermiteE",
							 | 
						||
| 
								 | 
							
								    "laguerre", "Laguerre",
							 | 
						||
| 
								 | 
							
								]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def set_default_printstyle(style):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Set the default format for the string representation of polynomials.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Values for ``style`` must be valid inputs to ``__format__``, i.e. 'ascii'
							 | 
						||
| 
								 | 
							
								    or 'unicode'.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Parameters
							 | 
						||
| 
								 | 
							
								    ----------
							 | 
						||
| 
								 | 
							
								    style : str
							 | 
						||
| 
								 | 
							
								        Format string for default printing style. Must be either 'ascii' or
							 | 
						||
| 
								 | 
							
								        'unicode'.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes
							 | 
						||
| 
								 | 
							
								    -----
							 | 
						||
| 
								 | 
							
								    The default format depends on the platform: 'unicode' is used on
							 | 
						||
| 
								 | 
							
								    Unix-based systems and 'ascii' on Windows. This determination is based on
							 | 
						||
| 
								 | 
							
								    default font support for the unicode superscript and subscript ranges.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Examples
							 | 
						||
| 
								 | 
							
								    --------
							 | 
						||
| 
								 | 
							
								    >>> p = np.polynomial.Polynomial([1, 2, 3])
							 | 
						||
| 
								 | 
							
								    >>> c = np.polynomial.Chebyshev([1, 2, 3])
							 | 
						||
| 
								 | 
							
								    >>> np.polynomial.set_default_printstyle('unicode')
							 | 
						||
| 
								 | 
							
								    >>> print(p)
							 | 
						||
| 
								 | 
							
								    1.0 + 2.0·x + 3.0·x²
							 | 
						||
| 
								 | 
							
								    >>> print(c)
							 | 
						||
| 
								 | 
							
								    1.0 + 2.0·T₁(x) + 3.0·T₂(x)
							 | 
						||
| 
								 | 
							
								    >>> np.polynomial.set_default_printstyle('ascii')
							 | 
						||
| 
								 | 
							
								    >>> print(p)
							 | 
						||
| 
								 | 
							
								    1.0 + 2.0 x + 3.0 x**2
							 | 
						||
| 
								 | 
							
								    >>> print(c)
							 | 
						||
| 
								 | 
							
								    1.0 + 2.0 T_1(x) + 3.0 T_2(x)
							 | 
						||
| 
								 | 
							
								    >>> # Formatting supersedes all class/package-level defaults
							 | 
						||
| 
								 | 
							
								    >>> print(f"{p:unicode}")
							 | 
						||
| 
								 | 
							
								    1.0 + 2.0·x + 3.0·x²
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    if style not in ('unicode', 'ascii'):
							 | 
						||
| 
								 | 
							
								        raise ValueError(
							 | 
						||
| 
								 | 
							
								            f"Unsupported format string '{style}'. Valid options are 'ascii' "
							 | 
						||
| 
								 | 
							
								            f"and 'unicode'"
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								    _use_unicode = True
							 | 
						||
| 
								 | 
							
								    if style == 'ascii':
							 | 
						||
| 
								 | 
							
								        _use_unicode = False
							 | 
						||
| 
								 | 
							
								    from ._polybase import ABCPolyBase
							 | 
						||
| 
								 | 
							
								    ABCPolyBase._use_unicode = _use_unicode
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								from numpy._pytesttester import PytestTester
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								test = PytestTester(__name__)
							 | 
						||
| 
								 | 
							
								del PytestTester
							 |