2431 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			2431 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								""" Test functions for linalg module
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								"""
							 | 
						||
| 
								 | 
							
								import itertools
							 | 
						||
| 
								 | 
							
								import os
							 | 
						||
| 
								 | 
							
								import subprocess
							 | 
						||
| 
								 | 
							
								import sys
							 | 
						||
| 
								 | 
							
								import textwrap
							 | 
						||
| 
								 | 
							
								import threading
							 | 
						||
| 
								 | 
							
								import traceback
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import pytest
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import numpy as np
							 | 
						||
| 
								 | 
							
								from numpy import (
							 | 
						||
| 
								 | 
							
								    array,
							 | 
						||
| 
								 | 
							
								    asarray,
							 | 
						||
| 
								 | 
							
								    atleast_2d,
							 | 
						||
| 
								 | 
							
								    cdouble,
							 | 
						||
| 
								 | 
							
								    csingle,
							 | 
						||
| 
								 | 
							
								    dot,
							 | 
						||
| 
								 | 
							
								    double,
							 | 
						||
| 
								 | 
							
								    identity,
							 | 
						||
| 
								 | 
							
								    inf,
							 | 
						||
| 
								 | 
							
								    linalg,
							 | 
						||
| 
								 | 
							
								    matmul,
							 | 
						||
| 
								 | 
							
								    multiply,
							 | 
						||
| 
								 | 
							
								    single,
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								from numpy._core import swapaxes
							 | 
						||
| 
								 | 
							
								from numpy.exceptions import AxisError
							 | 
						||
| 
								 | 
							
								from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm
							 | 
						||
| 
								 | 
							
								from numpy.linalg._linalg import _multi_dot_matrix_chain_order
							 | 
						||
| 
								 | 
							
								from numpy.testing import (
							 | 
						||
| 
								 | 
							
								    HAS_LAPACK64,
							 | 
						||
| 
								 | 
							
								    IS_WASM,
							 | 
						||
| 
								 | 
							
								    NOGIL_BUILD,
							 | 
						||
| 
								 | 
							
								    assert_,
							 | 
						||
| 
								 | 
							
								    assert_allclose,
							 | 
						||
| 
								 | 
							
								    assert_almost_equal,
							 | 
						||
| 
								 | 
							
								    assert_array_equal,
							 | 
						||
| 
								 | 
							
								    assert_equal,
							 | 
						||
| 
								 | 
							
								    assert_raises,
							 | 
						||
| 
								 | 
							
								    assert_raises_regex,
							 | 
						||
| 
								 | 
							
								    suppress_warnings,
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								try:
							 | 
						||
| 
								 | 
							
								    import numpy.linalg.lapack_lite
							 | 
						||
| 
								 | 
							
								except ImportError:
							 | 
						||
| 
								 | 
							
								    # May be broken when numpy was built without BLAS/LAPACK present
							 | 
						||
| 
								 | 
							
								    # If so, ensure we don't break the whole test suite - the `lapack_lite`
							 | 
						||
| 
								 | 
							
								    # submodule should be removed, it's only used in two tests in this file.
							 | 
						||
| 
								 | 
							
								    pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def consistent_subclass(out, in_):
							 | 
						||
| 
								 | 
							
								    # For ndarray subclass input, our output should have the same subclass
							 | 
						||
| 
								 | 
							
								    # (non-ndarray input gets converted to ndarray).
							 | 
						||
| 
								 | 
							
								    return type(out) is (type(in_) if isinstance(in_, np.ndarray)
							 | 
						||
| 
								 | 
							
								                         else np.ndarray)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								old_assert_almost_equal = assert_almost_equal
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw):
							 | 
						||
| 
								 | 
							
								    if asarray(a).dtype.type in (single, csingle):
							 | 
						||
| 
								 | 
							
								        decimal = single_decimal
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        decimal = double_decimal
							 | 
						||
| 
								 | 
							
								    old_assert_almost_equal(a, b, decimal=decimal, **kw)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def get_real_dtype(dtype):
							 | 
						||
| 
								 | 
							
								    return {single: single, double: double,
							 | 
						||
| 
								 | 
							
								            csingle: single, cdouble: double}[dtype]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def get_complex_dtype(dtype):
							 | 
						||
| 
								 | 
							
								    return {single: csingle, double: cdouble,
							 | 
						||
| 
								 | 
							
								            csingle: csingle, cdouble: cdouble}[dtype]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def get_rtol(dtype):
							 | 
						||
| 
								 | 
							
								    # Choose a safe rtol
							 | 
						||
| 
								 | 
							
								    if dtype in (single, csingle):
							 | 
						||
| 
								 | 
							
								        return 1e-5
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        return 1e-11
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# used to categorize tests
							 | 
						||
| 
								 | 
							
								all_tags = {
							 | 
						||
| 
								 | 
							
								  'square', 'nonsquare', 'hermitian',  # mutually exclusive
							 | 
						||
| 
								 | 
							
								  'generalized', 'size-0', 'strided'  # optional additions
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class LinalgCase:
							 | 
						||
| 
								 | 
							
								    def __init__(self, name, a, b, tags=set()):
							 | 
						||
| 
								 | 
							
								        """
							 | 
						||
| 
								 | 
							
								        A bundle of arguments to be passed to a test case, with an identifying
							 | 
						||
| 
								 | 
							
								        name, the operands a and b, and a set of tags to filter the tests
							 | 
						||
| 
								 | 
							
								        """
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(name, str))
							 | 
						||
| 
								 | 
							
								        self.name = name
							 | 
						||
| 
								 | 
							
								        self.a = a
							 | 
						||
| 
								 | 
							
								        self.b = b
							 | 
						||
| 
								 | 
							
								        self.tags = frozenset(tags)  # prevent shared tags
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def check(self, do):
							 | 
						||
| 
								 | 
							
								        """
							 | 
						||
| 
								 | 
							
								        Run the function `do` on this test case, expanding arguments
							 | 
						||
| 
								 | 
							
								        """
							 | 
						||
| 
								 | 
							
								        do(self.a, self.b, tags=self.tags)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def __repr__(self):
							 | 
						||
| 
								 | 
							
								        return f'<LinalgCase: {self.name}>'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def apply_tag(tag, cases):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Add the given tag (a string) to each of the cases (a list of LinalgCase
							 | 
						||
| 
								 | 
							
								    objects)
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    assert tag in all_tags, "Invalid tag"
							 | 
						||
| 
								 | 
							
								    for case in cases:
							 | 
						||
| 
								 | 
							
								        case.tags = case.tags | {tag}
							 | 
						||
| 
								 | 
							
								    return cases
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# Base test cases
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								np.random.seed(1234)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								CASES = []
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# square test cases
							 | 
						||
| 
								 | 
							
								CASES += apply_tag('square', [
							 | 
						||
| 
								 | 
							
								    LinalgCase("single",
							 | 
						||
| 
								 | 
							
								               array([[1., 2.], [3., 4.]], dtype=single),
							 | 
						||
| 
								 | 
							
								               array([2., 1.], dtype=single)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("double",
							 | 
						||
| 
								 | 
							
								               array([[1., 2.], [3., 4.]], dtype=double),
							 | 
						||
| 
								 | 
							
								               array([2., 1.], dtype=double)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("double_2",
							 | 
						||
| 
								 | 
							
								               array([[1., 2.], [3., 4.]], dtype=double),
							 | 
						||
| 
								 | 
							
								               array([[2., 1., 4.], [3., 4., 6.]], dtype=double)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("csingle",
							 | 
						||
| 
								 | 
							
								               array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle),
							 | 
						||
| 
								 | 
							
								               array([2. + 1j, 1. + 2j], dtype=csingle)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("cdouble",
							 | 
						||
| 
								 | 
							
								               array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
							 | 
						||
| 
								 | 
							
								               array([2. + 1j, 1. + 2j], dtype=cdouble)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("cdouble_2",
							 | 
						||
| 
								 | 
							
								               array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
							 | 
						||
| 
								 | 
							
								               array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("0x0",
							 | 
						||
| 
								 | 
							
								               np.empty((0, 0), dtype=double),
							 | 
						||
| 
								 | 
							
								               np.empty((0,), dtype=double),
							 | 
						||
| 
								 | 
							
								               tags={'size-0'}),
							 | 
						||
| 
								 | 
							
								    LinalgCase("8x8",
							 | 
						||
| 
								 | 
							
								               np.random.rand(8, 8),
							 | 
						||
| 
								 | 
							
								               np.random.rand(8)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("1x1",
							 | 
						||
| 
								 | 
							
								               np.random.rand(1, 1),
							 | 
						||
| 
								 | 
							
								               np.random.rand(1)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("nonarray",
							 | 
						||
| 
								 | 
							
								               [[1, 2], [3, 4]],
							 | 
						||
| 
								 | 
							
								               [2, 1]),
							 | 
						||
| 
								 | 
							
								])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# non-square test-cases
							 | 
						||
| 
								 | 
							
								CASES += apply_tag('nonsquare', [
							 | 
						||
| 
								 | 
							
								    LinalgCase("single_nsq_1",
							 | 
						||
| 
								 | 
							
								               array([[1., 2., 3.], [3., 4., 6.]], dtype=single),
							 | 
						||
| 
								 | 
							
								               array([2., 1.], dtype=single)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("single_nsq_2",
							 | 
						||
| 
								 | 
							
								               array([[1., 2.], [3., 4.], [5., 6.]], dtype=single),
							 | 
						||
| 
								 | 
							
								               array([2., 1., 3.], dtype=single)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("double_nsq_1",
							 | 
						||
| 
								 | 
							
								               array([[1., 2., 3.], [3., 4., 6.]], dtype=double),
							 | 
						||
| 
								 | 
							
								               array([2., 1.], dtype=double)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("double_nsq_2",
							 | 
						||
| 
								 | 
							
								               array([[1., 2.], [3., 4.], [5., 6.]], dtype=double),
							 | 
						||
| 
								 | 
							
								               array([2., 1., 3.], dtype=double)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("csingle_nsq_1",
							 | 
						||
| 
								 | 
							
								               array(
							 | 
						||
| 
								 | 
							
								                   [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle),
							 | 
						||
| 
								 | 
							
								               array([2. + 1j, 1. + 2j], dtype=csingle)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("csingle_nsq_2",
							 | 
						||
| 
								 | 
							
								               array(
							 | 
						||
| 
								 | 
							
								                   [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle),
							 | 
						||
| 
								 | 
							
								               array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("cdouble_nsq_1",
							 | 
						||
| 
								 | 
							
								               array(
							 | 
						||
| 
								 | 
							
								                   [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
							 | 
						||
| 
								 | 
							
								               array([2. + 1j, 1. + 2j], dtype=cdouble)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("cdouble_nsq_2",
							 | 
						||
| 
								 | 
							
								               array(
							 | 
						||
| 
								 | 
							
								                   [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
							 | 
						||
| 
								 | 
							
								               array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("cdouble_nsq_1_2",
							 | 
						||
| 
								 | 
							
								               array(
							 | 
						||
| 
								 | 
							
								                   [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
							 | 
						||
| 
								 | 
							
								               array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("cdouble_nsq_2_2",
							 | 
						||
| 
								 | 
							
								               array(
							 | 
						||
| 
								 | 
							
								                   [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
							 | 
						||
| 
								 | 
							
								               array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("8x11",
							 | 
						||
| 
								 | 
							
								               np.random.rand(8, 11),
							 | 
						||
| 
								 | 
							
								               np.random.rand(8)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("1x5",
							 | 
						||
| 
								 | 
							
								               np.random.rand(1, 5),
							 | 
						||
| 
								 | 
							
								               np.random.rand(1)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("5x1",
							 | 
						||
| 
								 | 
							
								               np.random.rand(5, 1),
							 | 
						||
| 
								 | 
							
								               np.random.rand(5)),
							 | 
						||
| 
								 | 
							
								    LinalgCase("0x4",
							 | 
						||
| 
								 | 
							
								               np.random.rand(0, 4),
							 | 
						||
| 
								 | 
							
								               np.random.rand(0),
							 | 
						||
| 
								 | 
							
								               tags={'size-0'}),
							 | 
						||
| 
								 | 
							
								    LinalgCase("4x0",
							 | 
						||
| 
								 | 
							
								               np.random.rand(4, 0),
							 | 
						||
| 
								 | 
							
								               np.random.rand(4),
							 | 
						||
| 
								 | 
							
								               tags={'size-0'}),
							 | 
						||
| 
								 | 
							
								])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# hermitian test-cases
							 | 
						||
| 
								 | 
							
								CASES += apply_tag('hermitian', [
							 | 
						||
| 
								 | 
							
								    LinalgCase("hsingle",
							 | 
						||
| 
								 | 
							
								               array([[1., 2.], [2., 1.]], dtype=single),
							 | 
						||
| 
								 | 
							
								               None),
							 | 
						||
| 
								 | 
							
								    LinalgCase("hdouble",
							 | 
						||
| 
								 | 
							
								               array([[1., 2.], [2., 1.]], dtype=double),
							 | 
						||
| 
								 | 
							
								               None),
							 | 
						||
| 
								 | 
							
								    LinalgCase("hcsingle",
							 | 
						||
| 
								 | 
							
								               array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle),
							 | 
						||
| 
								 | 
							
								               None),
							 | 
						||
| 
								 | 
							
								    LinalgCase("hcdouble",
							 | 
						||
| 
								 | 
							
								               array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble),
							 | 
						||
| 
								 | 
							
								               None),
							 | 
						||
| 
								 | 
							
								    LinalgCase("hempty",
							 | 
						||
| 
								 | 
							
								               np.empty((0, 0), dtype=double),
							 | 
						||
| 
								 | 
							
								               None,
							 | 
						||
| 
								 | 
							
								               tags={'size-0'}),
							 | 
						||
| 
								 | 
							
								    LinalgCase("hnonarray",
							 | 
						||
| 
								 | 
							
								               [[1, 2], [2, 1]],
							 | 
						||
| 
								 | 
							
								               None),
							 | 
						||
| 
								 | 
							
								    LinalgCase("matrix_b_only",
							 | 
						||
| 
								 | 
							
								               array([[1., 2.], [2., 1.]]),
							 | 
						||
| 
								 | 
							
								               None),
							 | 
						||
| 
								 | 
							
								    LinalgCase("hmatrix_1x1",
							 | 
						||
| 
								 | 
							
								               np.random.rand(1, 1),
							 | 
						||
| 
								 | 
							
								               None),
							 | 
						||
| 
								 | 
							
								])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# Gufunc test cases
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								def _make_generalized_cases():
							 | 
						||
| 
								 | 
							
								    new_cases = []
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    for case in CASES:
							 | 
						||
| 
								 | 
							
								        if not isinstance(case.a, np.ndarray):
							 | 
						||
| 
								 | 
							
								            continue
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        a = np.array([case.a, 2 * case.a, 3 * case.a])
							 | 
						||
| 
								 | 
							
								        if case.b is None:
							 | 
						||
| 
								 | 
							
								            b = None
							 | 
						||
| 
								 | 
							
								        elif case.b.ndim == 1:
							 | 
						||
| 
								 | 
							
								            b = case.b
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            b = np.array([case.b, 7 * case.b, 6 * case.b])
							 | 
						||
| 
								 | 
							
								        new_case = LinalgCase(case.name + "_tile3", a, b,
							 | 
						||
| 
								 | 
							
								                              tags=case.tags | {'generalized'})
							 | 
						||
| 
								 | 
							
								        new_cases.append(new_case)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape)
							 | 
						||
| 
								 | 
							
								        if case.b is None:
							 | 
						||
| 
								 | 
							
								            b = None
							 | 
						||
| 
								 | 
							
								        elif case.b.ndim == 1:
							 | 
						||
| 
								 | 
							
								            b = np.array([case.b] * 2 * 3 * a.shape[-1])\
							 | 
						||
| 
								 | 
							
								                  .reshape((3, 2) + case.a.shape[-2:])
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape)
							 | 
						||
| 
								 | 
							
								        new_case = LinalgCase(case.name + "_tile213", a, b,
							 | 
						||
| 
								 | 
							
