470 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			470 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								"""Tests suite for MaskedArray & subclassing.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								:author: Pierre Gerard-Marchant
							 | 
						||
| 
								 | 
							
								:contact: pierregm_at_uga_dot_edu
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								"""
							 | 
						||
| 
								 | 
							
								import numpy as np
							 | 
						||
| 
								 | 
							
								from numpy.lib.mixins import NDArrayOperatorsMixin
							 | 
						||
| 
								 | 
							
								from numpy.ma.core import (
							 | 
						||
| 
								 | 
							
								    MaskedArray,
							 | 
						||
| 
								 | 
							
								    add,
							 | 
						||
| 
								 | 
							
								    arange,
							 | 
						||
| 
								 | 
							
								    array,
							 | 
						||
| 
								 | 
							
								    asanyarray,
							 | 
						||
| 
								 | 
							
								    asarray,
							 | 
						||
| 
								 | 
							
								    divide,
							 | 
						||
| 
								 | 
							
								    hypot,
							 | 
						||
| 
								 | 
							
								    log,
							 | 
						||
| 
								 | 
							
								    masked,
							 | 
						||
| 
								 | 
							
								    masked_array,
							 | 
						||
| 
								 | 
							
								    nomask,
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								from numpy.ma.testutils import assert_equal
							 | 
						||
| 
								 | 
							
								from numpy.testing import assert_, assert_raises
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# from numpy.ma.core import (
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def assert_startswith(a, b):
							 | 
						||
| 
								 | 
							
								    # produces a better error message than assert_(a.startswith(b))
							 | 
						||
| 
								 | 
							
								    assert_equal(a[:len(b)], b)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class SubArray(np.ndarray):
							 | 
						||
| 
								 | 
							
								    # Defines a generic np.ndarray subclass, that stores some metadata
							 | 
						||
| 
								 | 
							
								    # in the  dictionary `info`.
							 | 
						||
| 
								 | 
							
								    def __new__(cls, arr, info={}):
							 | 
						||
| 
								 | 
							
								        x = np.asanyarray(arr).view(cls)
							 | 
						||
| 
								 | 
							
								        x.info = info.copy()
							 | 
						||
| 
								 | 
							
								        return x
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __array_finalize__(self, obj):
							 | 
						||
| 
								 | 
							
								        super().__array_finalize__(obj)
							 | 
						||
| 
								 | 
							
								        self.info = getattr(obj, 'info', {}).copy()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __add__(self, other):
							 | 
						||
| 
								 | 
							
								        result = super().__add__(other)
							 | 
						||
| 
								 | 
							
								        result.info['added'] = result.info.get('added', 0) + 1
							 | 
						||
| 
								 | 
							
								        return result
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __iadd__(self, other):
							 | 
						||
| 
								 | 
							
								        result = super().__iadd__(other)
							 | 
						||
| 
								 | 
							
								        result.info['iadded'] = result.info.get('iadded', 0) + 1
							 | 
						||
| 
								 | 
							
								        return result
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								subarray = SubArray
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class SubMaskedArray(MaskedArray):
							 | 
						||
| 
								 | 
							
								    """Pure subclass of MaskedArray, keeping some info on subclass."""
							 | 
						||
| 
								 | 
							
								    def __new__(cls, info=None, **kwargs):
							 | 
						||
| 
								 | 
							
								        obj = super().__new__(cls, **kwargs)
							 | 
						||
| 
								 | 
							
								        obj._optinfo['info'] = info
							 | 
						||
| 
								 | 
							
								        return obj
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class MSubArray(SubArray, MaskedArray):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __new__(cls, data, info={}, mask=nomask):
							 | 
						||
| 
								 | 
							
								        subarr = SubArray(data, info)
							 | 
						||
| 
								 | 
							
								        _data = MaskedArray.__new__(cls, data=subarr, mask=mask)
							 | 
						||
| 
								 | 
							
