Files

248 lines
8.3 KiB
Python
Raw Permalink Normal View History

2025-09-07 22:09:54 +02:00
from typing import (
Any,
Generic,
Literal,
TypeVar,
overload,
)
import numpy as np
from pandas import (
IntervalIndex,
Series,
Timedelta,
Timestamp,
)
from pandas.core.series import (
TimedeltaSeries,
TimestampSeries,
)
from pandas._typing import (
IntervalClosedType,
IntervalT,
np_1darray,
npt,
)
VALID_CLOSED: frozenset[str]
_OrderableScalarT = TypeVar("_OrderableScalarT", bound=int | float)
_OrderableTimesT = TypeVar("_OrderableTimesT", bound=Timestamp | Timedelta)
_OrderableT = TypeVar("_OrderableT", bound=int | float | Timestamp | Timedelta)
class _LengthDescriptor:
@overload
def __get__(
self, instance: Interval[_OrderableScalarT], owner: Any
) -> _OrderableScalarT: ...
@overload
def __get__(
self, instance: Interval[_OrderableTimesT], owner: Any
) -> Timedelta: ...
@overload
def __get__(self, instance: IntervalTree, owner: Any) -> np.ndarray: ...
class _MidDescriptor:
@overload
def __get__(self, instance: Interval[_OrderableScalarT], owner: Any) -> float: ...
@overload
def __get__(
self, instance: Interval[_OrderableTimesT], owner: Any
) -> _OrderableTimesT: ...
@overload
def __get__(self, instance: IntervalTree, owner: Any) -> np.ndarray: ...
class IntervalMixin:
@property
def closed_left(self) -> bool: ...
@property
def closed_right(self) -> bool: ...
@property
def open_left(self) -> bool: ...
@property
def open_right(self) -> bool: ...
@property
def is_empty(self) -> bool: ...
class Interval(IntervalMixin, Generic[_OrderableT]):
@property
def left(self: Interval[_OrderableT]) -> _OrderableT: ...
@property
def right(self: Interval[_OrderableT]) -> _OrderableT: ...
@property
def closed(self) -> IntervalClosedType: ...
mid: _MidDescriptor
length: _LengthDescriptor
def __init__(
self,
left: _OrderableT,
right: _OrderableT,
closed: IntervalClosedType = ...,
) -> None: ...
def __hash__(self) -> int: ...
# for __contains__, it seems that we have to separate out the 4 cases to make
# mypy happy
@overload
def __contains__(self: Interval[Timestamp], key: Timestamp) -> bool: ...
@overload
def __contains__(self: Interval[Timedelta], key: Timedelta) -> bool: ...
@overload
def __contains__(self: Interval[int], key: float) -> bool: ...
@overload
def __contains__(self: Interval[float], key: float) -> bool: ...
@overload
def __add__(self: Interval[Timestamp], y: Timedelta) -> Interval[Timestamp]: ...
@overload
def __add__(self: Interval[Timedelta], y: Timedelta) -> Interval[Timedelta]: ...
@overload
def __add__(
self: Interval[int], y: _OrderableScalarT
) -> Interval[_OrderableScalarT]: ...
@overload
def __add__(self: Interval[float], y: float) -> Interval[float]: ...
@overload
def __radd__(
self: Interval[_OrderableTimesT], y: Timedelta
) -> Interval[_OrderableTimesT]: ...
@overload
def __radd__(
self: Interval[int], y: _OrderableScalarT
) -> Interval[_OrderableScalarT]: ...
@overload
def __radd__(self: Interval[float], y: float) -> Interval[float]: ...
@overload
def __sub__(
self: Interval[_OrderableTimesT], y: Timedelta
) -> Interval[_OrderableTimesT]: ...
@overload
def __sub__(
self: Interval[int], y: _OrderableScalarT
) -> Interval[_OrderableScalarT]: ...
@overload
def __sub__(self: Interval[float], y: float) -> Interval[float]: ...
@overload
def __rsub__(
self: Interval[_OrderableTimesT], y: Timedelta
) -> Interval[_OrderableTimesT]: ...
@overload
def __rsub__(
self: Interval[int], y: _OrderableScalarT
) -> Interval[_OrderableScalarT]: ...
@overload
def __rsub__(self: Interval[float], y: float) -> Interval[float]: ...