								                              tags=case.tags | {'generalized'})
							 | 
						||
| 
								 | 
							
								        new_cases.append(new_case)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return new_cases
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								CASES += _make_generalized_cases()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# Generate stride combination variations of the above
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								def _stride_comb_iter(x):
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    Generate cartesian product of strides for all axes
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if not isinstance(x, np.ndarray):
							 | 
						||
| 
								 | 
							
								        yield x, "nop"
							 | 
						||
| 
								 | 
							
								        return
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    stride_set = [(1,)] * x.ndim
							 | 
						||
| 
								 | 
							
								    stride_set[-1] = (1, 3, -4)
							 | 
						||
| 
								 | 
							
								    if x.ndim > 1:
							 | 
						||
| 
								 | 
							
								        stride_set[-2] = (1, 3, -4)
							 | 
						||
| 
								 | 
							
								    if x.ndim > 2:
							 | 
						||
| 
								 | 
							
								        stride_set[-3] = (1, -4)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    for repeats in itertools.product(*tuple(stride_set)):
							 | 
						||
| 
								 | 
							
								        new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)]
							 | 
						||
| 
								 | 
							
								        slices = tuple(slice(None, None, repeat) for repeat in repeats)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # new array with different strides, but same data
							 | 
						||
| 
								 | 
							
								        xi = np.empty(new_shape, dtype=x.dtype)
							 | 
						||
| 
								 | 
							
								        xi.view(np.uint32).fill(0xdeadbeef)
							 | 
						||
| 
								 | 
							
								        xi = xi[slices]
							 | 
						||
| 
								 | 
							
								        xi[...] = x
							 | 
						||
| 
								 | 
							
								        xi = xi.view(x.__class__)
							 | 
						||
| 
								 | 
							
								        assert_(np.all(xi == x))
							 | 
						||
| 
								 | 
							
								        yield xi, "stride_" + "_".join(["%+d" % j for j in repeats])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # generate also zero strides if possible
							 | 
						||
| 
								 | 
							
								        if x.ndim >= 1 and x.shape[-1] == 1:
							 | 
						||
| 
								 | 
							
								            s = list(x.strides)
							 | 
						||
| 
								 | 
							
								            s[-1] = 0
							 | 
						||
| 
								 | 
							
								            xi = np.lib.stride_tricks.as_strided(x, strides=s)
							 | 
						||
| 
								 | 
							
								            yield xi, "stride_xxx_0"
							 | 
						||
| 
								 | 
							
								        if x.ndim >= 2 and x.shape[-2] == 1:
							 | 
						||
| 
								 | 
							
								            s = list(x.strides)
							 | 
						||
| 
								 | 
							
								            s[-2] = 0
							 | 
						||
| 
								 | 
							
								            xi = np.lib.stride_tricks.as_strided(x, strides=s)
							 | 
						||
| 
								 | 
							
								            yield xi, "stride_xxx_0_x"
							 | 
						||
| 
								 | 
							
								        if x.ndim >= 2 and x.shape[:-2] == (1, 1):
							 | 
						||
| 
								 | 
							
								            s = list(x.strides)
							 | 
						||
| 
								 | 
							
								            s[-1] = 0
							 | 
						||
| 
								 | 
							
								            s[-2] = 0
							 | 
						||
| 
								 | 
							
								            xi = np.lib.stride_tricks.as_strided(x, strides=s)
							 | 
						||
| 
								 | 
							
								            yield xi, "stride_xxx_0_0"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def _make_strided_cases():
							 | 
						||
| 
								 | 
							
								    new_cases = []
							 | 
						||
| 
								 | 
							
								    for case in CASES:
							 | 
						||
| 
								 | 
							
								        for a, a_label in _stride_comb_iter(case.a):
							 | 
						||
| 
								 | 
							
								            for b, b_label in _stride_comb_iter(case.b):
							 | 
						||
| 
								 | 
							
								                new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b,
							 | 
						||
| 
								 | 
							
								                                      tags=case.tags | {'strided'})
							 | 
						||
| 
								 | 
							
								                new_cases.append(new_case)
							 | 
						||
| 
								 | 
							
								    return new_cases
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								CASES += _make_strided_cases()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								# Test different routines against the above cases
							 | 
						||
| 
								 | 
							
								#
							 | 
						||
| 
								 | 
							
								class LinalgTestCase:
							 | 
						||
| 
								 | 
							
								    TEST_CASES = CASES
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def check_cases(self, require=set(), exclude=set()):
							 | 
						||
| 
								 | 
							
								        """
							 | 
						||
| 
								 | 
							
								        Run func on each of the cases with all of the tags in require, and none
							 | 
						||
| 
								 | 
							
								        of the tags in exclude
							 | 
						||
| 
								 | 
							
								        """
							 | 
						||
| 
								 | 
							
								        for case in self.TEST_CASES:
							 | 
						||
| 
								 | 
							
								            # filter by require and exclude
							 | 
						||
| 
								 | 
							
								            if case.tags & require != require:
							 | 
						||
| 
								 | 
							
								                continue
							 | 
						||
| 
								 | 
							
								            if case.tags & exclude:
							 | 
						||
| 
								 | 
							
								                continue
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            try:
							 | 
						||
| 
								 | 
							
								                case.check(self.do)
							 | 
						||
| 
								 | 
							
								            except Exception as e:
							 | 
						||
| 
								 | 
							
								                msg = f'In test case: {case!r}\n\n'
							 | 
						||
| 
								 | 
							
								                msg += traceback.format_exc()
							 | 
						||
| 
								 | 
							
								                raise AssertionError(msg) from e
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class LinalgSquareTestCase(LinalgTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_sq_cases(self):
							 | 
						||
| 
								 | 
							
								        self.check_cases(require={'square'},
							 | 
						||
| 
								 | 
							
								                         exclude={'generalized', 'size-0'})
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_empty_sq_cases(self):
							 | 
						||
| 
								 | 
							
								        self.check_cases(require={'square', 'size-0'},
							 | 
						||
| 
								 | 
							
								                         exclude={'generalized'})
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class LinalgNonsquareTestCase(LinalgTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_nonsq_cases(self):
							 | 
						||
| 
								 | 
							
								        self.check_cases(require={'nonsquare'},
							 | 
						||
| 
								 | 
							
								                         exclude={'generalized', 'size-0'})
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_empty_nonsq_cases(self):
							 | 
						||
| 
								 | 
							
								        self.check_cases(require={'nonsquare', 'size-0'},
							 | 
						||
| 
								 | 
							
								                         exclude={'generalized'})
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class HermitianTestCase(LinalgTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_herm_cases(self):
							 | 
						||
| 
								 | 
							
								        self.check_cases(require={'hermitian'},
							 | 
						||
| 
								 | 
							
								                         exclude={'generalized', 'size-0'})
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_empty_herm_cases(self):
							 | 
						||
| 
								 | 
							
								        self.check_cases(require={'hermitian', 'size-0'},
							 | 
						||
| 
								 | 
							
								                         exclude={'generalized'})
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class LinalgGeneralizedSquareTestCase(LinalgTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.slow
							 | 
						||
| 
								 | 
							
								    def test_generalized_sq_cases(self):
							 | 
						||
| 
								 | 
							
								        self.check_cases(require={'generalized', 'square'},
							 | 
						||
| 
								 | 
							
								                         exclude={'size-0'})
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.slow
							 | 
						||
| 
								 | 
							
								    def test_generalized_empty_sq_cases(self):
							 | 
						||
| 
								 | 
							
								        self.check_cases(require={'generalized', 'square', 'size-0'})
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class LinalgGeneralizedNonsquareTestCase(LinalgTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.slow
							 | 
						||
| 
								 | 
							
								    def test_generalized_nonsq_cases(self):
							 | 
						||
| 
								 | 
							
								        self.check_cases(require={'generalized', 'nonsquare'},
							 | 
						||
| 
								 | 
							
								                         exclude={'size-0'})
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.slow
							 | 
						||
| 
								 | 
							
								    def test_generalized_empty_nonsq_cases(self):
							 | 
						||
| 
								 | 
							
								        self.check_cases(require={'generalized', 'nonsquare', 'size-0'})
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class HermitianGeneralizedTestCase(LinalgTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.slow
							 | 
						||
| 
								 | 
							
								    def test_generalized_herm_cases(self):
							 | 
						||
| 
								 | 
							
								        self.check_cases(require={'generalized', 'hermitian'},
							 | 
						||
| 
								 | 
							
								                         exclude={'size-0'})
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.slow
							 | 
						||
| 
								 | 
							
								    def test_generalized_empty_herm_cases(self):
							 | 
						||
| 
								 | 
							
								        self.check_cases(require={'generalized', 'hermitian', 'size-0'},
							 | 
						||
| 
								 | 
							
								                         exclude={'none'})
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def identity_like_generalized(a):
							 | 
						||
| 
								 | 
							
								    a = asarray(a)
							 | 
						||
| 
								 | 
							
								    if a.ndim >= 3:
							 | 
						||
| 
								 | 
							
								        r = np.empty(a.shape, dtype=a.dtype)
							 | 
						||
| 
								 | 
							
								        r[...] = identity(a.shape[-2])
							 | 
						||
| 
								 | 
							
								        return r
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        return identity(a.shape[0])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
							 | 
						||
| 
								 | 
							
								    # kept apart from TestSolve for use for testing with matrices.
							 | 
						||
| 
								 | 
							
								    def do(self, a, b, tags):
							 | 
						||
| 
								 | 
							
								        x = linalg.solve(a, b)
							 | 
						||
| 
								 | 
							
								        if np.array(b).ndim == 1:
							 | 
						||
| 
								 | 
							
								            # When a is (..., M, M) and b is (M,), it is the same as when b is
							 | 
						||
| 
								 | 
							
								            # (M, 1), except the result has shape (..., M)
							 | 
						||
| 
								 | 
							
								            adotx = matmul(a, x[..., None])[..., 0]
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(np.broadcast_to(b, adotx.shape), adotx)
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            adotx = matmul(a, x)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(b, adotx)
							 | 
						||
| 
								 | 
							
								        assert_(consistent_subclass(x, b))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestSolve(SolveCases):
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
							 | 
						||
| 
								 | 
							
								    def test_types(self, dtype):
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
							 | 
						||
| 
								 | 
							
								        assert_equal(linalg.solve(x, x).dtype, dtype)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_1_d(self):
							 | 
						||
| 
								 | 
							
								        class ArraySubclass(np.ndarray):
							 | 
						||
| 
								 | 
							
								            pass
							 | 
						||
| 
								 | 
							
								        a = np.arange(8).reshape(2, 2, 2)
							 | 
						||
| 
								 | 
							
								        b = np.arange(2).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        result = linalg.solve(a, b)
							 | 
						||
| 
								 | 
							
								        assert result.shape == (2, 2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # If b is anything other than 1-D it should be treated as a stack of
							 | 
						||
| 
								 | 
							
								        # matrices
							 | 
						||
| 
								 | 
							
								        b = np.arange(4).reshape(2, 2).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        result = linalg.solve(a, b)
							 | 
						||
| 
								 | 
							
								        assert result.shape == (2, 2, 2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        b = np.arange(2).reshape(1, 2).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, linalg.solve, a, b)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_0_size(self):
							 | 
						||
| 
								 | 
							
								        class ArraySubclass(np.ndarray):
							 | 
						||
| 
								 | 
							
								            pass
							 | 
						||
| 
								 | 
							
								        # Test system of 0x0 matrices
							 | 
						||
| 
								 | 
							
								        a = np.arange(8).reshape(2, 2, 2)
							 | 
						||
| 
								 | 
							
								        b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        expected = linalg.solve(a, b)[:, 0:0, :]
							 | 
						||
| 
								 | 
							
								        result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :])
							 | 
						||
| 
								 | 
							
								        assert_array_equal(result, expected)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(result, ArraySubclass))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Test errors for non-square and only b's dimension being 0
							 | 
						||
| 
								 | 
							
								        assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Test broadcasting error
							 | 
						||
| 
								 | 
							
								        b = np.arange(6).reshape(1, 3, 2)  # broadcasting error
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, linalg.solve, a, b)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Test zero "single equations" with 0x0 matrices.
							 | 
						||
| 
								 | 
							
								        b = np.arange(2).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        expected = linalg.solve(a, b)[:, 0:0]
							 | 
						||
| 
								 | 
							
								        result = linalg.solve(a[:, 0:0, 0:0], b[0:0])
							 | 
						||
| 
								 | 
							
								        assert_array_equal(result, expected)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(result, ArraySubclass))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        b = np.arange(3).reshape(1, 3)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, linalg.solve, a, b)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_0_size_k(self):
							 | 
						||
| 
								 | 
							
								        # test zero multiple equation (K=0) case.
							 | 
						||
| 
								 | 
							
								        class ArraySubclass(np.ndarray):
							 | 
						||
| 
								 | 
							
								            pass
							 | 
						||
| 
								 | 
							
								        a = np.arange(4).reshape(1, 2, 2)
							 | 
						||
| 
								 | 
							
								        b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        expected = linalg.solve(a, b)[:, :, 0:0]
							 | 
						||
| 
								 | 
							
								        result = linalg.solve(a, b[:, :, 0:0])
							 | 
						||
| 
								 | 
							
								        assert_array_equal(result, expected)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(result, ArraySubclass))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # test both zero.
							 | 
						||
| 
								 | 
							
								        expected = linalg.solve(a, b)[:, 0:0, 0:0]
							 | 
						||
| 
								 | 
							
								        result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0])
							 | 
						||
| 
								 | 
							
								        assert_array_equal(result, expected)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(result, ArraySubclass))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class InvCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def do(self, a, b, tags):
							 | 
						||
| 
								 | 
							
								        a_inv = linalg.inv(a)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(matmul(a, a_inv),
							 | 
						||
| 
								 | 
							
								                            identity_like_generalized(a))
							 | 
						||
| 
								 | 
							
								        assert_(consistent_subclass(a_inv, a))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestInv(InvCases):
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
							 | 
						||
| 
								 | 
							
								    def test_types(self, dtype):
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
							 | 
						||
| 
								 | 
							
								        assert_equal(linalg.inv(x).dtype, dtype)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_0_size(self):
							 | 
						||
| 
								 | 
							
								        # Check that all kinds of 0-sized arrays work
							 | 
						||
| 
								 | 
							
								        class ArraySubclass(np.ndarray):
							 | 
						||
| 
								 | 
							
								            pass
							 | 
						||
| 
								 | 
							
								        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        res = linalg.inv(a)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.float64)
							 | 
						||
| 
								 | 
							
								        assert_equal(a.shape, res.shape)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, ArraySubclass))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        res = linalg.inv(a)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.complex64)
							 | 
						||
| 
								 | 
							
								        assert_equal(a.shape, res.shape)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, ArraySubclass))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class EigvalsCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def do(self, a, b, tags):
							 | 
						||
| 
								 | 
							
								        ev = linalg.eigvals(a)
							 | 
						||
| 
								 | 
							
								        evalues, evectors = linalg.eig(a)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(ev, evalues)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestEigvals(EigvalsCases):
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
							 | 
						||
| 
								 | 
							
								    def test_types(self, dtype):
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
							 | 
						||
| 
								 | 
							
								        assert_equal(linalg.eigvals(x).dtype, dtype)
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
							 | 
						||
| 
								 | 
							
								        assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_0_size(self):
							 | 
						||
| 
								 | 
							
								        # Check that all kinds of 0-sized arrays work
							 | 
						||
| 
								 | 
							
								        class ArraySubclass(np.ndarray):
							 | 
						||
| 
								 | 
							
								            pass
							 | 
						||
| 
								 | 
							
								        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        res = linalg.eigvals(a)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.float64)
							 | 
						||
| 
								 | 
							
								        assert_equal((0, 1), res.shape)
							 | 
						||
| 
								 | 
							
								        # This is just for documentation, it might make sense to change:
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, np.ndarray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        res = linalg.eigvals(a)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.complex64)
							 | 
						||
| 
								 | 
							
								        assert_equal((0,), res.shape)
							 | 
						||
| 
								 | 
							
								        # This is just for documentation, it might make sense to change:
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, np.ndarray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class EigCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def do(self, a, b, tags):
							 | 
						||
| 
								 | 
							
								        res = linalg.eig(a)
							 | 
						||
| 
								 | 
							
								        eigenvalues, eigenvectors = res.eigenvalues, res.eigenvectors
							 | 
						||
| 
								 | 
							
								        assert_allclose(matmul(a, eigenvectors),
							 | 
						||
| 
								 | 
							
								                        np.asarray(eigenvectors) * np.asarray(eigenvalues)[..., None, :],
							 | 
						||
| 
								 | 
							
								                        rtol=get_rtol(eigenvalues.dtype))
							 | 
						||
| 
								 | 
							
								        assert_(consistent_subclass(eigenvectors, a))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestEig(EigCases):
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
							 | 
						||
| 
								 | 
							
								    def test_types(self, dtype):
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
							 | 
						||
| 
								 | 
							
								        w, v = np.linalg.eig(x)
							 | 
						||
| 
								 | 
							
								        assert_equal(w.dtype, dtype)
							 | 
						||
| 
								 | 
							
								        assert_equal(v.dtype, dtype)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
							 | 
						||
| 
								 | 
							
								        w, v = np.linalg.eig(x)
							 | 
						||
| 
								 | 
							
								        assert_equal(w.dtype, get_complex_dtype(dtype))
							 | 
						||
| 
								 | 
							
								        assert_equal(v.dtype, get_complex_dtype(dtype))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_0_size(self):
							 | 
						||
| 
								 | 
							
								        # Check that all kinds of 0-sized arrays work
							 | 
						||
| 
								 | 
							
								        class ArraySubclass(np.ndarray):
							 | 
						||
| 
								 | 
							
								            pass
							 | 
						||
| 
								 | 
							
								        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        res, res_v = linalg.eig(a)
							 | 
						||
| 
								 | 
							
								        assert_(res_v.dtype.type is np.float64)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.float64)
							 | 
						||
| 
								 | 
							
								        assert_equal(a.shape, res_v.shape)
							 | 
						||
| 
								 | 
							
								        assert_equal((0, 1), res.shape)
							 | 
						||
| 
								 | 
							
								        # This is just for documentation, it might make sense to change:
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(a, np.ndarray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        res, res_v = linalg.eig(a)
							 | 
						||
| 
								 | 
							
								        assert_(res_v.dtype.type is np.complex64)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.complex64)
							 | 
						||
| 
								 | 
							
								        assert_equal(a.shape, res_v.shape)
							 | 
						||
| 
								 | 
							
								        assert_equal((0,), res.shape)
							 | 
						||
| 
								 | 
							
								        # This is just for documentation, it might make sense to change:
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(a, np.ndarray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class SVDBaseTests:
							 | 
						||
| 
								 | 
							
								    hermitian = False
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
							 | 
						||
| 
								 | 
							
								    def test_types(self, dtype):
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
							 | 
						||
| 
								 | 
							
								        res = linalg.svd(x)
							 | 
						||
| 
								 | 
							
								        U, S, Vh = res.U, res.S, res.Vh
							 | 
						||
| 
								 | 
							
								        assert_equal(U.dtype, dtype)
							 | 
						||
| 
								 | 
							
								        assert_equal(S.dtype, get_real_dtype(dtype))
							 | 
						||
| 
								 | 
							
								        assert_equal(Vh.dtype, dtype)
							 | 
						||
| 
								 | 
							
								        s = linalg.svd(x, compute_uv=False, hermitian=self.hermitian)
							 | 
						||
| 
								 | 
							
								        assert_equal(s.dtype, get_real_dtype(dtype))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class SVDCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def do(self, a, b, tags):
							 | 
						||
| 
								 | 
							
								        u, s, vt = linalg.svd(a, False)
							 | 
						||
| 
								 | 
							
								        assert_allclose(a, matmul(np.asarray(u) * np.asarray(s)[..., None, :],
							 | 
						||
| 
								 | 
							