								        _data.info = subarr.info
							 | 
						||
| 
								 | 
							
								        return _data
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @property
							 | 
						||
| 
								 | 
							
								    def _series(self):
							 | 
						||
| 
								 | 
							
								        _view = self.view(MaskedArray)
							 | 
						||
| 
								 | 
							
								        _view._sharedmask = False
							 | 
						||
| 
								 | 
							
								        return _view
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								msubarray = MSubArray
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
							 | 
						||
| 
								 | 
							
								# setting to non-class values (and thus np.ma.core.masked_print_option)
							 | 
						||
| 
								 | 
							
								# and overrides __array_wrap__, updating the info dict, to check that this
							 | 
						||
| 
								 | 
							
								# doesn't get destroyed by MaskedArray._update_from.  But this one also needs
							 | 
						||
| 
								 | 
							
								# its own iterator...
							 | 
						||
| 
								 | 
							
								class CSAIterator:
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Flat iterator object that uses its own setter/getter
							 | 
						||
| 
								 | 
							
								    (works around ndarray.flat not propagating subclass setters/getters
							 | 
						||
| 
								 | 
							
								    see https://github.com/numpy/numpy/issues/4564)
							 | 
						||
| 
								 | 
							
								    roughly following MaskedIterator
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    def __init__(self, a):
							 | 
						||
| 
								 | 
							
								        self._original = a
							 | 
						||
| 
								 | 
							
								        self._dataiter = a.view(np.ndarray).flat
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __iter__(self):
							 | 
						||
| 
								 | 
							
								        return self
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __getitem__(self, indx):
							 | 
						||
| 
								 | 
							
								        out = self._dataiter.__getitem__(indx)
							 | 
						||
| 
								 | 
							
								        if not isinstance(out, np.ndarray):
							 | 
						||
| 
								 | 
							
								            out = out.__array__()
							 | 
						||
| 
								 | 
							
								        out = out.view(type(self._original))
							 | 
						||
| 
								 | 
							
								        return out
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __setitem__(self, index, value):
							 | 
						||
| 
								 | 
							
								        self._dataiter[index] = self._original._validate_input(value)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __next__(self):
							 | 
						||
| 
								 | 
							
								        return next(self._dataiter).__array__().view(type(self._original))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class ComplicatedSubArray(SubArray):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __str__(self):
							 | 
						||
| 
								 | 
							
								        return f'myprefix {self.view(SubArray)} mypostfix'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __repr__(self):
							 | 
						||
| 
								 | 
							
								        # Return a repr that does not start with 'name('
							 | 
						||
| 
								 | 
							
								        return f'<{self.__class__.__name__} {self}>'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def _validate_input(self, value):
							 | 
						||
| 
								 | 
							
								        if not isinstance(value, ComplicatedSubArray):
							 | 
						||
| 
								 | 
							
								            raise ValueError("Can only set to MySubArray values")
							 | 
						||
| 
								 | 
							
								        return value
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __setitem__(self, item, value):
							 | 
						||
| 
								 | 
							
								        # validation ensures direct assignment with ndarray or
							 | 
						||
| 
								 | 
							
								        # masked_print_option will fail
							 | 
						||
| 
								 | 
							
								        super().__setitem__(item, self._validate_input(value))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __getitem__(self, item):
							 | 
						||
| 
								 | 
							
								        # ensure getter returns our own class also for scalars
							 | 
						||
| 
								 | 
							
								        value = super().__getitem__(item)
							 | 
						||
| 
								 | 
							
								        if not isinstance(value, np.ndarray):  # scalar
							 | 
						||
| 
								 | 
							
								            value = value.__array__().view(ComplicatedSubArray)
							 | 
						||
| 
								 | 
							
								        return value
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @property
							 | 
						||
| 
								 | 
							
								    def flat(self):
							 | 
						||
| 
								 | 
							
								        return CSAIterator(self)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @flat.setter
							 | 
						||
| 
								 | 
							
