Files

151 lines
6.6 KiB
Python
Raw Permalink Normal View History

2025-09-07 22:09:54 +02:00
from __future__ import annotations
from typing import TYPE_CHECKING, Generic, TypeVar
if TYPE_CHECKING:
from narwhals.expr import Expr
from narwhals.typing import NonNestedLiteral
ExprT = TypeVar("ExprT", bound="Expr")
class ExprListNamespace(Generic[ExprT]):
def __init__(self, expr: ExprT) -> None:
self._expr = expr
def len(self) -> ExprT:
"""Return the number of elements in each list.
Null values count towards the total.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame({"a": [[1, 2], [3, 4, None], None, []]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_len=nw.col("a").list.len())
| Narwhals DataFrame |
|------------------------|
|shape: (4, 2) |
||
| a a_len |
| --- --- |
| list[i64] u32 |
||
| [1, 2] 2 |
| [3, 4, null] 3 |
| null null |
| [] 0 |
||
"""
return self._expr._with_elementwise(
lambda plx: self._expr._to_compliant_expr(plx).list.len()
)
def unique(self) -> ExprT:
"""Get the unique/distinct values in the list.
Null values are included in the result. The order of unique values is not guaranteed.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame({"a": [[1, 1, 2], [3, 3, None], None, []]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_unique=nw.col("a").list.unique())
| Narwhals DataFrame |
|----------------------------|
|shape: (4, 2) |
||
| a a_unique |
| --- --- |
| list[i64] list[i64] |
||
| [1, 1, 2] [1, 2] |
| [3, 3, null] [null, 3] |
| null null |
| [] [] |
||
"""
return self._expr._with_elementwise(
lambda plx: self._expr._to_compliant_expr(plx).list.unique()
)
def contains(self, item: NonNestedLiteral) -> ExprT:
"""Check if sublists contain the given item.
Arguments:
item: Item that will be checked for membership.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame({"a": [[1, 2], None, []]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_contains_1=nw.col("a").list.contains(1))
| Narwhals DataFrame |
|----------------------------|
|shape: (3, 2) |
||
| a a_contains_1 |
| --- --- |
| list[i64] bool |
||
| [1, 2] true |
| null null |
| [] false |
||
"""
return self._expr._with_elementwise(
lambda plx: self._expr._to_compliant_expr(plx).list.contains(item)
)
def get(self, index: int) -> ExprT:
"""Return the value by index in each list.
Negative indices are not accepted.
Returns:
A new expression.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> df_native = pl.DataFrame({"a": [[1, 2], [3, 4, None], [None, 5]]})
>>> df = nw.from_native(df_native)
>>> df.with_columns(a_first=nw.col("a").list.get(0))
| Narwhals DataFrame |
|--------------------------|
|shape: (3, 2) |
||
| a a_first |
| --- --- |
| list[i64] i64 |
||
| [1, 2] 1 |
| [3, 4, null] 3 |
| [null, 5] null |
||
"""
if not isinstance(index, int):
msg = (
f"Index must be of type 'int'. Got type '{type(index).__name__}' instead."
)
raise TypeError(msg)
if index < 0:
msg = f"Index {index} is out of bounds: should be greater than or equal to 0."
raise ValueError(msg)
return self._expr._with_elementwise(
lambda plx: self._expr._to_compliant_expr(plx).list.get(index)
)