								                                           np.asarray(vt)),
							 | 
						||
| 
								 | 
							
								                        rtol=get_rtol(u.dtype))
							 | 
						||
| 
								 | 
							
								        assert_(consistent_subclass(u, a))
							 | 
						||
| 
								 | 
							
								        assert_(consistent_subclass(vt, a))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestSVD(SVDCases, SVDBaseTests):
							 | 
						||
| 
								 | 
							
								    def test_empty_identity(self):
							 | 
						||
| 
								 | 
							
								        """ Empty input should put an identity matrix in u or vh """
							 | 
						||
| 
								 | 
							
								        x = np.empty((4, 0))
							 | 
						||
| 
								 | 
							
								        u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
							 | 
						||
| 
								 | 
							
								        assert_equal(u.shape, (4, 4))
							 | 
						||
| 
								 | 
							
								        assert_equal(vh.shape, (0, 0))
							 | 
						||
| 
								 | 
							
								        assert_equal(u, np.eye(4))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        x = np.empty((0, 4))
							 | 
						||
| 
								 | 
							
								        u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian)
							 | 
						||
| 
								 | 
							
								        assert_equal(u.shape, (0, 0))
							 | 
						||
| 
								 | 
							
								        assert_equal(vh.shape, (4, 4))
							 | 
						||
| 
								 | 
							
								        assert_equal(vh, np.eye(4))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_svdvals(self):
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 0.5], [0.5, 1]])
							 | 
						||
| 
								 | 
							
								        s_from_svd = linalg.svd(x, compute_uv=False, hermitian=self.hermitian)
							 | 
						||
| 
								 | 
							
								        s_from_svdvals = linalg.svdvals(x)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(s_from_svd, s_from_svdvals)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class SVDHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def do(self, a, b, tags):
							 | 
						||
| 
								 | 
							
								        u, s, vt = linalg.svd(a, False, hermitian=True)
							 | 
						||
| 
								 | 
							
								        assert_allclose(a, matmul(np.asarray(u) * np.asarray(s)[..., None, :],
							 | 
						||
| 
								 | 
							
								                                           np.asarray(vt)),
							 | 
						||
| 
								 | 
							
								                        rtol=get_rtol(u.dtype))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        def hermitian(mat):
							 | 
						||
| 
								 | 
							
								            axes = list(range(mat.ndim))
							 | 
						||
| 
								 | 
							
								            axes[-1], axes[-2] = axes[-2], axes[-1]
							 | 
						||
| 
								 | 
							
								            return np.conj(np.transpose(mat, axes=axes))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(np.matmul(u, hermitian(u)), np.broadcast_to(np.eye(u.shape[-1]), u.shape))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(np.matmul(vt, hermitian(vt)), np.broadcast_to(np.eye(vt.shape[-1]), vt.shape))
							 | 
						||
| 
								 | 
							
								        assert_equal(np.sort(s)[..., ::-1], s)
							 | 
						||
| 
								 | 
							
								        assert_(consistent_subclass(u, a))
							 | 
						||
| 
								 | 
							
								        assert_(consistent_subclass(vt, a))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestSVDHermitian(SVDHermitianCases, SVDBaseTests):
							 | 
						||
| 
								 | 
							
								    hermitian = True
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class CondCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
							 | 
						||
| 
								 | 
							
								    # cond(x, p) for p in (None, 2, -2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def do(self, a, b, tags):
							 | 
						||
| 
								 | 
							
								        c = asarray(a)  # a might be a matrix
							 | 
						||
| 
								 | 
							
								        if 'size-0' in tags:
							 | 
						||
| 
								 | 
							
								            assert_raises(LinAlgError, linalg.cond, c)
							 | 
						||
| 
								 | 
							
								            return
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # +-2 norms
							 | 
						||
| 
								 | 
							
								        s = linalg.svd(c, compute_uv=False)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(
							 | 
						||
| 
								 | 
							
								            linalg.cond(a), s[..., 0] / s[..., -1],
							 | 
						||
| 
								 | 
							
								            single_decimal=5, double_decimal=11)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(
							 | 
						||
| 
								 | 
							
								            linalg.cond(a, 2), s[..., 0] / s[..., -1],
							 | 
						||
| 
								 | 
							
								            single_decimal=5, double_decimal=11)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(
							 | 
						||
| 
								 | 
							
								            linalg.cond(a, -2), s[..., -1] / s[..., 0],
							 | 
						||
| 
								 | 
							
								            single_decimal=5, double_decimal=11)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Other norms
							 | 
						||
| 
								 | 
							
								        cinv = np.linalg.inv(c)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(
							 | 
						||
| 
								 | 
							
								            linalg.cond(a, 1),
							 | 
						||
| 
								 | 
							
								            abs(c).sum(-2).max(-1) * abs(cinv).sum(-2).max(-1),
							 | 
						||
| 
								 | 
							
								            single_decimal=5, double_decimal=11)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(
							 | 
						||
| 
								 | 
							
								            linalg.cond(a, -1),
							 | 
						||
| 
								 | 
							
								            abs(c).sum(-2).min(-1) * abs(cinv).sum(-2).min(-1),
							 | 
						||
| 
								 | 
							
								            single_decimal=5, double_decimal=11)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(
							 | 
						||
| 
								 | 
							
								            linalg.cond(a, np.inf),
							 | 
						||
| 
								 | 
							
								            abs(c).sum(-1).max(-1) * abs(cinv).sum(-1).max(-1),
							 | 
						||
| 
								 | 
							
								            single_decimal=5, double_decimal=11)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(
							 | 
						||
| 
								 | 
							
								            linalg.cond(a, -np.inf),
							 | 
						||
| 
								 | 
							
								            abs(c).sum(-1).min(-1) * abs(cinv).sum(-1).min(-1),
							 | 
						||
| 
								 | 
							
								            single_decimal=5, double_decimal=11)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(
							 | 
						||
| 
								 | 
							
								            linalg.cond(a, 'fro'),
							 | 
						||
| 
								 | 
							
								            np.sqrt((abs(c)**2).sum(-1).sum(-1)
							 | 
						||
| 
								 | 
							
								                    * (abs(cinv)**2).sum(-1).sum(-1)),
							 | 
						||
| 
								 | 
							
								            single_decimal=5, double_decimal=11)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestCond(CondCases):
							 | 
						||
| 
								 | 
							
								    def test_basic_nonsvd(self):
							 | 
						||
| 
								 | 
							
								        # Smoketest the non-svd norms
							 | 
						||
| 
								 | 
							
								        A = array([[1., 0, 1], [0, -2., 0], [0, 0, 3.]])
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(linalg.cond(A, inf), 4)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(linalg.cond(A, -inf), 2 / 3)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(linalg.cond(A, 1), 4)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(linalg.cond(A, -1), 0.5)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(linalg.cond(A, 'fro'), np.sqrt(265 / 12))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_singular(self):
							 | 
						||
| 
								 | 
							
								        # Singular matrices have infinite condition number for
							 | 
						||
| 
								 | 
							
								        # positive norms, and negative norms shouldn't raise
							 | 
						||
| 
								 | 
							
								        # exceptions
							 | 
						||
| 
								 | 
							
								        As = [np.zeros((2, 2)), np.ones((2, 2))]
							 | 
						||
| 
								 | 
							
								        p_pos = [None, 1, 2, 'fro']
							 | 
						||
| 
								 | 
							
								        p_neg = [-1, -2]
							 | 
						||
| 
								 | 
							
								        for A, p in itertools.product(As, p_pos):
							 | 
						||
| 
								 | 
							
								            # Inversion may not hit exact infinity, so just check the
							 | 
						||
| 
								 | 
							
								            # number is large
							 | 
						||
| 
								 | 
							
								            assert_(linalg.cond(A, p) > 1e15)
							 | 
						||
| 
								 | 
							
								        for A, p in itertools.product(As, p_neg):
							 | 
						||
| 
								 | 
							
								            linalg.cond(A, p)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.xfail(True, run=False,
							 | 
						||
| 
								 | 
							
								                       reason="Platform/LAPACK-dependent failure, "
							 | 
						||
| 
								 | 
							
								                              "see gh-18914")
							 | 
						||
| 
								 | 
							
								    def test_nan(self):
							 | 
						||
| 
								 | 
							
								        # nans should be passed through, not converted to infs
							 | 
						||
| 
								 | 
							
								        ps = [None, 1, -1, 2, -2, 'fro']
							 | 
						||
| 
								 | 
							
								        p_pos = [None, 1, 2, 'fro']
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        A = np.ones((2, 2))
							 | 
						||
| 
								 | 
							
								        A[0, 1] = np.nan
							 | 
						||
| 
								 | 
							
								        for p in ps:
							 | 
						||
| 
								 | 
							
								            c = linalg.cond(A, p)
							 | 
						||
| 
								 | 
							
								            assert_(isinstance(c, np.float64))
							 | 
						||
| 
								 | 
							
								            assert_(np.isnan(c))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        A = np.ones((3, 2, 2))
							 | 
						||
| 
								 | 
							
								        A[1, 0, 1] = np.nan
							 | 
						||
| 
								 | 
							
								        for p in ps:
							 | 
						||
| 
								 | 
							
								            c = linalg.cond(A, p)
							 | 
						||
| 
								 | 
							
								            assert_(np.isnan(c[1]))
							 | 
						||
| 
								 | 
							
								            if p in p_pos:
							 | 
						||
| 
								 | 
							
								                assert_(c[0] > 1e15)
							 | 
						||
| 
								 | 
							
								                assert_(c[2] > 1e15)
							 | 
						||
| 
								 | 
							
								            else:
							 | 
						||
| 
								 | 
							
								                assert_(not np.isnan(c[0]))
							 | 
						||
| 
								 | 
							
								                assert_(not np.isnan(c[2]))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_stacked_singular(self):
							 | 
						||
| 
								 | 
							
								        # Check behavior when only some of the stacked matrices are
							 | 
						||
| 
								 | 
							
								        # singular
							 | 
						||
| 
								 | 
							
								        np.random.seed(1234)
							 | 
						||
| 
								 | 
							
								        A = np.random.rand(2, 2, 2, 2)
							 | 
						||
| 
								 | 
							
								        A[0, 0] = 0
							 | 
						||
| 
								 | 
							
								        A[1, 1] = 0
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for p in (None, 1, 2, 'fro', -1, -2):
							 | 
						||
| 
								 | 
							
								            c = linalg.cond(A, p)
							 | 
						||
| 
								 | 
							
								            assert_equal(c[0, 0], np.inf)
							 | 
						||
| 
								 | 
							
								            assert_equal(c[1, 1], np.inf)
							 | 
						||
| 
								 | 
							
								            assert_(np.isfinite(c[0, 1]))
							 | 
						||
| 
								 | 
							
								            assert_(np.isfinite(c[1, 0]))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class PinvCases(LinalgSquareTestCase,
							 | 
						||
| 
								 | 
							
								                LinalgNonsquareTestCase,
							 | 
						||
| 
								 | 
							
								                LinalgGeneralizedSquareTestCase,
							 | 
						||
| 
								 | 
							
								                LinalgGeneralizedNonsquareTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def do(self, a, b, tags):
							 | 
						||
| 
								 | 
							
								        a_ginv = linalg.pinv(a)
							 | 
						||
| 
								 | 
							
								        # `a @ a_ginv == I` does not hold if a is singular
							 | 
						||
| 
								 | 
							
								        dot = matmul
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
							 | 
						||
| 
								 | 
							
								        assert_(consistent_subclass(a_ginv, a))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestPinv(PinvCases):
							 | 
						||
| 
								 | 
							
								    pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class PinvHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def do(self, a, b, tags):
							 | 
						||
| 
								 | 
							
								        a_ginv = linalg.pinv(a, hermitian=True)
							 | 
						||
| 
								 | 
							
								        # `a @ a_ginv == I` does not hold if a is singular
							 | 
						||
| 
								 | 
							
								        dot = matmul
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
							 | 
						||
| 
								 | 
							
								        assert_(consistent_subclass(a_ginv, a))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestPinvHermitian(PinvHermitianCases):
							 | 
						||
| 
								 | 
							
								    pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_pinv_rtol_arg():
							 | 
						||
| 
								 | 
							
								    a = np.array([[1, 2, 3], [4, 1, 1], [2, 3, 1]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert_almost_equal(
							 | 
						||
| 
								 | 
							
								        np.linalg.pinv(a, rcond=0.5),
							 | 
						||
| 
								 | 
							
								        np.linalg.pinv(a, rtol=0.5),
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    with pytest.raises(
							 | 
						||
| 
								 | 
							
								        ValueError, match=r"`rtol` and `rcond` can't be both set."
							 | 
						||
| 
								 | 
							
								    ):
							 | 
						||
| 
								 | 
							
								        np.linalg.pinv(a, rcond=0.5, rtol=0.5)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class DetCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def do(self, a, b, tags):
							 | 
						||
| 
								 | 
							
								        d = linalg.det(a)
							 | 
						||
| 
								 | 
							
								        res = linalg.slogdet(a)
							 | 
						||
| 
								 | 
							
								        s, ld = res.sign, res.logabsdet
							 | 
						||
| 
								 | 
							
								        if asarray(a).dtype.type in (single, double):
							 | 
						||
| 
								 | 
							
								            ad = asarray(a).astype(double)
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            ad = asarray(a).astype(cdouble)
							 | 
						||
| 
								 | 
							
								        ev = linalg.eigvals(ad)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(d, multiply.reduce(ev, axis=-1))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        s = np.atleast_1d(s)
							 | 
						||
| 
								 | 
							
								        ld = np.atleast_1d(ld)
							 | 
						||
| 
								 | 
							
								        m = (s != 0)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(np.abs(s[m]), 1)
							 | 
						||
| 
								 | 
							
								        assert_equal(ld[~m], -inf)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestDet(DetCases):
							 | 
						||
| 
								 | 
							
								    def test_zero(self):
							 | 
						||
| 
								 | 
							
								        assert_equal(linalg.det([[0.0]]), 0.0)
							 | 
						||
| 
								 | 
							
								        assert_equal(type(linalg.det([[0.0]])), double)
							 | 
						||
| 
								 | 
							
								        assert_equal(linalg.det([[0.0j]]), 0.0)
							 | 
						||
| 
								 | 
							
								        assert_equal(type(linalg.det([[0.0j]])), cdouble)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf))
							 | 
						||
| 
								 | 
							
								        assert_equal(type(linalg.slogdet([[0.0]])[0]), double)
							 | 
						||
| 
								 | 
							
								        assert_equal(type(linalg.slogdet([[0.0]])[1]), double)
							 | 
						||
| 
								 | 
							
								        assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf))
							 | 
						||
| 
								 | 
							
								        assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble)
							 | 
						||
| 
								 | 
							
								        assert_equal(type(linalg.slogdet([[0.0j]])[1]), double)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
							 | 
						||
| 
								 | 
							
								    def test_types(self, dtype):
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
							 | 
						||
| 
								 | 
							
								        assert_equal(np.linalg.det(x).dtype, dtype)
							 | 
						||
| 
								 | 
							
								        ph, s = np.linalg.slogdet(x)
							 | 
						||
| 
								 | 
							
								        assert_equal(s.dtype, get_real_dtype(dtype))
							 | 
						||
| 
								 | 
							
								        assert_equal(ph.dtype, dtype)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_0_size(self):
							 | 
						||
| 
								 | 
							
								        a = np.zeros((0, 0), dtype=np.complex64)
							 | 
						||
| 
								 | 
							
								        res = linalg.det(a)
							 | 
						||
| 
								 | 
							
								        assert_equal(res, 1.)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.complex64)
							 | 
						||
| 
								 | 
							
								        res = linalg.slogdet(a)
							 | 
						||
| 
								 | 
							
								        assert_equal(res, (1, 0))
							 | 
						||
| 
								 | 
							
								        assert_(res[0].dtype.type is np.complex64)
							 | 
						||
| 
								 | 
							
								        assert_(res[1].dtype.type is np.float32)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        a = np.zeros((0, 0), dtype=np.float64)
							 | 
						||
| 
								 | 
							
								        res = linalg.det(a)
							 | 
						||
| 
								 | 
							
								        assert_equal(res, 1.)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.float64)
							 | 
						||
| 
								 | 
							
								        res = linalg.slogdet(a)
							 | 
						||
| 
								 | 
							
								        assert_equal(res, (1, 0))
							 | 
						||
| 
								 | 
							
								        assert_(res[0].dtype.type is np.float64)
							 | 
						||
| 
								 | 
							
								        assert_(res[1].dtype.type is np.float64)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class LstsqCases(LinalgSquareTestCase, LinalgNonsquareTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def do(self, a, b, tags):
							 | 
						||
| 
								 | 
							