								    def flat(self, value):
							 | 
						||
| 
								 | 
							
								        y = self.ravel()
							 | 
						||
| 
								 | 
							
								        y[:] = value
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __array_wrap__(self, obj, context=None, return_scalar=False):
							 | 
						||
| 
								 | 
							
								        obj = super().__array_wrap__(obj, context, return_scalar)
							 | 
						||
| 
								 | 
							
								        if context is not None and context[0] is np.multiply:
							 | 
						||
| 
								 | 
							
								            obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        return obj
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class WrappedArray(NDArrayOperatorsMixin):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Wrapping a MaskedArray rather than subclassing to test that
							 | 
						||
| 
								 | 
							
								    ufunc deferrals are commutative.
							 | 
						||
| 
								 | 
							
								    See: https://github.com/numpy/numpy/issues/15200)
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    __slots__ = ('_array', 'attrs')
							 | 
						||
| 
								 | 
							
								    __array_priority__ = 20
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __init__(self, array, **attrs):
							 | 
						||
| 
								 | 
							
								        self._array = array
							 | 
						||
| 
								 | 
							
								        self.attrs = attrs
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __repr__(self):
							 | 
						||
| 
								 | 
							
								        return f"{self.__class__.__name__}(\n{self._array}\n{self.attrs}\n)"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __array__(self, dtype=None, copy=None):
							 | 
						||
| 
								 | 
							
								        return np.asarray(self._array)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
							 | 
						||
| 
								 | 
							
								        if method == '__call__':
							 | 
						||
| 
								 | 
							
								            inputs = [arg._array if isinstance(arg, self.__class__) else arg
							 | 
						||
| 
								 | 
							
								                      for arg in inputs]
							 | 
						||
| 
								 | 
							
								            return self.__class__(ufunc(*inputs, **kwargs), **self.attrs)
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            return NotImplemented
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestSubclassing:
							 | 
						||
| 
								 | 
							
								    # Test suite for masked subclasses of ndarray.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def setup_method(self):
							 | 
						||
| 
								 | 
							
								        x = np.arange(5, dtype='float')
							 | 
						||
| 
								 | 
							
								        mx = msubarray(x, mask=[0, 1, 0, 0, 0])
							 | 
						||
| 
								 | 
							
								        self.data = (x, mx)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_data_subclassing(self):
							 | 
						||
| 
								 | 
							
								        # Tests whether the subclass is kept.
							 | 
						||
| 
								 | 
							
								        x = np.arange(5)
							 | 
						||
| 
								 | 
							
								        m = [0, 0, 1, 0, 0]
							 | 
						||
| 
								 | 
							
								        xsub = SubArray(x)
							 | 
						||
| 
								 | 
							
								        xmsub = masked_array(xsub, mask=m)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(xmsub, MaskedArray))
							 | 
						||
| 
								 | 
							
								        assert_equal(xmsub._data, xsub)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(xmsub._data, SubArray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_maskedarray_subclassing(self):
							 | 
						||
| 
								 | 
							
								        # Tests subclassing MaskedArray
							 | 
						||
| 
								 | 
							
								        (x, mx) = self.data
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mx._data, subarray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_masked_unary_operations(self):
							 | 
						||
| 
								 | 
							
								        # Tests masked_unary_operation
							 | 
						||
| 
								 | 
							
								        (x, mx) = self.data
							 | 
						||
| 
								 | 
							
								        with np.errstate(divide='ignore'):
							 | 
						||
| 
								 | 
							
								            assert_(isinstance(log(mx), msubarray))
							 | 
						||
| 
								 | 
							
								            assert_equal(log(x), np.log(x))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_masked_binary_operations(self):
							 | 
						||
| 
								 | 
							
								        # Tests masked_binary_operation
							 | 
						||
| 
								 | 
							
								        (x, mx) = self.data
							 | 
						||
| 
								 | 
							
								        # Result should be a msubarray
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(add(mx, mx), msubarray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(add(mx, x), msubarray))
							 | 
						||
| 
								 | 
							