@overload
def __mul__(
self: Interval[int], y: _OrderableScalarT
) -> Interval[_OrderableScalarT]: ...
@overload
def __mul__(self: Interval[float], y: float) -> Interval[float]: ...
@overload
def __mul__(self: Interval[Timedelta], y: float) -> Interval[Timedelta]: ...
@overload
def __rmul__(
self: Interval[int], y: _OrderableScalarT
) -> Interval[_OrderableScalarT]: ...
@overload
def __rmul__(self: Interval[float], y: float) -> Interval[float]: ...
@overload
def __rmul__(self: Interval[Timedelta], y: float) -> Interval[Timedelta]: ...
@overload
def __truediv__(self: Interval[int], y: float) -> Interval[float]: ...
@overload
def __truediv__(self: Interval[float], y: float) -> Interval[float]: ...
@overload
def __truediv__(self: Interval[Timedelta], y: float) -> Interval[Timedelta]: ...
@overload
def __floordiv__(
self: Interval[int], y: _OrderableScalarT
) -> Interval[_OrderableScalarT]: ...
@overload
def __floordiv__(self: Interval[float], y: float) -> Interval[float]: ...
@overload
def __floordiv__(self: Interval[Timedelta], y: float) -> Interval[Timedelta]: ...
@overload
def overlaps(self: Interval[_OrderableT], other: Interval[_OrderableT]) -> bool: ...
@overload
def overlaps(self: Interval[int], other: Interval[float]) -> bool: ...
@overload
def overlaps(self: Interval[float], other: Interval[int]) -> bool: ...
@overload
def __gt__(self, other: Interval[_OrderableT]) -> bool: ...
@overload
def __gt__(
self: IntervalT, other: IntervalIndex[IntervalT]
) -> np_1darray[np.bool]: ...
@overload
def __gt__(
self,
other: Series[int] | Series[float] | TimestampSeries | TimedeltaSeries,
) -> Series[bool]: ...
@overload
def __lt__(self, other: Interval[_OrderableT]) -> bool: ...
@overload
def __lt__(
self: IntervalT, other: IntervalIndex[IntervalT]
) -> np_1darray[np.bool]: ...
@overload
def __lt__(
self,
other: Series[int] | Series[float] | TimestampSeries | TimedeltaSeries,
) -> Series[bool]: ...
@overload
def __ge__(self, other: Interval[_OrderableT]) -> bool: ...
@overload
def __ge__(
self: IntervalT, other: IntervalIndex[IntervalT]
) -> np_1darray[np.bool]: ...
@overload
def __ge__(
self,
other: Series[int] | Series[float] | TimestampSeries | TimedeltaSeries,
) -> Series[bool]: ...
@overload
def __le__(self, other: Interval[_OrderableT]) -> bool: ...
@overload
def __le__(
self: IntervalT, other: IntervalIndex[IntervalT]
) -> np_1darray[np.bool]: ...
@overload
def __eq__(self, other: Interval[_OrderableT]) -> bool: ... # type: ignore[overload-overlap] # pyright: ignore[reportOverlappingOverload]
@overload
def __eq__(
self: IntervalT, other: IntervalIndex[IntervalT]
) -> np_1darray[np.bool]: ...
@overload
def __eq__(self, other: Series[_OrderableT]) -> Series[bool]: ... # type: ignore[overload-overlap]
@overload
def __eq__(self, other: object) -> Literal[False]: ...
@overload
def __ne__(self, other: Interval[_OrderableT]) -> bool: ... # type: ignore[overload-overlap] # pyright: ignore[reportOverlappingOverload]
@overload
def __ne__(
self: IntervalT, other: IntervalIndex[IntervalT]
) -> np_1darray[np.bool]: ...
@overload
def __ne__(self, other: Series[_OrderableT]) -> Series[bool]: ... # type: ignore[overload-overlap]
@overload
def __ne__(self, other: object) -> Literal[True]: ...
class IntervalTree(IntervalMixin):
def __init__(
self,
left: np.ndarray,
right: np.ndarray,
closed: IntervalClosedType = ...,
leaf_size: int = ...,
) -> None: ...
def get_indexer(self, target) -> npt.NDArray[np.intp]: ...
def get_indexer_non_unique(
self, target
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
_na_count: int
@property
def is_overlapping(self) -> bool: ...
@property
def is_monotonic_increasing(self) -> bool: ...
def clear_mapping(self) -> None: ...