								        arr = np.asarray(a)
							 | 
						||
| 
								 | 
							
								        m, n = arr.shape
							 | 
						||
| 
								 | 
							
								        u, s, vt = linalg.svd(a, False)
							 | 
						||
| 
								 | 
							
								        x, residuals, rank, sv = linalg.lstsq(a, b, rcond=-1)
							 | 
						||
| 
								 | 
							
								        if m == 0:
							 | 
						||
| 
								 | 
							
								            assert_((x == 0).all())
							 | 
						||
| 
								 | 
							
								        if m <= n:
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(b, dot(a, x))
							 | 
						||
| 
								 | 
							
								            assert_equal(rank, m)
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            assert_equal(rank, n)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(sv, sv.__array_wrap__(s))
							 | 
						||
| 
								 | 
							
								        if rank == n and m > n:
							 | 
						||
| 
								 | 
							
								            expect_resids = (
							 | 
						||
| 
								 | 
							
								                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
							 | 
						||
| 
								 | 
							
								            expect_resids = np.asarray(expect_resids)
							 | 
						||
| 
								 | 
							
								            if np.asarray(b).ndim == 1:
							 | 
						||
| 
								 | 
							
								                expect_resids.shape = (1,)
							 | 
						||
| 
								 | 
							
								                assert_equal(residuals.shape, expect_resids.shape)
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            expect_resids = np.array([]).view(type(x))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(residuals, expect_resids)
							 | 
						||
| 
								 | 
							
								        assert_(np.issubdtype(residuals.dtype, np.floating))
							 | 
						||
| 
								 | 
							
								        assert_(consistent_subclass(x, b))
							 | 
						||
| 
								 | 
							
								        assert_(consistent_subclass(residuals, b))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestLstsq(LstsqCases):
							 | 
						||
| 
								 | 
							
								    def test_rcond(self):
							 | 
						||
| 
								 | 
							
								        a = np.array([[0., 1.,  0.,  1.,  2.,  0.],
							 | 
						||
| 
								 | 
							
								                      [0., 2.,  0.,  0.,  1.,  0.],
							 | 
						||
| 
								 | 
							
								                      [1., 0.,  1.,  0.,  0.,  4.],
							 | 
						||
| 
								 | 
							
								                      [0., 0.,  0.,  2.,  3.,  0.]]).T
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        b = np.array([1, 0, 0, 0, 0, 0])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        x, residuals, rank, s = linalg.lstsq(a, b, rcond=-1)
							 | 
						||
| 
								 | 
							
								        assert_(rank == 4)
							 | 
						||
| 
								 | 
							
								        x, residuals, rank, s = linalg.lstsq(a, b)
							 | 
						||
| 
								 | 
							
								        assert_(rank == 3)
							 | 
						||
| 
								 | 
							
								        x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
							 | 
						||
| 
								 | 
							
								        assert_(rank == 3)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize(["m", "n", "n_rhs"], [
							 | 
						||
| 
								 | 
							
								        (4, 2, 2),
							 | 
						||
| 
								 | 
							
								        (0, 4, 1),
							 | 
						||
| 
								 | 
							
								        (0, 4, 2),
							 | 
						||
| 
								 | 
							
								        (4, 0, 1),
							 | 
						||
| 
								 | 
							
								        (4, 0, 2),
							 | 
						||
| 
								 | 
							
								        (4, 2, 0),
							 | 
						||
| 
								 | 
							
								        (0, 0, 0)
							 | 
						||
| 
								 | 
							
								    ])
							 | 
						||
| 
								 | 
							
								    def test_empty_a_b(self, m, n, n_rhs):
							 | 
						||
| 
								 | 
							
								        a = np.arange(m * n).reshape(m, n)
							 | 
						||
| 
								 | 
							
								        b = np.ones((m, n_rhs))
							 | 
						||
| 
								 | 
							
								        x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
							 | 
						||
| 
								 | 
							
								        if m == 0:
							 | 
						||
| 
								 | 
							
								            assert_((x == 0).all())
							 | 
						||
| 
								 | 
							
								        assert_equal(x.shape, (n, n_rhs))
							 | 
						||
| 
								 | 
							
								        assert_equal(residuals.shape, ((n_rhs,) if m > n else (0,)))
							 | 
						||
| 
								 | 
							
								        if m > n and n_rhs > 0:
							 | 
						||
| 
								 | 
							
								            # residuals are exactly the squared norms of b's columns
							 | 
						||
| 
								 | 
							
								            r = b - np.dot(a, x)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(residuals, (r * r).sum(axis=-2))
							 | 
						||
| 
								 | 
							
								        assert_equal(rank, min(m, n))
							 | 
						||
| 
								 | 
							
								        assert_equal(s.shape, (min(m, n),))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_incompatible_dims(self):
							 | 
						||
| 
								 | 
							
								        # use modified version of docstring example
							 | 
						||
| 
								 | 
							
								        x = np.array([0, 1, 2, 3])
							 | 
						||
| 
								 | 
							
								        y = np.array([-1, 0.2, 0.9, 2.1, 3.3])
							 | 
						||
| 
								 | 
							
								        A = np.vstack([x, np.ones(len(x))]).T
							 | 
						||
| 
								 | 
							
								        with assert_raises_regex(LinAlgError, "Incompatible dimensions"):
							 | 
						||
| 
								 | 
							
								            linalg.lstsq(A, y, rcond=None)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@pytest.mark.parametrize('dt', [np.dtype(c) for c in '?bBhHiIqQefdgFDGO'])
							 | 
						||
| 
								 | 
							
								class TestMatrixPower:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    rshft_0 = np.eye(4)
							 | 
						||
| 
								 | 
							
								    rshft_1 = rshft_0[[3, 0, 1, 2]]
							 | 
						||
| 
								 | 
							
								    rshft_2 = rshft_0[[2, 3, 0, 1]]
							 | 
						||
| 
								 | 
							
								    rshft_3 = rshft_0[[1, 2, 3, 0]]
							 | 
						||
| 
								 | 
							
								    rshft_all = [rshft_0, rshft_1, rshft_2, rshft_3]
							 | 
						||
| 
								 | 
							
								    noninv = array([[1, 0], [0, 0]])
							 | 
						||
| 
								 | 
							
								    stacked = np.block([[[rshft_0]]] * 2)
							 | 
						||
| 
								 | 
							
								    # FIXME the 'e' dtype might work in future
							 | 
						||
| 
								 | 
							
								    dtnoinv = [object, np.dtype('e'), np.dtype('g'), np.dtype('G')]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_large_power(self, dt):
							 | 
						||
| 
								 | 
							
								        rshft = self.rshft_1.astype(dt)
							 | 
						||
| 
								 | 
							
								        assert_equal(
							 | 
						||
| 
								 | 
							
								            matrix_power(rshft, 2**100 + 2**10 + 2**5 + 0), self.rshft_0)
							 | 
						||
| 
								 | 
							
								        assert_equal(
							 | 
						||
| 
								 | 
							
								            matrix_power(rshft, 2**100 + 2**10 + 2**5 + 1), self.rshft_1)
							 | 
						||
| 
								 | 
							
								        assert_equal(
							 | 
						||
| 
								 | 
							
								            matrix_power(rshft, 2**100 + 2**10 + 2**5 + 2), self.rshft_2)
							 | 
						||
| 
								 | 
							
								        assert_equal(
							 | 
						||
| 
								 | 
							
								            matrix_power(rshft, 2**100 + 2**10 + 2**5 + 3), self.rshft_3)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_power_is_zero(self, dt):
							 | 
						||
| 
								 | 
							
								        def tz(M):
							 | 
						||
| 
								 | 
							
								            mz = matrix_power(M, 0)
							 | 
						||
| 
								 | 
							
								            assert_equal(mz, identity_like_generalized(M))
							 | 
						||
| 
								 | 
							
								            assert_equal(mz.dtype, M.dtype)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for mat in self.rshft_all:
							 | 
						||
| 
								 | 
							
								            tz(mat.astype(dt))
							 | 
						||
| 
								 | 
							
								            if dt != object:
							 | 
						||
| 
								 | 
							
								                tz(self.stacked.astype(dt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_power_is_one(self, dt):
							 | 
						||
| 
								 | 
							
								        def tz(mat):
							 | 
						||
| 
								 | 
							
								            mz = matrix_power(mat, 1)
							 | 
						||
| 
								 | 
							
								            assert_equal(mz, mat)
							 | 
						||
| 
								 | 
							
								            assert_equal(mz.dtype, mat.dtype)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for mat in self.rshft_all:
							 | 
						||
| 
								 | 
							
								            tz(mat.astype(dt))
							 | 
						||
| 
								 | 
							
								            if dt != object:
							 | 
						||
| 
								 | 
							
								                tz(self.stacked.astype(dt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_power_is_two(self, dt):
							 | 
						||
| 
								 | 
							
								        def tz(mat):
							 | 
						||
| 
								 | 
							
								            mz = matrix_power(mat, 2)
							 | 
						||
| 
								 | 
							
								            mmul = matmul if mat.dtype != object else dot
							 | 
						||
| 
								 | 
							
								            assert_equal(mz, mmul(mat, mat))
							 | 
						||
| 
								 | 
							
								            assert_equal(mz.dtype, mat.dtype)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for mat in self.rshft_all:
							 | 
						||
| 
								 | 
							
								            tz(mat.astype(dt))
							 | 
						||
| 
								 | 
							
								            if dt != object:
							 | 
						||
| 
								 | 
							
								                tz(self.stacked.astype(dt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_power_is_minus_one(self, dt):
							 | 
						||
| 
								 | 
							
								        def tz(mat):
							 | 
						||
| 
								 | 
							
								            invmat = matrix_power(mat, -1)
							 | 
						||
| 
								 | 
							
								            mmul = matmul if mat.dtype != object else dot
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(
							 | 
						||
| 
								 | 
							
								                mmul(invmat, mat), identity_like_generalized(mat))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for mat in self.rshft_all:
							 | 
						||
| 
								 | 
							
								            if dt not in self.dtnoinv:
							 | 
						||
| 
								 | 
							
								                tz(mat.astype(dt))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_exceptions_bad_power(self, dt):
							 | 
						||
| 
								 | 
							
								        mat = self.rshft_0.astype(dt)
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, matrix_power, mat, 1.5)
							 | 
						||
| 
								 | 
							
								        assert_raises(TypeError, matrix_power, mat, [1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_exceptions_non_square(self, dt):
							 | 
						||
| 
								 | 
							
								        assert_raises(LinAlgError, matrix_power, np.array([1], dt), 1)
							 | 
						||
| 
								 | 
							
								        assert_raises(LinAlgError, matrix_power, np.array([[1], [2]], dt), 1)
							 | 
						||
| 
								 | 
							
								        assert_raises(LinAlgError, matrix_power, np.ones((4, 3, 2), dt), 1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
							 | 
						||
| 
								 | 
							
								    def test_exceptions_not_invertible(self, dt):
							 | 
						||
| 
								 | 
							
								        if dt in self.dtnoinv:
							 | 
						||
| 
								 | 
							
								            return
							 | 
						||
| 
								 | 
							
								        mat = self.noninv.astype(dt)
							 | 
						||
| 
								 | 
							
								        assert_raises(LinAlgError, matrix_power, mat, -1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestEigvalshCases(HermitianTestCase, HermitianGeneralizedTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def do(self, a, b, tags):
							 | 
						||
| 
								 | 
							
								        # note that eigenvalue arrays returned by eig must be sorted since
							 | 
						||
| 
								 | 
							
								        # their order isn't guaranteed.
							 | 
						||
| 
								 | 
							
								        ev = linalg.eigvalsh(a, 'L')
							 | 
						||
| 
								 | 
							
								        evalues, evectors = linalg.eig(a)
							 | 
						||
| 
								 | 
							
								        evalues.sort(axis=-1)
							 | 
						||
| 
								 | 
							
								        assert_allclose(ev, evalues, rtol=get_rtol(ev.dtype))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        ev2 = linalg.eigvalsh(a, 'U')
							 | 
						||
| 
								 | 
							
								        assert_allclose(ev2, evalues, rtol=get_rtol(ev.dtype))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestEigvalsh:
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
							 | 
						||
| 
								 | 
							
								    def test_types(self, dtype):
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
							 | 
						||
| 
								 | 
							
								        w = np.linalg.eigvalsh(x)
							 | 
						||
| 
								 | 
							
								        assert_equal(w.dtype, get_real_dtype(dtype))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_invalid(self):
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, np.linalg.eigvalsh, x, UPLO="lrong")
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, np.linalg.eigvalsh, x, "lower")
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, np.linalg.eigvalsh, x, "upper")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_UPLO(self):
							 | 
						||
| 
								 | 
							
								        Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
							 | 
						||
| 
								 | 
							
								        Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
							 | 
						||
| 
								 | 
							
								        tgt = np.array([-1, 1], dtype=np.double)
							 | 
						||
| 
								 | 
							
								        rtol = get_rtol(np.double)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Check default is 'L'
							 | 
						||
| 
								 | 
							
								        w = np.linalg.eigvalsh(Klo)
							 | 
						||
| 
								 | 
							
								        assert_allclose(w, tgt, rtol=rtol)
							 | 
						||
| 
								 | 
							
								        # Check 'L'
							 | 
						||
| 
								 | 
							
								        w = np.linalg.eigvalsh(Klo, UPLO='L')
							 | 
						||
| 
								 | 
							
								        assert_allclose(w, tgt, rtol=rtol)
							 | 
						||
| 
								 | 
							
								        # Check 'l'
							 | 
						||
| 
								 | 
							
								        w = np.linalg.eigvalsh(Klo, UPLO='l')
							 | 
						||
| 
								 | 
							
								        assert_allclose(w, tgt, rtol=rtol)
							 | 
						||
| 
								 | 
							
								        # Check 'U'
							 | 
						||
| 
								 | 
							
								        w = np.linalg.eigvalsh(Kup, UPLO='U')
							 | 
						||
| 
								 | 
							
								        assert_allclose(w, tgt, rtol=rtol)
							 | 
						||
| 
								 | 
							
								        # Check 'u'
							 | 
						||
| 
								 | 
							
								        w = np.linalg.eigvalsh(Kup, UPLO='u')
							 | 
						||
| 
								 | 
							
								        assert_allclose(w, tgt, rtol=rtol)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_0_size(self):
							 | 
						||
| 
								 | 
							
								        # Check that all kinds of 0-sized arrays work
							 | 
						||
| 
								 | 
							
								        class ArraySubclass(np.ndarray):
							 | 
						||
| 
								 | 
							
								            pass
							 | 
						||
| 
								 | 
							
								        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        res = linalg.eigvalsh(a)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.float64)
							 | 
						||
| 
								 | 
							
								        assert_equal((0, 1), res.shape)
							 | 
						||
| 
								 | 
							
								        # This is just for documentation, it might make sense to change:
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, np.ndarray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        res = linalg.eigvalsh(a)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.float32)
							 | 
						||
| 
								 | 
							
								        assert_equal((0,), res.shape)
							 | 
						||
| 
								 | 
							
								        # This is just for documentation, it might make sense to change:
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, np.ndarray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestEighCases(HermitianTestCase, HermitianGeneralizedTestCase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def do(self, a, b, tags):
							 | 
						||
| 
								 | 
							
								        # note that eigenvalue arrays returned by eig must be sorted since
							 | 
						||
| 
								 | 
							
								        # their order isn't guaranteed.
							 | 
						||
| 
								 | 
							
								        res = linalg.eigh(a)
							 | 
						||
| 
								 | 
							
								        ev, evc = res.eigenvalues, res.eigenvectors
							 | 
						||
| 
								 | 
							
								        evalues, evectors = linalg.eig(a)
							 | 
						||
| 
								 | 
							
								        evalues.sort(axis=-1)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(ev, evalues)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_allclose(matmul(a, evc),
							 | 
						||
| 
								 | 
							
								                        np.asarray(ev)[..., None, :] * np.asarray(evc),
							 | 
						||
| 
								 | 
							
								                        rtol=get_rtol(ev.dtype))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        ev2, evc2 = linalg.eigh(a, 'U')
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(ev2, evalues)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_allclose(matmul(a, evc2),
							 | 
						||
| 
								 | 
							
								                        np.asarray(ev2)[..., None, :] * np.asarray(evc2),
							 | 
						||
| 
								 | 
							
								                        rtol=get_rtol(ev.dtype), err_msg=repr(a))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestEigh:
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
							 | 
						||
| 
								 | 
							
								    def test_types(self, dtype):
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
							 | 
						||
| 
								 | 
							
								        w, v = np.linalg.eigh(x)
							 | 
						||
| 
								 | 
							
								        assert_equal(w.dtype, get_real_dtype(dtype))
							 | 
						||
| 
								 | 
							
								        assert_equal(v.dtype, dtype)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_invalid(self):
							 | 
						||
| 
								 | 
							
								        x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, np.linalg.eigh, x, UPLO="lrong")
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, np.linalg.eigh, x, "lower")
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, np.linalg.eigh, x, "upper")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_UPLO(self):
							 | 
						||
| 
								 | 
							
								        Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
							 | 
						||
| 
								 | 
							