								        # Result should work
							 | 
						||
| 
								 | 
							
								        assert_equal(add(mx, x), mx + x)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(add(mx, mx)._data, subarray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(add.outer(mx, mx), msubarray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(hypot(mx, mx), msubarray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(hypot(mx, x), msubarray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_masked_binary_operations2(self):
							 | 
						||
| 
								 | 
							
								        # Tests domained_masked_binary_operation
							 | 
						||
| 
								 | 
							
								        (x, mx) = self.data
							 | 
						||
| 
								 | 
							
								        xmx = masked_array(mx.data.__array__(), mask=mx.mask)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(divide(mx, mx), msubarray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(divide(mx, x), msubarray))
							 | 
						||
| 
								 | 
							
								        assert_equal(divide(mx, mx), divide(xmx, xmx))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_attributepropagation(self):
							 | 
						||
| 
								 | 
							
								        x = array(arange(5), mask=[0] + [1] * 4)
							 | 
						||
| 
								 | 
							
								        my = masked_array(subarray(x))
							 | 
						||
| 
								 | 
							
								        ym = msubarray(x)
							 | 
						||
| 
								 | 
							
								        #
							 | 
						||
| 
								 | 
							
								        z = (my + 1)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(z, MaskedArray))
							 | 
						||
| 
								 | 
							
								        assert_(not isinstance(z, MSubArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(z._data, SubArray))
							 | 
						||
| 
								 | 
							
								        assert_equal(z._data.info, {})
							 | 
						||
| 
								 | 
							
								        #
							 | 
						||
| 
								 | 
							
								        z = (ym + 1)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(z, MaskedArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(z, MSubArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(z._data, SubArray))
							 | 
						||
| 
								 | 
							
								        assert_(z._data.info['added'] > 0)
							 | 
						||
| 
								 | 
							
								        # Test that inplace methods from data get used (gh-4617)
							 | 
						||
| 
								 | 
							
								        ym += 1
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(ym, MaskedArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(ym, MSubArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(ym._data, SubArray))
							 | 
						||
| 
								 | 
							
								        assert_(ym._data.info['iadded'] > 0)
							 | 
						||
| 
								 | 
							
								        #
							 | 
						||
| 
								 | 
							
								        ym._set_mask([1, 0, 0, 0, 1])
							 | 
						||
| 
								 | 
							
								        assert_equal(ym._mask, [1, 0, 0, 0, 1])
							 | 
						||
| 
								 | 
							
								        ym._series._set_mask([0, 0, 0, 0, 1])
							 | 
						||
| 
								 | 
							
								        assert_equal(ym._mask, [0, 0, 0, 0, 1])
							 | 
						||
| 
								 | 
							
								        #
							 | 
						||
| 
								 | 
							
								        xsub = subarray(x, info={'name': 'x'})
							 | 
						||
| 
								 | 
							
								        mxsub = masked_array(xsub)
							 | 
						||
| 
								 | 
							
								        assert_(hasattr(mxsub, 'info'))
							 | 
						||
| 
								 | 
							
								        assert_equal(mxsub.info, xsub.info)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_subclasspreservation(self):
							 | 
						||
| 
								 | 
							
								        # Checks that masked_array(...,subok=True) preserves the class.
							 | 
						||
| 
								 | 
							
								        x = np.arange(5)
							 | 
						||
| 
								 | 
							
								        m = [0, 0, 1, 0, 0]
							 | 
						||
| 
								 | 
							
								        xinfo = list(zip(x, m))
							 | 
						||
| 
								 | 
							
								        xsub = MSubArray(x, mask=m, info={'xsub': xinfo})
							 | 
						||
| 
								 | 
							
