Files

88 lines
2.3 KiB
Python
Raw Permalink Normal View History

2025-09-07 22:09:54 +02:00
from collections.abc import (
Hashable,
Sequence,
)
from typing import (
Any,
Literal,
)
from matplotlib.axes import Axes
from matplotlib.colors import Colormap
from matplotlib.figure import Figure
from matplotlib.table import Table
import numpy as np
from pandas.core.frame import DataFrame
from pandas.core.series import Series
from typing_extensions import TypeAlias
from pandas._typing import (
HashableT,
npt,
)
_Color: TypeAlias = str | Sequence[float]
def table(
ax: Axes,
data: DataFrame | Series,
**kwargs,
) -> Table: ...
def register() -> None: ...
def deregister() -> None: ...
def scatter_matrix(
frame: DataFrame,
alpha: float = 0.5,
figsize: tuple[float, float] | None = None,
ax: Axes | None = None,
grid: bool = False,
diagonal: Literal["hist", "kde"] = "hist",
marker: str = ".",
density_kwds: dict[str, Any] | None = None,
hist_kwds: dict[str, Any] | None = None,
range_padding: float = 0.05,
**kwargs,
) -> npt.NDArray[np.object_]: ...
def radviz(
frame: DataFrame,
class_column: Hashable,
ax: Axes | None = None,
color: _Color | Sequence[_Color] | None = None,
colormap: str | Colormap | None = None,
**kwds,
) -> Axes: ...
def andrews_curves(
frame: DataFrame,
class_column: Hashable,
ax: Axes | None = None,
samples: int = 200,
color: _Color | Sequence[_Color] | None = None,
colormap: str | Colormap | None = None,
**kwargs,
) -> Axes: ...
def bootstrap_plot(
series: Series,
fig: Figure | None = None,
size: int = 50,
samples: int = 500,
**kwds,
) -> Figure: ...
def parallel_coordinates(
frame: DataFrame,
class_column: Hashable,
cols: list[HashableT] | None = None,
ax: Axes | None = None,
color: _Color | Sequence[_Color] | None = None,
use_columns: bool = False,
xticks: Sequence[float] | None = None,
colormap: str | Colormap | None = None,
axvlines: bool = True,
axvlines_kwds: dict[str, Any] | None = None,
sort_labels: bool = False,
**kwargs,
) -> Axes: ...
def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Axes: ...
def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwargs) -> Axes: ...
plot_params: dict[str, Any]