								        Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
							 | 
						||
| 
								 | 
							
								        tgt = np.array([-1, 1], dtype=np.double)
							 | 
						||
| 
								 | 
							
								        rtol = get_rtol(np.double)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Check default is 'L'
							 | 
						||
| 
								 | 
							
								        w, v = np.linalg.eigh(Klo)
							 | 
						||
| 
								 | 
							
								        assert_allclose(w, tgt, rtol=rtol)
							 | 
						||
| 
								 | 
							
								        # Check 'L'
							 | 
						||
| 
								 | 
							
								        w, v = np.linalg.eigh(Klo, UPLO='L')
							 | 
						||
| 
								 | 
							
								        assert_allclose(w, tgt, rtol=rtol)
							 | 
						||
| 
								 | 
							
								        # Check 'l'
							 | 
						||
| 
								 | 
							
								        w, v = np.linalg.eigh(Klo, UPLO='l')
							 | 
						||
| 
								 | 
							
								        assert_allclose(w, tgt, rtol=rtol)
							 | 
						||
| 
								 | 
							
								        # Check 'U'
							 | 
						||
| 
								 | 
							
								        w, v = np.linalg.eigh(Kup, UPLO='U')
							 | 
						||
| 
								 | 
							
								        assert_allclose(w, tgt, rtol=rtol)
							 | 
						||
| 
								 | 
							
								        # Check 'u'
							 | 
						||
| 
								 | 
							
								        w, v = np.linalg.eigh(Kup, UPLO='u')
							 | 
						||
| 
								 | 
							
								        assert_allclose(w, tgt, rtol=rtol)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_0_size(self):
							 | 
						||
| 
								 | 
							
								        # Check that all kinds of 0-sized arrays work
							 | 
						||
| 
								 | 
							
								        class ArraySubclass(np.ndarray):
							 | 
						||
| 
								 | 
							
								            pass
							 | 
						||
| 
								 | 
							
								        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        res, res_v = linalg.eigh(a)
							 | 
						||
| 
								 | 
							
								        assert_(res_v.dtype.type is np.float64)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.float64)
							 | 
						||
| 
								 | 
							
								        assert_equal(a.shape, res_v.shape)
							 | 
						||
| 
								 | 
							
								        assert_equal((0, 1), res.shape)
							 | 
						||
| 
								 | 
							
								        # This is just for documentation, it might make sense to change:
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(a, np.ndarray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        res, res_v = linalg.eigh(a)
							 | 
						||
| 
								 | 
							
								        assert_(res_v.dtype.type is np.complex64)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.float32)
							 | 
						||
| 
								 | 
							
								        assert_equal(a.shape, res_v.shape)
							 | 
						||
| 
								 | 
							
								        assert_equal((0,), res.shape)
							 | 
						||
| 
								 | 
							
								        # This is just for documentation, it might make sense to change:
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(a, np.ndarray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class _TestNormBase:
							 | 
						||
| 
								 | 
							
								    dt = None
							 | 
						||
| 
								 | 
							
								    dec = None
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @staticmethod
							 | 
						||
| 
								 | 
							
								    def check_dtype(x, res):
							 | 
						||
| 
								 | 
							
								        if issubclass(x.dtype.type, np.inexact):
							 | 
						||
| 
								 | 
							
								            assert_equal(res.dtype, x.real.dtype)
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            # For integer input, don't have to test float precision of output.
							 | 
						||
| 
								 | 
							
								            assert_(issubclass(res.dtype.type, np.floating))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class _TestNormGeneral(_TestNormBase):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_empty(self):
							 | 
						||
| 
								 | 
							
								        assert_equal(norm([]), 0.0)
							 | 
						||
| 
								 | 
							
								        assert_equal(norm(array([], dtype=self.dt)), 0.0)
							 | 
						||
| 
								 | 
							
								        assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_vector_return_type(self):
							 | 
						||
| 
								 | 
							
								        a = np.array([1, 0, 1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        exact_types = np.typecodes['AllInteger']
							 | 
						||
| 
								 | 
							
								        inexact_types = np.typecodes['AllFloat']
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        all_types = exact_types + inexact_types
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for each_type in all_types:
							 | 
						||
| 
								 | 
							
								            at = a.astype(each_type)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            an = norm(at, -np.inf)
							 | 
						||
| 
								 | 
							
								            self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(an, 0.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            with suppress_warnings() as sup:
							 | 
						||
| 
								 | 
							
								                sup.filter(RuntimeWarning, "divide by zero encountered")
							 | 
						||
| 
								 | 
							
								                an = norm(at, -1)
							 | 
						||
| 
								 | 
							
								                self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								                assert_almost_equal(an, 0.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            an = norm(at, 0)
							 | 
						||
| 
								 | 
							
								            self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(an, 2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            an = norm(at, 1)
							 | 
						||
| 
								 | 
							
								            self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(an, 2.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            an = norm(at, 2)
							 | 
						||
| 
								 | 
							
								            self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0 / 2.0))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            an = norm(at, 4)
							 | 
						||
| 
								 | 
							
								            self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0 / 4.0))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            an = norm(at, np.inf)
							 | 
						||
| 
								 | 
							
								            self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(an, 1.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_vector(self):
							 | 
						||
| 
								 | 
							
								        a = [1, 2, 3, 4]
							 | 
						||
| 
								 | 
							
								        b = [-1, -2, -3, -4]
							 | 
						||
| 
								 | 
							
								        c = [-1, 2, -3, 4]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        def _test(v):
							 | 
						||
| 
								 | 
							
								            np.testing.assert_almost_equal(norm(v), 30 ** 0.5,
							 | 
						||
| 
								 | 
							
								                                           decimal=self.dec)
							 | 
						||
| 
								 | 
							
								            np.testing.assert_almost_equal(norm(v, inf), 4.0,
							 | 
						||
| 
								 | 
							
								                                           decimal=self.dec)
							 | 
						||
| 
								 | 
							
								            np.testing.assert_almost_equal(norm(v, -inf), 1.0,
							 | 
						||
| 
								 | 
							
								                                           decimal=self.dec)
							 | 
						||
| 
								 | 
							
								            np.testing.assert_almost_equal(norm(v, 1), 10.0,
							 | 
						||
| 
								 | 
							
								                                           decimal=self.dec)
							 | 
						||
| 
								 | 
							
								            np.testing.assert_almost_equal(norm(v, -1), 12.0 / 25,
							 | 
						||
| 
								 | 
							
								                                           decimal=self.dec)
							 | 
						||
| 
								 | 
							
								            np.testing.assert_almost_equal(norm(v, 2), 30 ** 0.5,
							 | 
						||
| 
								 | 
							
								                                           decimal=self.dec)
							 | 
						||
| 
								 | 
							
								            np.testing.assert_almost_equal(norm(v, -2), ((205. / 144) ** -0.5),
							 | 
						||
| 
								 | 
							
								                                           decimal=self.dec)
							 | 
						||
| 
								 | 
							
								            np.testing.assert_almost_equal(norm(v, 0), 4,
							 | 
						||
| 
								 | 
							
								                                           decimal=self.dec)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for v in (a, b, c,):
							 | 
						||
| 
								 | 
							
								            _test(v)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for v in (array(a, dtype=self.dt), array(b, dtype=self.dt),
							 | 
						||
| 
								 | 
							
								                  array(c, dtype=self.dt)):
							 | 
						||
| 
								 | 
							
								            _test(v)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_axis(self):
							 | 
						||
| 
								 | 
							
								        # Vector norms.
							 | 
						||
| 
								 | 
							
								        # Compare the use of `axis` with computing the norm of each row
							 | 
						||
| 
								 | 
							
								        # or column separately.
							 | 
						||
| 
								 | 
							
								        A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
							 | 
						||
| 
								 | 
							
								        for order in [None, -1, 0, 1, 2, 3, np.inf, -np.inf]:
							 | 
						||
| 
								 | 
							
								            expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(norm(A, ord=order, axis=0), expected0)
							 | 
						||
| 
								 | 
							
								            expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])]
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(norm(A, ord=order, axis=1), expected1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Matrix norms.
							 | 
						||
| 
								 | 
							
								        B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
							 | 
						||
| 
								 | 
							
								        nd = B.ndim
							 | 
						||
| 
								 | 
							
								        for order in [None, -2, 2, -1, 1, np.inf, -np.inf, 'fro']:
							 | 
						||
| 
								 | 
							
								            for axis in itertools.combinations(range(-nd, nd), 2):
							 | 
						||
| 
								 | 
							
								                row_axis, col_axis = axis
							 | 
						||
| 
								 | 
							
								                if row_axis < 0:
							 | 
						||
| 
								 | 
							
								                    row_axis += nd
							 | 
						||
| 
								 | 
							
								                if col_axis < 0:
							 | 
						||
| 
								 | 
							
								                    col_axis += nd
							 | 
						||
| 
								 | 
							
								                if row_axis == col_axis:
							 | 
						||
| 
								 | 
							
								                    assert_raises(ValueError, norm, B, ord=order, axis=axis)
							 | 
						||
| 
								 | 
							
								                else:
							 | 
						||
| 
								 | 
							
								                    n = norm(B, ord=order, axis=axis)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								                    # The logic using k_index only works for nd = 3.
							 | 
						||
| 
								 | 
							
								                    # This has to be changed if nd is increased.
							 | 
						||
| 
								 | 
							
								                    k_index = nd - (row_axis + col_axis)
							 | 
						||
| 
								 | 
							
								                    if row_axis < col_axis:
							 | 
						||
| 
								 | 
							
								                        expected = [norm(B[:].take(k, axis=k_index), ord=order)
							 | 
						||
| 
								 | 
							
								                                    for k in range(B.shape[k_index])]
							 | 
						||
| 
								 | 
							
								                    else:
							 | 
						||
| 
								 | 
							
								                        expected = [norm(B[:].take(k, axis=k_index).T, ord=order)
							 | 
						||
| 
								 | 
							
								                                    for k in range(B.shape[k_index])]
							 | 
						||
| 
								 | 
							
								                    assert_almost_equal(n, expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_keepdims(self):
							 | 
						||
| 
								 | 
							
								        A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        allclose_err = 'order {0}, axis = {1}'
							 | 
						||
| 
								 | 
							
								        shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # check the order=None, axis=None case
							 | 
						||
| 
								 | 
							
								        expected = norm(A, ord=None, axis=None)
							 | 
						||
| 
								 | 
							
								        found = norm(A, ord=None, axis=None, keepdims=True)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.squeeze(found), expected,
							 | 
						||
| 
								 | 
							
								                        err_msg=allclose_err.format(None, None))
							 | 
						||
| 
								 | 
							
								        expected_shape = (1, 1, 1)
							 | 
						||
| 
								 | 
							
								        assert_(found.shape == expected_shape,
							 | 
						||
| 
								 | 
							
								                shape_err.format(found.shape, expected_shape, None, None))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Vector norms.
							 | 
						||
| 
								 | 
							
								        for order in [None, -1, 0, 1, 2, 3, np.inf, -np.inf]:
							 | 
						||
| 
								 | 
							
								            for k in range(A.ndim):
							 | 
						||
| 
								 | 
							
								                expected = norm(A, ord=order, axis=k)
							 | 
						||
| 
								 | 
							
								                found = norm(A, ord=order, axis=k, keepdims=True)
							 | 
						||
| 
								 | 
							
								                assert_allclose(np.squeeze(found), expected,
							 | 
						||
| 
								 | 
							
								                                err_msg=allclose_err.format(order, k))
							 | 
						||
| 
								 | 
							
								                expected_shape = list(A.shape)
							 | 
						||
| 
								 | 
							
								                expected_shape[k] = 1
							 | 
						||
| 
								 | 
							
								                expected_shape = tuple(expected_shape)
							 | 
						||
| 
								 | 
							
								                assert_(found.shape == expected_shape,
							 | 
						||
| 
								 | 
							
								                        shape_err.format(found.shape, expected_shape, order, k))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Matrix norms.
							 | 
						||
| 
								 | 
							
								        for order in [None, -2, 2, -1, 1, np.inf, -np.inf, 'fro', 'nuc']:
							 | 
						||
| 
								 | 
							
								            for k in itertools.permutations(range(A.ndim), 2):
							 | 
						||
| 
								 | 
							
								                expected = norm(A, ord=order, axis=k)
							 | 
						||
| 
								 | 
							
								                found = norm(A, ord=order, axis=k, keepdims=True)
							 | 
						||
| 
								 | 
							
								                assert_allclose(np.squeeze(found), expected,
							 | 
						||
| 
								 | 
							
								                                err_msg=allclose_err.format(order, k))
							 | 
						||
| 
								 | 
							
								                expected_shape = list(A.shape)
							 | 
						||
| 
								 | 
							
								                expected_shape[k[0]] = 1
							 | 
						||
| 
								 | 
							
								                expected_shape[k[1]] = 1
							 | 
						||
| 
								 | 
							
								                expected_shape = tuple(expected_shape)
							 | 
						||
| 
								 | 
							
								                assert_(found.shape == expected_shape,
							 | 
						||
| 
								 | 
							
								                        shape_err.format(found.shape, expected_shape, order, k))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class _TestNorm2D(_TestNormBase):
							 | 
						||
| 
								 | 
							
								    # Define the part for 2d arrays separately, so we can subclass this
							 | 
						||
| 
								 | 
							
								    # and run the tests using np.matrix in matrixlib.tests.test_matrix_linalg.
							 | 
						||
| 
								 | 
							
								    array = np.array
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_matrix_empty(self):
							 | 
						||
| 
								 | 
							
								        assert_equal(norm(self.array([[]], dtype=self.dt)), 0.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_matrix_return_type(self):
							 | 
						||
| 
								 | 
							
								        a = self.array([[1, 0, 1], [0, 1, 1]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        exact_types = np.typecodes['AllInteger']
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # float32, complex64, float64, complex128 types are the only types
							 | 
						||
| 
								 | 
							
								        # allowed by `linalg`, which performs the matrix operations used
							 | 
						||
| 
								 | 
							
								        # within `norm`.
							 | 
						||
| 
								 | 
							
								        inexact_types = 'fdFD'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        all_types = exact_types + inexact_types
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for each_type in all_types:
							 | 
						||
| 
								 | 
							
								            at = a.astype(each_type)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            an = norm(at, -np.inf)
							 | 
						||
| 
								 | 
							
								            self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(an, 2.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            with suppress_warnings() as sup:
							 | 
						||
| 
								 | 
							
								                sup.filter(RuntimeWarning, "divide by zero encountered")
							 | 
						||
| 
								 | 
							
								                an = norm(at, -1)
							 | 
						||
| 
								 | 
							
								                self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								                assert_almost_equal(an, 1.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            an = norm(at, 1)
							 | 
						||
| 
								 | 
							
								            self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(an, 2.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            an = norm(at, 2)
							 | 
						||
| 
								 | 
							
								            self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(an, 3.0**(1.0 / 2.0))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            an = norm(at, -2)
							 | 
						||
| 
								 | 
							
								            self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(an, 1.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            an = norm(at, np.inf)
							 | 
						||
| 
								 | 
							
								            self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(an, 2.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            an = norm(at, 'fro')
							 | 
						||
| 
								 | 
							
								            self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								            assert_almost_equal(an, 2.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            an = norm(at, 'nuc')
							 | 
						||
| 
								 | 
							
								            self.check_dtype(at, an)
							 | 
						||
| 
								 | 
							
								            # Lower bar needed to support low precision floats.
							 | 
						||
| 
								 | 
							
								            # They end up being off by 1 in the 7th place.
							 | 
						||
| 
								 | 
							
								            np.testing.assert_almost_equal(an, 2.7320508075688772, decimal=6)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_matrix_2x2(self):
							 | 
						||
| 
								 | 
							
								        A = self.array([[1, 3], [5, 7]], dtype=self.dt)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A), 84 ** 0.5)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, 'fro'), 84 ** 0.5)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, 'nuc'), 10.0)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, inf), 12.0)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, -inf), 4.0)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, 1), 10.0)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, -1), 6.0)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, 2), 9.1231056256176615)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, -2), 0.87689437438234041)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, norm, A, 'nofro')
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, norm, A, -3)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, norm, A, 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_matrix_3x3(self):
							 | 
						||
| 
								 | 
							
								        # This test has been added because the 2x2 example
							 | 
						||
| 
								 | 
							
								        # happened to have equal nuclear norm and induced 1-norm.
							 | 
						||
| 
								 | 
							
								        # The 1/10 scaling factor accommodates the absolute tolerance
							 | 
						||
| 
								 | 
							
								        # used in assert_almost_equal.
							 | 
						||
| 
								 | 
							
								        A = (1 / 10) * \
							 | 
						||
| 
								 | 
							
								            self.array([[1, 2, 3], [6, 0, 5], [3, 2, 1]], dtype=self.dt)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A), (1 / 10) * 89 ** 0.5)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, 'fro'), (1 / 10) * 89 ** 0.5)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, 'nuc'), 1.3366836911774836)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, inf), 1.1)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, -inf), 0.6)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, 1), 1.0)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, -1), 0.4)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, 2), 0.88722940323461277)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(norm(A, -2), 0.19456584790481812)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_bad_args(self):
							 | 
						||
| 
								 | 
							
								        # Check that bad arguments raise the appropriate exceptions.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        A = self.array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
							 | 
						||
| 
								 | 
							
								        B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Using `axis=<integer>` or passing in a 1-D array implies vector
							 | 
						||
| 
								 | 
							
								        # norms are being computed, so also using `ord='fro'`
							 | 
						||
| 
								 | 
							
								        # or `ord='nuc'` or any other string raises a ValueError.
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, norm, A, 'fro', 0)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, norm, A, 'nuc', 0)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, norm, [3, 4], 'fro', None)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, norm, [3, 4], 'nuc', None)
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, norm, [3, 4], 'test', None)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Similarly, norm should raise an exception when ord is any finite
							 | 
						||
| 
								 | 
							