								        #
							 | 
						||
| 
								 | 
							
								        mxsub = masked_array(xsub, subok=False)
							 | 
						||
| 
								 | 
							
								        assert_(not isinstance(mxsub, MSubArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxsub, MaskedArray))
							 | 
						||
| 
								 | 
							
								        assert_equal(mxsub._mask, m)
							 | 
						||
| 
								 | 
							
								        #
							 | 
						||
| 
								 | 
							
								        mxsub = asarray(xsub)
							 | 
						||
| 
								 | 
							
								        assert_(not isinstance(mxsub, MSubArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxsub, MaskedArray))
							 | 
						||
| 
								 | 
							
								        assert_equal(mxsub._mask, m)
							 | 
						||
| 
								 | 
							
								        #
							 | 
						||
| 
								 | 
							
								        mxsub = masked_array(xsub, subok=True)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxsub, MSubArray))
							 | 
						||
| 
								 | 
							
								        assert_equal(mxsub.info, xsub.info)
							 | 
						||
| 
								 | 
							
								        assert_equal(mxsub._mask, xsub._mask)
							 | 
						||
| 
								 | 
							
								        #
							 | 
						||
| 
								 | 
							
								        mxsub = asanyarray(xsub)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxsub, MSubArray))
							 | 
						||
| 
								 | 
							
								        assert_equal(mxsub.info, xsub.info)
							 | 
						||
| 
								 | 
							
								        assert_equal(mxsub._mask, m)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_subclass_items(self):
							 | 
						||
| 
								 | 
							
								        """test that getter and setter go via baseclass"""
							 | 
						||
| 
								 | 
							
								        x = np.arange(5)
							 | 
						||
| 
								 | 
							
								        xcsub = ComplicatedSubArray(x)
							 | 
						||
| 
								 | 
							
								        mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
							 | 
						||
| 
								 | 
							
								        # getter should  return a ComplicatedSubArray, even for single item
							 | 
						||
| 
								 | 
							
								        # first check we wrote ComplicatedSubArray correctly
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(xcsub[1], ComplicatedSubArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(xcsub[1, ...], ComplicatedSubArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(xcsub[1:4], ComplicatedSubArray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # now that it propagates inside the MaskedArray
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxcsub[1], ComplicatedSubArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxcsub[1, ...].data, ComplicatedSubArray))
							 | 
						||
| 
								 | 
							
								        assert_(mxcsub[0] is masked)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxcsub[0, ...].data, ComplicatedSubArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # also for flattened version (which goes via MaskedIterator)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
							 | 
						||
| 
								 | 
							
								        assert_(mxcsub.flat[0] is masked)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # setter should only work with ComplicatedSubArray input
							 | 
						||
| 
								 | 
							
								        # first check we wrote ComplicatedSubArray correctly
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
							 | 
						||
| 
								 | 
							
								        # now that it propagates inside the MaskedArray
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
							 | 
						||
| 
								 | 
							
								        mxcsub[1] = xcsub[4]
							 | 
						||
| 
								 | 
							
								        mxcsub[1:4] = xcsub[1:4]
							 | 
						||
| 
								 | 
							
								        # also for flattened version (which goes via MaskedIterator)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
							 | 
						||
| 
								 | 
							
								        mxcsub.flat[1] = xcsub[4]
							 | 
						||
| 
								 | 
							
								        mxcsub.flat[1:4] = xcsub[1:4]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_subclass_nomask_items(self):
							 | 
						||
| 
								 | 
							
								        x = np.arange(5)
							 | 
						||
| 
								 | 
							
								        xcsub = ComplicatedSubArray(x)
							 | 
						||
| 
								 | 
							
								        mxcsub_nomask = masked_array(xcsub)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxcsub_nomask[1, ...].data, ComplicatedSubArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxcsub_nomask[0, ...].data, ComplicatedSubArray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_subclass_repr(self):
							 | 
						||
| 
								 | 
							
								        """test that repr uses the name of the subclass
							 | 
						||
| 
								 | 
							
								        and 'array' for np.ndarray"""
							 | 
						||
| 
								 | 
							
								        x = np.arange(5)
							 | 
						||
| 
								 | 
							
								        mx = masked_array(x, mask=[True, False, True, False, False])
							 | 
						||
| 
								 | 
							
								        assert_startswith(repr(mx), 'masked_array')
							 | 
						||
| 
								 | 
							
								        xsub = SubArray(x)
							 | 
						||
| 
								 | 
							
								        mxsub = masked_array(xsub, mask=[True, False, True, False, False])
							 | 
						||
| 
								 | 
							
								        assert_startswith(repr(mxsub),
							 | 
						||
| 
								 | 
							
								            f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_subclass_str(self):
							 | 
						||
| 
								 | 
							