								        # number other than 1, 2, -1 or -2 when computing matrix norms.
							 | 
						||
| 
								 | 
							
								        for order in [0, 3]:
							 | 
						||
| 
								 | 
							
								            assert_raises(ValueError, norm, A, order, None)
							 | 
						||
| 
								 | 
							
								            assert_raises(ValueError, norm, A, order, (0, 1))
							 | 
						||
| 
								 | 
							
								            assert_raises(ValueError, norm, B, order, (1, 2))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Invalid axis
							 | 
						||
| 
								 | 
							
								        assert_raises(AxisError, norm, B, None, 3)
							 | 
						||
| 
								 | 
							
								        assert_raises(AxisError, norm, B, None, (2, 3))
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, norm, B, None, (0, 1, 2))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class _TestNorm(_TestNorm2D, _TestNormGeneral):
							 | 
						||
| 
								 | 
							
								    pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestNorm_NonSystematic:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_longdouble_norm(self):
							 | 
						||
| 
								 | 
							
								        # Non-regression test: p-norm of longdouble would previously raise
							 | 
						||
| 
								 | 
							
								        # UnboundLocalError.
							 | 
						||
| 
								 | 
							
								        x = np.arange(10, dtype=np.longdouble)
							 | 
						||
| 
								 | 
							
								        old_assert_almost_equal(norm(x, ord=3), 12.65, decimal=2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_intmin(self):
							 | 
						||
| 
								 | 
							
								        # Non-regression test: p-norm of signed integer would previously do
							 | 
						||
| 
								 | 
							
								        # float cast and abs in the wrong order.
							 | 
						||
| 
								 | 
							
								        x = np.array([-2 ** 31], dtype=np.int32)
							 | 
						||
| 
								 | 
							
								        old_assert_almost_equal(norm(x, ord=3), 2 ** 31, decimal=5)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_complex_high_ord(self):
							 | 
						||
| 
								 | 
							
								        # gh-4156
							 | 
						||
| 
								 | 
							
								        d = np.empty((2,), dtype=np.clongdouble)
							 | 
						||
| 
								 | 
							
								        d[0] = 6 + 7j
							 | 
						||
| 
								 | 
							
								        d[1] = -6 + 7j
							 | 
						||
| 
								 | 
							
								        res = 11.615898132184
							 | 
						||
| 
								 | 
							
								        old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=10)
							 | 
						||
| 
								 | 
							
								        d = d.astype(np.complex128)
							 | 
						||
| 
								 | 
							
								        old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=9)
							 | 
						||
| 
								 | 
							
								        d = d.astype(np.complex64)
							 | 
						||
| 
								 | 
							
								        old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=5)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Separate definitions so we can use them for matrix tests.
							 | 
						||
| 
								 | 
							
								class _TestNormDoubleBase(_TestNormBase):
							 | 
						||
| 
								 | 
							
								    dt = np.double
							 | 
						||
| 
								 | 
							
								    dec = 12
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class _TestNormSingleBase(_TestNormBase):
							 | 
						||
| 
								 | 
							
								    dt = np.float32
							 | 
						||
| 
								 | 
							
								    dec = 6
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class _TestNormInt64Base(_TestNormBase):
							 | 
						||
| 
								 | 
							
								    dt = np.int64
							 | 
						||
| 
								 | 
							
								    dec = 12
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestNormDouble(_TestNorm, _TestNormDoubleBase):
							 | 
						||
| 
								 | 
							
								    pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestNormSingle(_TestNorm, _TestNormSingleBase):
							 | 
						||
| 
								 | 
							
								    pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestNormInt64(_TestNorm, _TestNormInt64Base):
							 | 
						||
| 
								 | 
							
								    pass
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestMatrixRank:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_matrix_rank(self):
							 | 
						||
| 
								 | 
							
								        # Full rank matrix
							 | 
						||
| 
								 | 
							
								        assert_equal(4, matrix_rank(np.eye(4)))
							 | 
						||
| 
								 | 
							
								        # rank deficient matrix
							 | 
						||
| 
								 | 
							
								        I = np.eye(4)
							 | 
						||
| 
								 | 
							
								        I[-1, -1] = 0.
							 | 
						||
| 
								 | 
							
								        assert_equal(matrix_rank(I), 3)
							 | 
						||
| 
								 | 
							
								        # All zeros - zero rank
							 | 
						||
| 
								 | 
							
								        assert_equal(matrix_rank(np.zeros((4, 4))), 0)
							 | 
						||
| 
								 | 
							
								        # 1 dimension - rank 1 unless all 0
							 | 
						||
| 
								 | 
							
								        assert_equal(matrix_rank([1, 0, 0, 0]), 1)
							 | 
						||
| 
								 | 
							
								        assert_equal(matrix_rank(np.zeros((4,))), 0)
							 | 
						||
| 
								 | 
							
								        # accepts array-like
							 | 
						||
| 
								 | 
							
								        assert_equal(matrix_rank([1]), 1)
							 | 
						||
| 
								 | 
							
								        # greater than 2 dimensions treated as stacked matrices
							 | 
						||
| 
								 | 
							
								        ms = np.array([I, np.eye(4), np.zeros((4, 4))])
							 | 
						||
| 
								 | 
							
								        assert_equal(matrix_rank(ms), np.array([3, 4, 0]))
							 | 
						||
| 
								 | 
							
								        # works on scalar
							 | 
						||
| 
								 | 
							
								        assert_equal(matrix_rank(1), 1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        with assert_raises_regex(
							 | 
						||
| 
								 | 
							
								            ValueError, "`tol` and `rtol` can\'t be both set."
							 | 
						||
| 
								 | 
							
								        ):
							 | 
						||
| 
								 | 
							
								            matrix_rank(I, tol=0.01, rtol=0.01)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_symmetric_rank(self):
							 | 
						||
| 
								 | 
							
								        assert_equal(4, matrix_rank(np.eye(4), hermitian=True))
							 | 
						||
| 
								 | 
							
								        assert_equal(1, matrix_rank(np.ones((4, 4)), hermitian=True))
							 | 
						||
| 
								 | 
							
								        assert_equal(0, matrix_rank(np.zeros((4, 4)), hermitian=True))
							 | 
						||
| 
								 | 
							
								        # rank deficient matrix
							 | 
						||
| 
								 | 
							
								        I = np.eye(4)
							 | 
						||
| 
								 | 
							
								        I[-1, -1] = 0.
							 | 
						||
| 
								 | 
							
								        assert_equal(3, matrix_rank(I, hermitian=True))
							 | 
						||
| 
								 | 
							
								        # manually supplied tolerance
							 | 
						||
| 
								 | 
							
								        I[-1, -1] = 1e-8
							 | 
						||
| 
								 | 
							
								        assert_equal(4, matrix_rank(I, hermitian=True, tol=0.99e-8))
							 | 
						||
| 
								 | 
							
								        assert_equal(3, matrix_rank(I, hermitian=True, tol=1.01e-8))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_reduced_rank():
							 | 
						||
| 
								 | 
							
								    # Test matrices with reduced rank
							 | 
						||
| 
								 | 
							
								    rng = np.random.RandomState(20120714)
							 | 
						||
| 
								 | 
							
								    for i in range(100):
							 | 
						||
| 
								 | 
							
								        # Make a rank deficient matrix
							 | 
						||
| 
								 | 
							
								        X = rng.normal(size=(40, 10))
							 | 
						||
| 
								 | 
							
								        X[:, 0] = X[:, 1] + X[:, 2]
							 | 
						||
| 
								 | 
							
								        # Assert that matrix_rank detected deficiency
							 | 
						||
| 
								 | 
							
								        assert_equal(matrix_rank(X), 9)
							 | 
						||
| 
								 | 
							
								        X[:, 3] = X[:, 4] + X[:, 5]
							 | 
						||
| 
								 | 
							
								        assert_equal(matrix_rank(X), 8)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestQR:
							 | 
						||
| 
								 | 
							
								    # Define the array class here, so run this on matrices elsewhere.
							 | 
						||
| 
								 | 
							
								    array = np.array
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def check_qr(self, a):
							 | 
						||
| 
								 | 
							
								        # This test expects the argument `a` to be an ndarray or
							 | 
						||
| 
								 | 
							
								        # a subclass of an ndarray of inexact type.
							 | 
						||
| 
								 | 
							
								        a_type = type(a)
							 | 
						||
| 
								 | 
							
								        a_dtype = a.dtype
							 | 
						||
| 
								 | 
							
								        m, n = a.shape
							 | 
						||
| 
								 | 
							
								        k = min(m, n)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # mode == 'complete'
							 | 
						||
| 
								 | 
							
								        res = linalg.qr(a, mode='complete')
							 | 
						||
| 
								 | 
							
								        Q, R = res.Q, res.R
							 | 
						||
| 
								 | 
							
								        assert_(Q.dtype == a_dtype)
							 | 
						||
| 
								 | 
							
								        assert_(R.dtype == a_dtype)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(Q, a_type))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(R, a_type))
							 | 
						||
| 
								 | 
							
								        assert_(Q.shape == (m, m))
							 | 
						||
| 
								 | 
							
								        assert_(R.shape == (m, n))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(dot(Q, R), a)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(dot(Q.T.conj(), Q), np.eye(m))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(np.triu(R), R)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # mode == 'reduced'
							 | 
						||
| 
								 | 
							
								        q1, r1 = linalg.qr(a, mode='reduced')
							 | 
						||
| 
								 | 
							
								        assert_(q1.dtype == a_dtype)
							 | 
						||
| 
								 | 
							
								        assert_(r1.dtype == a_dtype)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(q1, a_type))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(r1, a_type))
							 | 
						||
| 
								 | 
							
								        assert_(q1.shape == (m, k))
							 | 
						||
| 
								 | 
							
								        assert_(r1.shape == (k, n))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(dot(q1, r1), a)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(dot(q1.T.conj(), q1), np.eye(k))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(np.triu(r1), r1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # mode == 'r'
							 | 
						||
| 
								 | 
							
								        r2 = linalg.qr(a, mode='r')
							 | 
						||
| 
								 | 
							
								        assert_(r2.dtype == a_dtype)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(r2, a_type))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(r2, r1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize(["m", "n"], [
							 | 
						||
| 
								 | 
							
								        (3, 0),
							 | 
						||
| 
								 | 
							
								        (0, 3),
							 | 
						||
| 
								 | 
							
								        (0, 0)
							 | 
						||
| 
								 | 
							
								    ])
							 | 
						||
| 
								 | 
							
								    def test_qr_empty(self, m, n):
							 | 
						||
| 
								 | 
							
								        k = min(m, n)
							 | 
						||
| 
								 | 
							
								        a = np.empty((m, n))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        self.check_qr(a)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        h, tau = np.linalg.qr(a, mode='raw')
							 | 
						||
| 
								 | 
							
								        assert_equal(h.dtype, np.double)
							 | 
						||
| 
								 | 
							
								        assert_equal(tau.dtype, np.double)
							 | 
						||
| 
								 | 
							
								        assert_equal(h.shape, (n, m))
							 | 
						||
| 
								 | 
							
								        assert_equal(tau.shape, (k,))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_mode_raw(self):
							 | 
						||
| 
								 | 
							
								        # The factorization is not unique and varies between libraries,
							 | 
						||
| 
								 | 
							
								        # so it is not possible to check against known values. Functional
							 | 
						||
| 
								 | 
							
								        # testing is a possibility, but awaits the exposure of more
							 | 
						||
| 
								 | 
							
								        # of the functions in lapack_lite. Consequently, this test is
							 | 
						||
| 
								 | 
							
								        # very limited in scope. Note that the results are in FORTRAN
							 | 
						||
| 
								 | 
							
								        # order, hence the h arrays are transposed.
							 | 
						||
| 
								 | 
							
								        a = self.array([[1, 2], [3, 4], [5, 6]], dtype=np.double)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Test double
							 | 
						||
| 
								 | 
							
								        h, tau = linalg.qr(a, mode='raw')
							 | 
						||
| 
								 | 
							
								        assert_(h.dtype == np.double)
							 | 
						||
| 
								 | 
							
								        assert_(tau.dtype == np.double)
							 | 
						||
| 
								 | 
							
								        assert_(h.shape == (2, 3))
							 | 
						||
| 
								 | 
							
								        assert_(tau.shape == (2,))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        h, tau = linalg.qr(a.T, mode='raw')
							 | 
						||
| 
								 | 
							
								        assert_(h.dtype == np.double)
							 | 
						||
| 
								 | 
							
								        assert_(tau.dtype == np.double)
							 | 
						||
| 
								 | 
							
								        assert_(h.shape == (3, 2))
							 | 
						||
| 
								 | 
							
								        assert_(tau.shape == (2,))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_mode_all_but_economic(self):
							 | 
						||
| 
								 | 
							
								        a = self.array([[1, 2], [3, 4]])
							 | 
						||
| 
								 | 
							
								        b = self.array([[1, 2], [3, 4], [5, 6]])
							 | 
						||
| 
								 | 
							
								        for dt in "fd":
							 | 
						||
| 
								 | 
							
								            m1 = a.astype(dt)
							 | 
						||
| 
								 | 
							
								            m2 = b.astype(dt)
							 | 
						||
| 
								 | 
							
								            self.check_qr(m1)
							 | 
						||
| 
								 | 
							
								            self.check_qr(m2)
							 | 
						||
| 
								 | 
							
								            self.check_qr(m2.T)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for dt in "fd":
							 | 
						||
| 
								 | 
							
								            m1 = 1 + 1j * a.astype(dt)
							 | 
						||
| 
								 | 
							
								            m2 = 1 + 1j * b.astype(dt)
							 | 
						||
| 
								 | 
							
								            self.check_qr(m1)
							 | 
						||
| 
								 | 
							
								            self.check_qr(m2)
							 | 
						||
| 
								 | 
							
								            self.check_qr(m2.T)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def check_qr_stacked(self, a):
							 | 
						||
| 
								 | 
							
								        # This test expects the argument `a` to be an ndarray or
							 | 
						||
| 
								 | 
							
								        # a subclass of an ndarray of inexact type.
							 | 
						||
| 
								 | 
							
								        a_type = type(a)
							 | 
						||
| 
								 | 
							
								        a_dtype = a.dtype
							 | 
						||
| 
								 | 
							
								        m, n = a.shape[-2:]
							 | 
						||
| 
								 | 
							
								        k = min(m, n)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # mode == 'complete'
							 | 
						||
| 
								 | 
							
								        q, r = linalg.qr(a, mode='complete')
							 | 
						||
| 
								 | 
							
								        assert_(q.dtype == a_dtype)
							 | 
						||
| 
								 | 
							
								        assert_(r.dtype == a_dtype)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(q, a_type))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(r, a_type))
							 | 
						||
| 
								 | 
							
								        assert_(q.shape[-2:] == (m, m))
							 | 
						||
| 
								 | 
							
								        assert_(r.shape[-2:] == (m, n))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(matmul(q, r), a)
							 | 
						||
| 
								 | 
							
								        I_mat = np.identity(q.shape[-1])
							 | 
						||
| 
								 | 
							
								        stack_I_mat = np.broadcast_to(I_mat,
							 | 
						||
| 
								 | 
							
								                        q.shape[:-2] + (q.shape[-1],) * 2)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(matmul(swapaxes(q, -1, -2).conj(), q), stack_I_mat)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(np.triu(r[..., :, :]), r)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # mode == 'reduced'
							 | 
						||
| 
								 | 
							
								        q1, r1 = linalg.qr(a, mode='reduced')
							 | 
						||
| 
								 | 
							
								        assert_(q1.dtype == a_dtype)
							 | 
						||
| 
								 | 
							
								        assert_(r1.dtype == a_dtype)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(q1, a_type))
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(r1, a_type))
							 | 
						||
| 
								 | 
							
								        assert_(q1.shape[-2:] == (m, k))
							 | 
						||
| 
								 | 
							
								        assert_(r1.shape[-2:] == (k, n))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(matmul(q1, r1), a)
							 | 
						||
| 
								 | 
							
								        I_mat = np.identity(q1.shape[-1])
							 | 
						||
| 
								 | 
							
								        stack_I_mat = np.broadcast_to(I_mat,
							 | 
						||
| 
								 | 
							
								                        q1.shape[:-2] + (q1.shape[-1],) * 2)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(matmul(swapaxes(q1, -1, -2).conj(), q1),
							 | 
						||
| 
								 | 
							
								                            stack_I_mat)
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(np.triu(r1[..., :, :]), r1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # mode == 'r'
							 | 
						||
| 
								 | 
							
								        r2 = linalg.qr(a, mode='r')
							 | 
						||
| 
								 | 
							
								        assert_(r2.dtype == a_dtype)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(r2, a_type))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(r2, r1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize("size", [
							 | 
						||
| 
								 | 
							
								        (3, 4), (4, 3), (4, 4),
							 | 
						||
| 
								 | 
							
								        (3, 0), (0, 3)])
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize("outer_size", [
							 | 
						||
| 
								 | 
							
								        (2, 2), (2,), (2, 3, 4)])
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize("dt", [
							 | 
						||
| 
								 | 
							
								        np.single, np.double,
							 | 
						||
| 
								 | 
							
								        np.csingle, np.cdouble])
							 | 
						||
| 
								 | 
							
								    def test_stacked_inputs(self, outer_size, size, dt):
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        rng = np.random.default_rng(123)
							 | 
						||
| 
								 | 
							
								        A = rng.normal(size=outer_size + size).astype(dt)
							 | 
						||
| 
								 | 
							
								        B = rng.normal(size=outer_size + size).astype(dt)
							 | 
						||
| 
								 | 
							
								        self.check_qr_stacked(A)
							 | 
						||
| 
								 | 
							
								        self.check_qr_stacked(A + 1.j * B)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestCholesky:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize(
							 | 
						||
| 
								 | 
							
								        'shape', [(1, 1), (2, 2), (3, 3), (50, 50), (3, 10, 10)]
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize(
							 | 
						||
| 
								 | 
							
								        'dtype', (np.float32, np.float64, np.complex64, np.complex128)
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize(
							 | 
						||
| 
								 | 
							
								        'upper', [False, True])
							 | 
						||
| 
								 | 
							
								    def test_basic_property(self, shape, dtype, upper):
							 | 
						||
| 
								 | 
							
								        np.random.seed(1)
							 | 
						||
| 
								 | 
							
								        a = np.random.randn(*shape)
							 | 
						||
| 
								 | 
							
								        if np.issubdtype(dtype, np.complexfloating):
							 | 
						||
| 
								 | 
							
								            a = a + 1j * np.random.randn(*shape)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        t = list(range(len(shape)))
							 | 
						||
| 
								 | 
							
								        t[-2:] = -1, -2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        a = np.matmul(a.transpose(t).conj(), a)
							 | 
						||
| 
								 | 
							
								        a = np.asarray(a, dtype=dtype)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        c = np.linalg.cholesky(a, upper=upper)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Check A = L L^H or A = U^H U
							 | 
						||
| 
								 | 
							
								        if upper:
							 | 
						||
| 
								 | 
							
								            b = np.matmul(c.transpose(t).conj(), c)
							 | 
						||
| 
								 | 
							
								        else:
							 | 
						||
| 
								 | 
							
								            b = np.matmul(c, c.transpose(t).conj())
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        atol = 500 * a.shape[0] * np.finfo(dtype).eps
							 | 
						||
| 
								 | 
							
								        assert_allclose(b, a, atol=atol, err_msg=f'{shape} {dtype}\n{a}\n{c}')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Check diag(L or U) is real and positive
							 | 
						||
| 
								 | 
							
								        d = np.diagonal(c, axis1=-2, axis2=-1)
							 | 
						||
| 
								 | 
							
								        assert_(np.all(np.isreal(d)))
							 | 
						||
| 
								 | 
							
								        assert_(np.all(d >= 0))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_0_size(self):
							 | 
						||
| 
								 | 
							
								        class ArraySubclass(np.ndarray):
							 | 
						||
| 
								 | 
							
								            pass
							 | 
						||
| 
								 | 
							
								        a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        res = linalg.cholesky(a)
							 | 
						||
| 
								 | 
							
								        assert_equal(a.shape, res.shape)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.float64)
							 | 
						||
| 
								 | 
							
								        # for documentation purpose:
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, np.ndarray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        a = np.zeros((1, 0, 0), dtype=np.complex64).view(ArraySubclass)
							 | 
						||
| 
								 | 
							
								        res = linalg.cholesky(a)
							 | 
						||
| 
								 | 
							
								        assert_equal(a.shape, res.shape)
							 | 
						||
| 
								 | 
							
								        assert_(res.dtype.type is np.complex64)
							 | 
						||
| 
								 | 
							
								        assert_(isinstance(res, np.ndarray))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_upper_lower_arg(self):
							 | 
						||
| 
								 | 
							
								        # Explicit test of upper argument that also checks the default.
							 | 
						||
| 
								 | 
							
								        a = np.array([[1 + 0j, 0 - 2j], [0 + 2j, 5 + 0j]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_equal(linalg.cholesky(a), linalg.cholesky(a, upper=False))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_equal(
							 | 
						||
| 
								 | 
							
								            linalg.cholesky(a, upper=True),
							 | 
						||
| 
								 | 
							
								            linalg.cholesky(a).T.conj()
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestOuter:
							 | 
						||
| 
								 | 
							
								    arr1 = np.arange(3)
							 | 
						||
| 
								 | 
							
								    arr2 = np.arange(3)
							 | 
						||
| 
								 | 
							
								    expected = np.array(
							 | 
						||
| 
								 | 
							
								        [[0, 0, 0],
							 | 
						||
| 
								 | 
							
								         [0, 1, 2],
							 | 
						||
| 
								 | 
							
								         [0, 2, 4]]
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert_array_equal(np.linalg.outer(arr1, arr2), expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    with assert_raises_regex(
							 | 
						||
| 
								 | 
							
								        ValueError, "Input arrays must be one-dimensional"
							 | 
						||
| 
								 | 
							
								    ):
							 | 
						||
| 
								 | 
							
								        np.linalg.outer(arr1[:, np.newaxis], arr2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_byteorder_check():
							 | 
						||
| 
								 | 
							
								    # Byte order check should pass for native order
							 | 
						||
| 
								 | 
							
								    if sys.byteorder == 'little':
							 | 
						||
| 
								 | 
							
								        native = '<'
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        native = '>'
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    for dtt in (np.float32, np.float64):
							 | 
						||
| 
								 | 
							
								        arr = np.eye(4, dtype=dtt)
							 | 
						||
| 
								 | 
							
								        n_arr = arr.view(arr.dtype.newbyteorder(native))
							 | 
						||
| 
								 | 
							
								        sw_arr = arr.view(arr.dtype.newbyteorder("S")).byteswap()
							 | 
						||
| 
								 | 
							
								        assert_equal(arr.dtype.byteorder, '=')
							 | 
						||
| 
								 | 
							
								        for routine in (linalg.inv, linalg.det, linalg.pinv):
							 | 
						||
| 
								 | 
							
								            # Normal call
							 | 
						||
| 
								 | 
							
								            res = routine(arr)
							 | 
						||
| 
								 | 
							
								            # Native but not '='
							 | 
						||
| 
								 | 
							
								            assert_array_equal(res, routine(n_arr))
							 | 
						||
| 
								 | 
							
								            # Swapped
							 | 
						||
| 
								 | 
							
								            assert_array_equal(res, routine(sw_arr))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
							 | 
						||
| 
								 | 
							
								def test_generalized_raise_multiloop():
							 | 
						||
| 
								 | 
							
								    # It should raise an error even if the error doesn't occur in the
							 | 
						||
| 
								 | 
							
								    # last iteration of the ufunc inner loop
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    invertible = np.array([[1, 2], [3, 4]])
							 | 
						||
| 
								 | 
							
								    non_invertible = np.array([[1, 1], [1, 1]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    x = np.zeros([4, 4, 2, 2])[1::2]
							 | 
						||
| 
								 | 
							
								    x[...] = invertible
							 | 
						||
| 
								 | 
							
								    x[0, 0] = non_invertible
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert_raises(np.linalg.LinAlgError, np.linalg.inv, x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@pytest.mark.skipif(
							 | 
						||
| 
								 | 
							
								    threading.active_count() > 1,
							 | 
						||
| 
								 | 
							
								    reason="skipping test that uses fork because there are multiple threads")
							 | 
						||
| 
								 | 
							
								@pytest.mark.skipif(
							 | 
						||
| 
								 | 
							
								    NOGIL_BUILD,
							 | 
						||
| 
								 | 
							
								    reason="Cannot safely use fork in tests on the free-threaded build")
							 | 
						||
| 
								 | 
							
								def test_xerbla_override():
							 | 
						||
| 
								 | 
							
								    # Check that our xerbla has been successfully linked in. If it is not,
							 | 
						||
| 
								 | 
							
								    # the default xerbla routine is called, which prints a message to stdout
							 | 
						||
| 
								 | 
							
								    # and may, or may not, abort the process depending on the LAPACK package.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    XERBLA_OK = 255
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    try:
							 | 
						||
| 
								 | 
							
								        pid = os.fork()
							 | 
						||
| 
								 | 
							
								    except (OSError, AttributeError):
							 | 
						||
| 
								 | 
							
								        # fork failed, or not running on POSIX
							 | 
						||
| 
								 | 
							
								        pytest.skip("Not POSIX or fork failed.")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if pid == 0:
							 | 
						||
| 
								 | 
							
								        # child; close i/o file handles
							 | 
						||
| 
								 | 
							
								        os.close(1)
							 | 
						||
| 
								 | 
							
								        os.close(0)
							 | 
						||
| 
								 | 
							
								        # Avoid producing core files.
							 | 
						||
| 
								 | 
							
								        import resource
							 | 
						||
| 
								 | 
							
								        resource.setrlimit(resource.RLIMIT_CORE, (0, 0))
							 | 
						||
| 
								 | 
							
								        # These calls may abort.
							 | 
						||
| 
								 | 
							
								        try:
							 | 
						||
| 
								 | 
							
								            np.linalg.lapack_lite.xerbla()
							 | 
						||
| 
								 | 
							
								        except ValueError:
							 | 
						||
| 
								 | 
							
								            pass
							 | 
						||
| 
								 | 
							
								        except Exception:
							 | 
						||
| 
								 | 
							
								            os._exit(os.EX_CONFIG)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        try:
							 | 
						||
| 
								 | 
							
								            a = np.array([[1.]])
							 | 
						||
| 
								 | 
							
								            np.linalg.lapack_lite.dorgqr(
							 | 
						||
| 
								 | 
							
								                1, 1, 1, a,
							 | 
						||
| 
								 | 
							
								                0,  # <- invalid value
							 | 
						||
| 
								 | 
							
								                a, a, 0, 0)
							 | 
						||
| 
								 | 
							
								        except ValueError as e:
							 | 
						||
| 
								 | 
							
								            if "DORGQR parameter number 5" in str(e):
							 | 
						||
| 
								 | 
							
								                # success, reuse error code to mark success as
							 | 
						||
| 
								 | 
							
								                # FORTRAN STOP returns as success.
							 | 
						||
| 
								 | 
							
								                os._exit(XERBLA_OK)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Did not abort, but our xerbla was not linked in.
							 | 
						||
| 
								 | 
							
								        os._exit(os.EX_CONFIG)
							 | 
						||
| 
								 | 
							
								    else:
							 | 
						||
| 
								 | 
							
								        # parent
							 | 
						||
| 
								 | 
							
								        pid, status = os.wait()
							 | 
						||
| 
								 | 
							
								        if os.WEXITSTATUS(status) != XERBLA_OK:
							 | 
						||
| 
								 | 
							
								            pytest.skip('Numpy xerbla not linked in.')
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess")
							 | 
						||
| 
								 | 
							
								@pytest.mark.slow
							 | 
						||
| 
								 | 
							
								def test_sdot_bug_8577():
							 | 
						||
| 
								 | 
							
								    # Regression test that loading certain other libraries does not
							 | 
						||
| 
								 | 
							
								    # result to wrong results in float32 linear algebra.
							 | 
						||
| 
								 | 
							
								    #
							 | 
						||
| 
								 | 
							
								    # There's a bug gh-8577 on OSX that can trigger this, and perhaps
							 | 
						||
| 
								 | 
							
								    # there are also other situations in which it occurs.
							 | 
						||
| 
								 | 
							
								    #
							 | 
						||
| 
								 | 
							
								    # Do the check in a separate process.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    bad_libs = ['PyQt5.QtWidgets', 'IPython']
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    template = textwrap.dedent("""
							 | 
						||
| 
								 | 
							
								    import sys
							 | 
						||
| 
								 | 
							
								    {before}
							 | 
						||
| 
								 | 
							
								    try:
							 | 
						||
| 
								 | 
							
								        import {bad_lib}
							 | 
						||
| 
								 | 
							
								    except ImportError:
							 | 
						||
| 
								 | 
							
								        sys.exit(0)
							 | 
						||
| 
								 | 
							
								    {after}
							 | 
						||
| 
								 | 
							
								    x = np.ones(2, dtype=np.float32)
							 | 
						||
| 
								 | 
							
								    sys.exit(0 if np.allclose(x.dot(x), 2.0) else 1)
							 | 
						||
| 
								 | 
							
								    """)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    for bad_lib in bad_libs:
							 | 
						||
| 
								 | 
							
								        code = template.format(before="import numpy as np", after="",
							 | 
						||
| 
								 | 
							
								                               bad_lib=bad_lib)
							 | 
						||
| 
								 | 
							
								        subprocess.check_call([sys.executable, "-c", code])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Swapped import order
							 | 
						||
| 
								 | 
							
								        code = template.format(after="import numpy as np", before="",
							 | 
						||
| 
								 | 
							
								                               bad_lib=bad_lib)
							 | 
						||
| 
								 | 
							
								        subprocess.check_call([sys.executable, "-c", code])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestMultiDot:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_basic_function_with_three_arguments(self):
							 | 
						||
| 
								 | 
							
								        # multi_dot with three arguments uses a fast hand coded algorithm to
							 | 
						||
| 
								 | 
							
								        # determine the optimal order. Therefore test it separately.
							 | 
						||
| 
								 | 
							
								        A = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								        B = np.random.random((2, 6))
							 | 
						||
| 
								 | 
							
								        C = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(multi_dot([A, B, C]), A.dot(B).dot(C))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(multi_dot([A, B, C]), np.dot(A, np.dot(B, C)))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_basic_function_with_two_arguments(self):
							 | 
						||
| 
								 | 
							
								        # separate code path with two arguments
							 | 
						||
| 
								 | 
							
								        A = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								        B = np.random.random((2, 6))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(multi_dot([A, B]), A.dot(B))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(multi_dot([A, B]), np.dot(A, B))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_basic_function_with_dynamic_programming_optimization(self):
							 | 
						||
| 
								 | 
							
								        # multi_dot with four or more arguments uses the dynamic programming
							 | 
						||
| 
								 | 
							
								        # optimization and therefore deserve a separate
							 | 
						||
| 
								 | 
							
								        A = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								        B = np.random.random((2, 6))
							 | 
						||
| 
								 | 
							
								        C = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								        D = np.random.random((2, 1))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(multi_dot([A, B, C, D]), A.dot(B).dot(C).dot(D))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_vector_as_first_argument(self):
							 | 
						||
| 
								 | 
							
								        # The first argument can be 1-D
							 | 
						||
| 
								 | 
							
								        A1d = np.random.random(2)  # 1-D
							 | 
						||
| 
								 | 
							
								        B = np.random.random((2, 6))
							 | 
						||
| 
								 | 
							
								        C = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								        D = np.random.random((2, 2))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # the result should be 1-D
							 | 
						||
| 
								 | 
							
								        assert_equal(multi_dot([A1d, B, C, D]).shape, (2,))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_vector_as_last_argument(self):
							 | 
						||
| 
								 | 
							
								        # The last argument can be 1-D
							 | 
						||
| 
								 | 
							
								        A = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								        B = np.random.random((2, 6))
							 | 
						||
| 
								 | 
							
								        C = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								        D1d = np.random.random(2)  # 1-D
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # the result should be 1-D
							 | 
						||
| 
								 | 
							
								        assert_equal(multi_dot([A, B, C, D1d]).shape, (6,))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_vector_as_first_and_last_argument(self):
							 | 
						||
| 
								 | 
							
								        # The first and last arguments can be 1-D
							 | 
						||
| 
								 | 
							
								        A1d = np.random.random(2)  # 1-D
							 | 
						||
| 
								 | 
							
								        B = np.random.random((2, 6))
							 | 
						||
| 
								 | 
							
								        C = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								        D1d = np.random.random(2)  # 1-D
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # the result should be a scalar
							 | 
						||
| 
								 | 
							
								        assert_equal(multi_dot([A1d, B, C, D1d]).shape, ())
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_three_arguments_and_out(self):
							 | 
						||
| 
								 | 
							
								        # multi_dot with three arguments uses a fast hand coded algorithm to
							 | 
						||
| 
								 | 
							
								        # determine the optimal order. Therefore test it separately.
							 | 
						||
| 
								 | 
							
								        A = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								        B = np.random.random((2, 6))
							 | 
						||
| 
								 | 
							
								        C = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        out = np.zeros((6, 2))
							 | 
						||
| 
								 | 
							
								        ret = multi_dot([A, B, C], out=out)
							 | 
						||
| 
								 | 
							
								        assert out is ret
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(out, A.dot(B).dot(C))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(out, np.dot(A, np.dot(B, C)))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_two_arguments_and_out(self):
							 | 
						||
| 
								 | 
							
								        # separate code path with two arguments
							 | 
						||
| 
								 | 
							
								        A = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								        B = np.random.random((2, 6))
							 | 
						||
| 
								 | 
							
								        out = np.zeros((6, 6))
							 | 
						||
| 
								 | 
							
								        ret = multi_dot([A, B], out=out)
							 | 
						||
| 
								 | 
							
								        assert out is ret
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(out, A.dot(B))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(out, np.dot(A, B))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_dynamic_programming_optimization_and_out(self):
							 | 
						||
| 
								 | 
							
								        # multi_dot with four or more arguments uses the dynamic programming
							 | 
						||
| 
								 | 
							
								        # optimization and therefore deserve a separate test
							 | 
						||
| 
								 | 
							
								        A = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								        B = np.random.random((2, 6))
							 | 
						||
| 
								 | 
							
								        C = np.random.random((6, 2))
							 | 
						||
| 
								 | 
							
								        D = np.random.random((2, 1))
							 | 
						||
| 
								 | 
							
								        out = np.zeros((6, 1))
							 | 
						||
| 
								 | 
							
								        ret = multi_dot([A, B, C, D], out=out)
							 | 
						||
| 
								 | 
							
								        assert out is ret
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(out, A.dot(B).dot(C).dot(D))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_dynamic_programming_logic(self):
							 | 
						||
| 
								 | 
							