								        """test str with subclass that has overridden str, setitem"""
							 | 
						||
| 
								 | 
							
								        # first without override
							 | 
						||
| 
								 | 
							
								        x = np.arange(5)
							 | 
						||
| 
								 | 
							
								        xsub = SubArray(x)
							 | 
						||
| 
								 | 
							
								        mxsub = masked_array(xsub, mask=[True, False, True, False, False])
							 | 
						||
| 
								 | 
							
								        assert_equal(str(mxsub), '[-- 1 -- 3 4]')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        xcsub = ComplicatedSubArray(x)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, xcsub.__setitem__, 0,
							 | 
						||
| 
								 | 
							
								                      np.ma.core.masked_print_option)
							 | 
						||
| 
								 | 
							
								        mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
							 | 
						||
| 
								 | 
							
								        assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_pure_subclass_info_preservation(self):
							 | 
						||
| 
								 | 
							
								        # Test that ufuncs and methods conserve extra information consistently;
							 | 
						||
| 
								 | 
							
								        # see gh-7122.
							 | 
						||
| 
								 | 
							
								        arr1 = SubMaskedArray('test', data=[1, 2, 3, 4, 5, 6])
							 | 
						||
| 
								 | 
							
								        arr2 = SubMaskedArray(data=[0, 1, 2, 3, 4, 5])
							 | 
						||
| 
								 | 
							
								        diff1 = np.subtract(arr1, arr2)
							 | 
						||
| 
								 | 
							
								        assert_('info' in diff1._optinfo)
							 | 
						||
| 
								 | 
							
								        assert_(diff1._optinfo['info'] == 'test')
							 | 
						||
| 
								 | 
							
								        diff2 = arr1 - arr2
							 | 
						||
| 
								 | 
							
								        assert_('info' in diff2._optinfo)
							 | 
						||
| 
								 | 
							
								        assert_(diff2._optinfo['info'] == 'test')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class ArrayNoInheritance:
							 | 
						||
| 
								 | 
							
								    """Quantity-like class that does not inherit from ndarray"""
							 | 
						||
| 
								 | 
							
								    def __init__(self, data, units):
							 | 
						||
| 
								 | 
							
								        self.magnitude = data
							 | 
						||
| 
								 | 
							
								        self.units = units
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __getattr__(self, attr):
							 | 
						||
| 
								 | 
							
								        return getattr(self.magnitude, attr)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_array_no_inheritance():
							 | 
						||
| 
								 | 
							
								    data_masked = np.ma.array([1, 2, 3], mask=[True, False, True])
							 | 
						||
| 
								 | 
							
								    data_masked_units = ArrayNoInheritance(data_masked, 'meters')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Get the masked representation of the Quantity-like class
							 | 
						||
| 
								 | 
							
								    new_array = np.ma.array(data_masked_units)
							 | 
						||
| 
								 | 
							
								    assert_equal(data_masked.data, new_array.data)
							 | 
						||
| 
								 | 
							
								    assert_equal(data_masked.mask, new_array.mask)
							 | 
						||
| 
								 | 
							
								    # Test sharing the mask
							 | 
						||
| 
								 | 
							
								    data_masked.mask = [True, False, False]
							 | 
						||
| 
								 | 
							
								    assert_equal(data_masked.mask, new_array.mask)
							 | 
						||
| 
								 | 
							
								    assert_(new_array.sharedmask)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Get the masked representation of the Quantity-like class
							 | 
						||
| 
								 | 
							
								    new_array = np.ma.array(data_masked_units, copy=True)
							 | 
						||
| 
								 | 
							