								        # Test for the dynamic programming part
							 | 
						||
| 
								 | 
							
								        # This test is directly taken from Cormen page 376.
							 | 
						||
| 
								 | 
							
								        arrays = [np.random.random((30, 35)),
							 | 
						||
| 
								 | 
							
								                  np.random.random((35, 15)),
							 | 
						||
| 
								 | 
							
								                  np.random.random((15, 5)),
							 | 
						||
| 
								 | 
							
								                  np.random.random((5, 10)),
							 | 
						||
| 
								 | 
							
								                  np.random.random((10, 20)),
							 | 
						||
| 
								 | 
							
								                  np.random.random((20, 25))]
							 | 
						||
| 
								 | 
							
								        m_expected = np.array([[0., 15750., 7875., 9375., 11875., 15125.],
							 | 
						||
| 
								 | 
							
								                               [0.,     0., 2625., 4375.,  7125., 10500.],
							 | 
						||
| 
								 | 
							
								                               [0.,     0.,    0.,  750.,  2500.,  5375.],
							 | 
						||
| 
								 | 
							
								                               [0.,     0.,    0.,    0.,  1000.,  3500.],
							 | 
						||
| 
								 | 
							
								                               [0.,     0.,    0.,    0.,     0.,  5000.],
							 | 
						||
| 
								 | 
							
								                               [0.,     0.,    0.,    0.,     0.,     0.]])
							 | 
						||
| 
								 | 
							
								        s_expected = np.array([[0,  1,  1,  3,  3,  3],
							 | 
						||
| 
								 | 
							
								                               [0,  0,  2,  3,  3,  3],
							 | 
						||
| 
								 | 
							
								                               [0,  0,  0,  3,  3,  3],
							 | 
						||
| 
								 | 
							
								                               [0,  0,  0,  0,  4,  5],
							 | 
						||
| 
								 | 
							
								                               [0,  0,  0,  0,  0,  5],
							 | 
						||
| 
								 | 
							
								                               [0,  0,  0,  0,  0,  0]], dtype=int)
							 | 
						||
| 
								 | 
							
								        s_expected -= 1  # Cormen uses 1-based index, python does not.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        s, m = _multi_dot_matrix_chain_order(arrays, return_costs=True)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        # Only the upper triangular part (without the diagonal) is interesting.
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(np.triu(s[:-1, 1:]),
							 | 
						||
| 
								 | 
							
								                            np.triu(s_expected[:-1, 1:]))
							 | 
						||
| 
								 | 
							
								        assert_almost_equal(np.triu(m), np.triu(m_expected))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_too_few_input_arrays(self):
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, multi_dot, [])
							 | 
						||
| 
								 | 
							
								        assert_raises(ValueError, multi_dot, [np.random.random((3, 3))])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestTensorinv:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize("arr, ind", [
							 | 
						||
| 
								 | 
							
								        (np.ones((4, 6, 8, 2)), 2),
							 | 
						||
| 
								 | 
							
								        (np.ones((3, 3, 2)), 1),
							 | 
						||
| 
								 | 
							
								        ])
							 | 
						||
| 
								 | 
							
								    def test_non_square_handling(self, arr, ind):
							 | 
						||
| 
								 | 
							
								        with assert_raises(LinAlgError):
							 | 
						||
| 
								 | 
							
								            linalg.tensorinv(arr, ind=ind)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize("shape, ind", [
							 | 
						||
| 
								 | 
							
								        # examples from docstring
							 | 
						||
| 
								 | 
							
								        ((4, 6, 8, 3), 2),
							 | 
						||
| 
								 | 
							
								        ((24, 8, 3), 1),
							 | 
						||
| 
								 | 
							
								        ])
							 | 
						||
| 
								 | 
							
								    def test_tensorinv_shape(self, shape, ind):
							 | 
						||
| 
								 | 
							
								        a = np.eye(24)
							 | 
						||
| 
								 | 
							
								        a.shape = shape
							 | 
						||
| 
								 | 
							
								        ainv = linalg.tensorinv(a=a, ind=ind)
							 | 
						||
| 
								 | 
							
								        expected = a.shape[ind:] + a.shape[:ind]
							 | 
						||
| 
								 | 
							
								        actual = ainv.shape
							 | 
						||
| 
								 | 
							
								        assert_equal(actual, expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize("ind", [
							 | 
						||
| 
								 | 
							
								        0, -2,
							 | 
						||
| 
								 | 
							
								        ])
							 | 
						||
| 
								 | 
							
								    def test_tensorinv_ind_limit(self, ind):
							 | 
						||
| 
								 | 
							
								        a = np.eye(24)
							 | 
						||
| 
								 | 
							
								        a.shape = (4, 6, 8, 3)
							 | 
						||
| 
								 | 
							
								        with assert_raises(ValueError):
							 | 
						||
| 
								 | 
							
								            linalg.tensorinv(a=a, ind=ind)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def test_tensorinv_result(self):
							 | 
						||
| 
								 | 
							
								        # mimic a docstring example
							 | 
						||
| 
								 | 
							
								        a = np.eye(24)
							 | 
						||
| 
								 | 
							
								        a.shape = (24, 8, 3)
							 | 
						||
| 
								 | 
							
								        ainv = linalg.tensorinv(a, ind=1)
							 | 
						||
| 
								 | 
							
								        b = np.ones(24)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class TestTensorsolve:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize("a, axes", [
							 | 
						||
| 
								 | 
							
								        (np.ones((4, 6, 8, 2)), None),
							 | 
						||
| 
								 | 
							
								        (np.ones((3, 3, 2)), (0, 2)),
							 | 
						||
| 
								 | 
							
								        ])
							 | 
						||
| 
								 | 
							
								    def test_non_square_handling(self, a, axes):
							 | 
						||
| 
								 | 
							
								        with assert_raises(LinAlgError):
							 | 
						||
| 
								 | 
							
								            b = np.ones(a.shape[:2])
							 | 
						||
| 
								 | 
							
								            linalg.tensorsolve(a, b, axes=axes)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    @pytest.mark.parametrize("shape",
							 | 
						||
| 
								 | 
							
								        [(2, 3, 6), (3, 4, 4, 3), (0, 3, 3, 0)],
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								    def test_tensorsolve_result(self, shape):
							 | 
						||
| 
								 | 
							
								        a = np.random.randn(*shape)
							 | 
						||
| 
								 | 
							
								        b = np.ones(a.shape[:2])
							 | 
						||
| 
								 | 
							
								        x = np.linalg.tensorsolve(a, b)
							 | 
						||
| 
								 | 
							
								        assert_allclose(np.tensordot(a, x, axes=len(x.shape)), b)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_unsupported_commontype():
							 | 
						||
| 
								 | 
							
								    # linalg gracefully handles unsupported type
							 | 
						||
| 
								 | 
							
								    arr = np.array([[1, -2], [2, 5]], dtype='float16')
							 | 
						||
| 
								 | 
							
								    with assert_raises_regex(TypeError, "unsupported in linalg"):
							 | 
						||
| 
								 | 
							
								        linalg.cholesky(arr)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#@pytest.mark.slow
							 | 
						||
| 
								 | 
							
								#@pytest.mark.xfail(not HAS_LAPACK64, run=False,
							 | 
						||
| 
								 | 
							
								#                   reason="Numpy not compiled with 64-bit BLAS/LAPACK")
							 | 
						||
| 
								 | 
							
								#@requires_memory(free_bytes=16e9)
							 | 
						||
| 
								 | 
							
								@pytest.mark.skip(reason="Bad memory reports lead to OOM in ci testing")
							 | 
						||
| 
								 | 
							
								def test_blas64_dot():
							 | 
						||
| 
								 | 
							
								    n = 2**32
							 | 
						||
| 
								 | 
							
								    a = np.zeros([1, n], dtype=np.float32)
							 | 
						||
| 
								 | 
							
								    b = np.ones([1, 1], dtype=np.float32)
							 | 
						||
| 
								 | 
							
								    a[0, -1] = 1
							 | 
						||
| 
								 | 
							
								    c = np.dot(b, a)
							 | 
						||
| 
								 | 
							
								    assert_equal(c[0, -1], 1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								@pytest.mark.xfail(not HAS_LAPACK64,
							 | 
						||
| 
								 | 
							
								                   reason="Numpy not compiled with 64-bit BLAS/LAPACK")
							 | 
						||
| 
								 | 
							
								def test_blas64_geqrf_lwork_smoketest():
							 | 
						||
| 
								 | 
							
								    # Smoke test LAPACK geqrf lwork call with 64-bit integers
							 | 
						||
| 
								 | 
							
								    dtype = np.float64
							 | 
						||
| 
								 | 
							
								    lapack_routine = np.linalg.lapack_lite.dgeqrf
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    m = 2**32 + 1
							 | 
						||
| 
								 | 
							
								    n = 2**32 + 1
							 | 
						||
| 
								 | 
							
								    lda = m
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Dummy arrays, not referenced by the lapack routine, so don't
							 | 
						||
| 
								 | 
							
								    # need to be of the right size
							 | 
						||
| 
								 | 
							
								    a = np.zeros([1, 1], dtype=dtype)
							 | 
						||
| 
								 | 
							
								    work = np.zeros([1], dtype=dtype)
							 | 
						||
| 
								 | 
							
								    tau = np.zeros([1], dtype=dtype)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Size query
							 | 
						||
| 
								 | 
							
								    results = lapack_routine(m, n, a, lda, tau, work, -1, 0)
							 | 
						||
| 
								 | 
							
								    assert_equal(results['info'], 0)
							 | 
						||
| 
								 | 
							
								    assert_equal(results['m'], m)
							 | 
						||
| 
								 | 
							
								    assert_equal(results['n'], m)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # Should result to an integer of a reasonable size
							 | 
						||
| 
								 | 
							
								    lwork = int(work.item())
							 | 
						||
| 
								 | 
							
								    assert_(2**32 < lwork < 2**42)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_diagonal():
							 | 
						||
| 
								 | 
							
								    # Here we only test if selected axes are compatible
							 | 
						||
| 
								 | 
							
								    # with Array API (last two). Core implementation
							 | 
						||
| 
								 | 
							
								    # of `diagonal` is tested in `test_multiarray.py`.
							 | 
						||
| 
								 | 
							
								    x = np.arange(60).reshape((3, 4, 5))
							 | 
						||
| 
								 | 
							
								    actual = np.linalg.diagonal(x)
							 | 
						||
| 
								 | 
							
								    expected = np.array(
							 | 
						||
| 
								 | 
							
								        [
							 | 
						||
| 
								 | 
							
								            [0,  6, 12, 18],
							 | 
						||
| 
								 | 
							
								            [20, 26, 32, 38],
							 | 
						||
| 
								 | 
							
								            [40, 46, 52, 58],
							 | 
						||
| 
								 | 
							
								        ]
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								    assert_equal(actual, expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_trace():
							 | 
						||
| 
								 | 
							
								    # Here we only test if selected axes are compatible
							 | 
						||
| 
								 | 
							
								    # with Array API (last two). Core implementation
							 | 
						||
| 
								 | 
							
								    # of `trace` is tested in `test_multiarray.py`.
							 | 
						||
| 
								 | 
							
								    x = np.arange(60).reshape((3, 4, 5))
							 | 
						||
| 
								 | 
							
								    actual = np.linalg.trace(x)
							 | 
						||
| 
								 | 
							
								    expected = np.array([36, 116, 196])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert_equal(actual, expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_cross():
							 | 
						||
| 
								 | 
							
								    x = np.arange(9).reshape((3, 3))
							 | 
						||
| 
								 | 
							
								    actual = np.linalg.cross(x, x + 1)
							 | 
						||
| 
								 | 
							
								    expected = np.array([
							 | 
						||
| 
								 | 
							
								        [-1, 2, -1],
							 | 
						||
| 
								 | 
							
								        [-1, 2, -1],
							 | 
						||
| 
								 | 
							
								        [-1, 2, -1],
							 | 
						||
| 
								 | 
							
								    ])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert_equal(actual, expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # We test that lists are converted to arrays.
							 | 
						||
| 
								 | 
							
								    u = [1, 2, 3]
							 | 
						||
| 
								 | 
							
								    v = [4, 5, 6]
							 | 
						||
| 
								 | 
							
								    actual = np.linalg.cross(u, v)
							 | 
						||
| 
								 | 
							
								    expected = array([-3,  6, -3])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert_equal(actual, expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    with assert_raises_regex(
							 | 
						||
| 
								 | 
							
								        ValueError,
							 | 
						||
| 
								 | 
							
								        r"input arrays must be \(arrays of\) 3-dimensional vectors"
							 | 
						||
| 
								 | 
							
								    ):
							 | 
						||
| 
								 | 
							
								        x_2dim = x[:, 1:]
							 | 
						||
| 
								 | 
							
								        np.linalg.cross(x_2dim, x_2dim)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_tensordot():
							 | 
						||
| 
								 | 
							
								    # np.linalg.tensordot is just an alias for np.tensordot
							 | 
						||
| 
								 | 
							
								    x = np.arange(6).reshape((2, 3))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert np.linalg.tensordot(x, x) == 55
							 | 
						||
| 
								 | 
							
								    assert np.linalg.tensordot(x, x, axes=[(0, 1), (0, 1)]) == 55
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_matmul():
							 | 
						||
| 
								 | 
							
								    # np.linalg.matmul and np.matmul only differs in the number
							 | 
						||
| 
								 | 
							
								    # of arguments in the signature
							 | 
						||
| 
								 | 
							
								    x = np.arange(6).reshape((2, 3))
							 | 
						||
| 
								 | 
							
								    actual = np.linalg.matmul(x, x.T)
							 | 
						||
| 
								 | 
							
								    expected = np.array([[5, 14], [14, 50]])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert_equal(actual, expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_matrix_transpose():
							 | 
						||
| 
								 | 
							
								    x = np.arange(6).reshape((2, 3))
							 | 
						||
| 
								 | 
							
								    actual = np.linalg.matrix_transpose(x)
							 | 
						||
| 
								 | 
							
								    expected = x.T
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert_equal(actual, expected)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    with assert_raises_regex(
							 | 
						||
| 
								 | 
							
								        ValueError, "array must be at least 2-dimensional"
							 | 
						||
| 
								 | 
							
								    ):
							 | 
						||
| 
								 | 
							
								        np.linalg.matrix_transpose(x[:, 0])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_matrix_norm():
							 | 
						||
| 
								 | 
							
								    x = np.arange(9).reshape((3, 3))
							 | 
						||
| 
								 | 
							
								    actual = np.linalg.matrix_norm(x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert_almost_equal(actual, np.float64(14.2828), double_decimal=3)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    actual = np.linalg.matrix_norm(x, keepdims=True)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert_almost_equal(actual, np.array([[14.2828]]), double_decimal=3)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_matrix_norm_empty():
							 | 
						||
| 
								 | 
							
								    for shape in [(0, 2), (2, 0), (0, 0)]:
							 | 
						||
| 
								 | 
							
								        for dtype in [np.float64, np.float32, np.int32]:
							 | 
						||
| 
								 | 
							
								            x = np.zeros(shape, dtype)
							 | 
						||
| 
								 | 
							
								            assert_equal(np.linalg.matrix_norm(x, ord="fro"), 0)
							 | 
						||
| 
								 | 
							
								            assert_equal(np.linalg.matrix_norm(x, ord="nuc"), 0)
							 | 
						||
| 
								 | 
							
								            assert_equal(np.linalg.matrix_norm(x, ord=1), 0)
							 | 
						||
| 
								 | 
							
								            assert_equal(np.linalg.matrix_norm(x, ord=2), 0)
							 | 
						||
| 
								 | 
							
								            assert_equal(np.linalg.matrix_norm(x, ord=np.inf), 0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_vector_norm():
							 | 
						||
| 
								 | 
							
								    x = np.arange(9).reshape((3, 3))
							 | 
						||
| 
								 | 
							
								    actual = np.linalg.vector_norm(x)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert_almost_equal(actual, np.float64(14.2828), double_decimal=3)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    actual = np.linalg.vector_norm(x, axis=0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    assert_almost_equal(
							 | 
						||
| 
								 | 
							
								        actual, np.array([6.7082, 8.124, 9.6436]), double_decimal=3
							 | 
						||
| 
								 | 
							
								    )
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    actual = np.linalg.vector_norm(x, keepdims=True)
							 | 
						||
| 
								 | 
							
								    expected = np.full((1, 1), 14.2828, dtype='float64')
							 | 
						||
| 
								 | 
							
								    assert_equal(actual.shape, expected.shape)
							 | 
						||
| 
								 | 
							
								    assert_almost_equal(actual, expected, double_decimal=3)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def test_vector_norm_empty():
							 | 
						||
| 
								 | 
							
								    for dtype in [np.float64, np.float32, np.int32]:
							 | 
						||
| 
								 | 
							
								        x = np.zeros(0, dtype)
							 | 
						||
| 
								 | 
							
								        assert_equal(np.linalg.vector_norm(x, ord=1), 0)
							 | 
						||
| 
								 | 
							
								        assert_equal(np.linalg.vector_norm(x, ord=2), 0)
							 | 
						||
| 
								 | 
							
								        assert_equal(np.linalg.vector_norm(x, ord=np.inf), 0)
							 |