								    assert_equal(data_masked.data, new_array.data)
							 | 
						||
| 
								 | 
							
								    assert_equal(data_masked.mask, new_array.mask)
							 | 
						||
| 
								 | 
							
								    # Test that the mask is not shared when copy=True
							 | 
						||
| 
								 | 
							
								    data_masked.mask = [True, False, True]
							 | 
						||
| 
								 | 
							
								    assert_equal([True, False, False], new_array.mask)
							 | 
						||
| 
								 | 
							
								    assert_(not new_array.sharedmask)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Get the masked representation of the Quantity-like class
							 | 
						||
| 
								 | 
							
								    new_array = np.ma.array(data_masked_units, keep_mask=False)
							 | 
						||
| 
								 | 
							
								    assert_equal(data_masked.data, new_array.data)
							 | 
						||
| 
								 | 
							
								    # The change did not affect the original mask
							 | 
						||
| 
								 | 
							
								    assert_equal(data_masked.mask, [True, False, True])
							 | 
						||
| 
								 | 
							
								    # Test that the mask is False and not shared when keep_mask=False
							 | 
						||
| 
								 | 
							
								    assert_(not new_array.mask)
							 | 
						||
| 
								 | 
							
								    assert_(not new_array.sharedmask)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestClassWrapping:
							 | 
						||
| 
								 | 
							
								    # Test suite for classes that wrap MaskedArrays
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def setup_method(self):
							 | 
						||
| 
								 | 
							
								        m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
							 | 
						||
| 
								 | 
							
								        wm = WrappedArray(m)
							 | 
						||
| 
								 | 
							
								        self.data = (m, wm)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_masked_unary_operations(self):
							 | 
						||
| 
								 | 
							
								        # Tests masked_unary_operation
							 | 
						||
| 
								 | 
							
								        (m, wm) = self.data
							 | 
						||
| 
								 | 
							
								        with np.errstate(divide='ignore'):
							 | 
						||
| 
								 | 
							
								            assert_(isinstance(np.log(wm), WrappedArray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_masked_binary_operations(self):
							 | 
						||
| 
								 | 
							
								        # Tests masked_binary_operation
							 | 
						||
| 
								 | 
							
								        (m, wm) = self.data
							 | 
						||
| 
								 | 
							
								        # Result should be a WrappedArray
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(np.add(wm, wm), WrappedArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(np.add(m, wm), WrappedArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(np.add(wm, m), WrappedArray))
							 | 
						||
| 
								 | 
							
								        # add and '+' should call the same ufunc
							 | 
						||
| 
								 | 
							
								        assert_equal(np.add(m, wm), m + wm)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(np.hypot(m, wm), WrappedArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(np.hypot(wm, m), WrappedArray))
							 | 
						||
| 
								 | 
							
								        # Test domained binary operations
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(np.divide(wm, m), WrappedArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(np.divide(m, wm), WrappedArray))
							 | 
						||
| 
								 | 
							
								        assert_equal(np.divide(wm, m) * m, np.divide(m, m) * wm)
							 | 
						||
| 
								 | 
							
								        # Test broadcasting
							 | 
						||
| 
								 | 
							
								        m2 = np.stack([m, m])
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(np.divide(wm, m2), WrappedArray))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(np.divide(m2, wm), WrappedArray))
							 | 
						||
| 
								 | 
							
								        assert_equal(np.divide(m2, wm), np.divide(wm, m2))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_mixins_have_slots(self):
							 | 
						||
| 
								 | 
							
								        mixin = NDArrayOperatorsMixin()
							 | 
						||
| 
								 | 
							
								        # Should raise an error
							 | 
						||
| 
								 | 
							
								        assert_raises(AttributeError, mixin.__setattr__, "not_a_real_attr", 1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
							 | 
						||
| 
								 | 
							
								        wm = WrappedArray(m)
							 | 
						||
| 
								 | 
							
								        assert_raises(AttributeError, wm.__setattr__, "not_an_attr", 2)
							 |